Spreading of tracer plumes through confined telogenetic karst aquifers: A model


Link to Full Text

Download Full Text

Publication Date

October 2011


To calculate spreading of a tracer or contaminant through an aquifer all details of the aquifer, e.g. distribution of hydraulic parameters, must be known. This is not possible in nature. To study the spreading of plumes through karst, we have used a digital model of a confined karst aquifer at different stages of early karstification. In these models all details such as fracture aperture widths, their lengths and widths, and the hydraulic boundary conditions are known. Therefore the flow velocity of water can be calculated in each fracture. Using this information a particle tracking method is employed to calculate the propagation and spreading of a plume caused by an instantaneous input pulse into selected regions of the aquifer. From this information the time dependence of the outflow of particles from any selected region is obtained. This function represents the transfer response function for an instantaneous Dirac δ-function input. Two digital karst models are designed. In the first, homogeneous one, the aperture widths of the fractures are statistically distributed but of similar width. In the second a coarse percolating net of prominent fractures with larger constant aperture width is embedded into the dense net of narrow fissures. Propagation of the plumes and the transfer-response function are presented at the onset of karstification and at different times of karst evolution. If particles are injected at the entrance of evolving karst channels propagating towards the output boundary tracer breakthrough times increase with increasing time of karst evolution until shortly before breakthrough of the karst conduit they drop to half of their maximal value. With increasing evolution of the karst aquifer the hydraulic heads are redistributed and regions of low hydraulic gradients in the upstream side of the aquifer are created. Particles injected into fractures which have stopped dissolutional widening of their aperture widths and are located in regions of low gradient are kept in these regions for long times in


Karst, Digital Model, Water Tracing, Particle Tracking

Document Type



Journal of Hydrology, Vol. 1-2 (2011-10-28).