Download Full Text (9.2 MB)

Publication Date

May 2017


Karst aquifer systems are present throughout parts of the United States and some of its territories, and have developed in carbonate rocks (primarily limestone and dolomite) and evaporites (gypsum, anhydrite, and halite) that span an interval of time encompassing more than 550 million years. The depositional environments, diagenetic processes, post-depositional tectonic events, and geochemical weathering processes that form karst aquifers are varied and complex. These factors involve biological, chemical, and physical changes that when combined with the diverse climatic regimes in which karst development has taken place, result in the unique dual- or triple-porosity nature of karst aquifers. These complex hydrogeologic systems typically represent challenging and unique conditions to scientists attempting to study groundwater flow and contaminant transport in these terrains. The dissolution of carbonate rocks and the subsequent development of distinct and beautiful landscapes, caverns, and springs have resulted in the most exceptional karst areas being designated as national or state parks. Tens of thousands of similar areas in the United States have been developed into commercial caverns and known privately owned caves. Both public and private properties provide access for scientists to study the flow of groundwater in situ. Likewise, the range and complexity of landforms and groundwater flow systems associated with karst terrains are enormous, perhaps more than for any other aquifer type. Karst aquifers and landscapes that form in tropical areas, such as the cockpit karst along the north coast of Puerto Rico, differ greatly from karst landforms in more arid climates, such as the Edwards Plateau in west-central Texas or the Guadalupe Mountains near Carlsbad, New Mexico, where hypogenic processes have played a major role in speleogenesis. Many of these public and private lands also contain unique flora and fauna associated with these karst hydrogeologic systems. As a result, numerous federal, state, and local agen


Karst, Karst Aquifer Systems, Dissolution, Carbonate Rocks



Subject: topical

Karst; Karst Aquifer Systems; Dissolution; Carbonate Rocks