Quaternary tectonic stability of the Bahamian archipelago: evidence from fossil coral reefs and flank margin caves


Link to Full Text

Download Full Text

Publication Date

January 1995


Throughout the islands of the Bahamian archipelago fossil coral reefs are found from current sea level up to a maximum elevation of +4 m. radiometric dates obtained from in situ corals from these reefs, by both alpha-count and mass-spectrometric techniques, indicates that they were all formed during Oxygen Isotope Substage 5e (ca. 125,000 years ago). Those data are consistent with a maximum sea-level highstand of +6 m during Substage 5e, and either no vertical motion of the Bahamas, or possible isostatic subsidence of up to 2 m during the past 120,000 years. No older in situ fossil corals, or other subtidal deposits, have been found subaerially exposed anywhere in the Bahamas. That finding suggests that late Quaternary (at least the past 300,000 years) isostatic subsidence has occurred at a rate of 1–2 m per hundred thousand years, and/or no pre-5e highstands were above modern sea level. An independent corroboration of the conclusions drawn about sea level amplitude and tectonic stability of the Bahamas from the coral reef data is available from examination of abundant flank margin caves (horizontal, phreatic dissolution caves) found above modern sea level throughout the Bahamas. These horizontally extensive air-filled caves have dissolutional ceilings with elevations that are restricted to +1 to +7 m, which is consistent with formation at the margin of a thin freshwater lens elevated by a past +6 m sea-level highstand. The restricted cave elevations, and the lack of stalagmites in these caves that are older than 100,000 years, are also consistent with cave formation during Substage 5e, and possible subsequent isostatic subsidence of a few metres. The subsurface geology of the southeastern Bahamas contains a long-term record (millions of years) that has been attributed to past tectonic activity along the North American/Caribbean plate boundary. While that record suggests differential subsidence across the Bahamas in the Tertiary Period, the data from fossil coral reefs (and subtidal deposits) and flank margin


Quaternary Science Reviews, Vol. 14, no. 2 (1995-01-01).


Bahamian, Coral Reefs, Sea Level



Subject: topical

Bahamian, Coral Reefs, Sea Level