Speleoseismology: A critical perspective


Link to Full Text

Download Full Text

Publication Date


Publication Title

Journal of Seismology

Volume Number



Speleoseismology is the investigation of earthquake records in caves. Traces can be seen in broken speleothems, growth anomalies in speleothems, cave sediment deformation structures, displacements along fractures and bedding plane slip, incasion (rock fall) and co-seismic fault displacements. Where earthquake origins can be proven, these traces constitute important archives of local and even regional earthquake activity. However, other processes that can generate the same or very similar deformation features have to be excluded before cave damage can be interpreted as earthquake induced. Most sensitive and therefore most valuable for the tracing of strong earthquake shocks in caves are long and slender speleothems, such as soda straws, and deposits of well-bedded, water-saturated silty sand infillings, particularly in caves close to the earth's surface. Less easily proven is a co-seismic origin of an incasion and other forms of cave damage. The loads and creep movements of sediment and ice fillings in caves can cause severe damage to speleothems which have been frequently misinterpreted as evidence of earthquakes. For the dating of events in geological archives, it is important to demonstrate that such events happened at approximately the same time, i.e. within the error bars of the dating methods. A robust earthquake explanation for cave damage can only be achieved by the adoption of appropriate methods of direct dating of deformation events in cave archives combined with correlation of events in other geological archives outside caves, such as the deformation of lake and flood-plain deposits, locations of rock falls and active fault displacements.

Document Type


Digital Object Identifier (DOI)