Download Full Text (1.1 MB)

Publication Date


Publication Title

Acta Carsologica

Volume Number


Issue Number



Under growth conditions constant in time stalagmites grow into an equilibrium shape, which is established, when all points of its surface are shifting by the same vertical distance during a time interval . Thereby is the precipitation rate in , is the calcium concentration of the supersaturated solution dripping to the apex of the stalagmite, and its equilibrium concentration with respect to calcite and the in the cave atmosphere. From these ingredients a numerical model of stalagmite growth into an equilibrium shape is presented. In this model one assumes idealistically that the water dripping to the apex flows continuously down the stalagmite, spreading out radially. By simple mass balance one finds that the equilibrium radius is , where is the volume of a drop and the drip interval. Furthermore numerical modeling repro- duces the vertical shifting of the stalagmite’s equilibrium shape. Finally an interesting similarity rule is found. If one scales two stalagmites of differing to the same size and chooses their growth axes as common axis and their apexes as common origin, both show identical shapes. In other words regular stalagmites are similar geometrically. This similarity rule is verified by digitizing the shapes of various natural stalagmites with diameters between 5 cm and 20 m. Within small natural variations, the rescaled shapes are identical and close to the shape of the numerical model.


Stalagmites, Morphology, Growth rates, Scaling law

Document Type



English and Slovenian





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.