Karst pools in subsurface environments: collectors of microbial diversity or temporary residence between habitat types

T Shabarova
J Pernthaler

Please visit https://digitalcommons.usf.edu/kip_articles/2999 to view this article.


We studied bacterial diversity and community composition in three shallow pools of a Swiss karst cave system with contrasting hydrological and hydrochemical properties. The microbial assemblages in the pools were remarkably different, and only one operational taxonomic unit of 16S rRNA genes (OTU, 97% similarity) was shared between the three of them (total OTU number in all pools: 150). Unexpectedly high microbial phylotype richness was found even in the two pools without groundwater contact and with low concentrations of organic carbon and total cell numbers (< 104ml−1). One of these seepage water fed systems harboured 15 distinct OTUs from several deeply branching lineages of the candidate phylum OP3, whereas representatives of this group were not detected in the other two pools. A tentative phylogeographic analysis of available OP3‐related sequences in the context of our data set revealed that there was generally little agreement between the habitats of origin of closely related sequence types. Two bacterial clades affiliated with the obligate methylamine utilizer Methylotenera mobilis were only found in the pool that was exposed to repeated flooding events. These bacteria formed relatively stable populations of up to 6% of total cell counts over periods of several months irrespective of inundation by groundwater. This suggests that karst water may provide a means of transport for these bacteria from terrestrial to freshwater habitats.