Heritage materials and biofouling mitigation through UV-C irradiation in show caves: state-of-the-art practices and future challenges


Link to Full Text

Download Full Text

Publication Date

January 2015


Biofouling, i.e., colonization of a given substrate by living organisms, has frequently been reported for heritage materials and particularly on stone surfaces such as building facades, historical monuments, and artworks. This also concerns subterranean environments such as show caves, in which the installation of artificial light for tourism has led to the proliferation of phototrophic microorganisms. In Europe nowadays, the use of chemicals in these very sensitive environments is scrutinized and regulated by the European Union. New and environmentally friendly processes must be developed as alternative methods for cave conservation. For several years, the UV irradiation currently used in medical facilities and for the treatment of drinking water has been studied as a new innovative method for the conservation of heritage materials. This paper first presents a review of the biofouling phenomena on stone materials such as building facades and historical monuments. The biological disturbances induced by tourist activity in show caves are then examined, with special attention given to the methods and means to combat them. Thirdly, a general overview is given of the effects of UV-C on living organisms, and especially on photosynthetic microorganisms, through different contexts and studies. Finally, the authors’ own experiments and findings are presented concerning the study and use of UV-C irradiation to combat algal proliferation in show caves. Both laboratory and in situ results are summarized and synthesized from their previously published works. The application of UV in caves is discussed and further experiments are proposed to enhance research in this domain.


Biofouling, Heritage Materials, Caves, Microorganisms, UV-C Irradiation

Document Type



Environmental Science and Pollution Research, Vol. 22, no. 6 (2015).