Eogenetic karst from the perspective of an equivalent porous medium


Link to Full Text

Download Full Text

Publication Date

January 2002


The porosity of young limestones experiencing meteoric diagenesis in the vicinity of their deposition (eogenetic karst) is mainly a double porosity consisting of touching-vug channels and preferred passageways lacing through a matrix of interparticle porosity. In contrast, the porosity of limestones experiencing subaerial erosion following burial diagenesis and uplift (telogenetic karst) is mainly a double porosity consisting of conduits within a network of fractures. The stark contrast between these two kinds of karst is illustrated by their position on a graph showing the hydraulic characteristics of an equivalent porous medium consisting of straight, cylindrical tubes (n-D space, where n is porosity,D is the diameter of the tubes, and logn is plotted against logD). Studies of the hydrology of small carbonate islands show that large-scale, horizontal hydraulic conductivity (K) increases by orders of magnitude during the evolution of eogenetic karst. Earlier petrologic studies have shown there is little if any change in the total porosity of the limestone during eogenetic diagenesis. The limestone of eogenetic karst, therefore, tracks horizontally inn-D space. In contrast, the path from initial sedimentary material to telogenetic karst comprises a descent on the graph with reduction ofn during burial diagenesis, then a sideways shift with increasingD due to opening of fractures during uplift and exposure, and finally an increase inD andn during development of the conduits along the fractures. Eogenetic caves are mainly limited to boundaries between geologic units and hydrologic zones: stream caves at the contact between carbonates and underlying impermeable rocks (and collapse-origin caves derived therefrom); vertical caves along platform-margin fractures; epikarst; phreatic pockets (banana holes) along the water table; and flank margin caves that form as mixing chambers at the coastal freshwater-saltwater “interface”. In contrast, the caverns of telogenetic karst are part of a system of interconnected conduits


Young Limestones, Eogenetic Karst, Telogenetic Karst, Karst

Document Type



Carbonates and Evaporites, Vol. 17, no. 182-196 (2002-01-01).