Title

Dracula's children: Molecular evolution of vampire bat venom

Files

Link to Full Text

Download Full Text

Publisher

Elsevier

Publication Date

August 2013

Abstract

While vampire bat oral secretions have been the subject of intense research, efforts have concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, while conversely draculin has long been known from only a very small fragment and thus even the basic protein class was not even established. Despite the fact that vampire bat venom has a multitude of effects unaccounted by the documented bioactivities of DSPA and draculin, efforts have not been made to establish what other bioactive proteins are secreted by their submaxillary gland. In addition, it has remained unclear whether the anatomically distinct anterior and posterior lobes of the submaxillary gland are evolving on separate gene expression trajectories or if they remain under the shared genetic control. Using a combined proteomic and transcriptomic approach, we show that identical proteins are simultaneously expressed in both lobes. In addition to recovering the known structural classes of DSPA, we recovered a novel DSPA isoform as well as obtained a very large sequence stretch of draculin and thus established that it is a mutated version of the lactotransferrin scaffold. This study reveals a much more complex secretion profile than previously recognised. In addition to obtaining novel versions of scaffolds convergently recruited into other venoms (allergen-like, CRiSP, kallikrein, Kunitz, lysozyme), we also documented novel expression of small peptides related to calcitonin, PACAP, and statherin. Other overexpressed protein types included BPI-fold, lacritin, and secretoglobin. Further, we investigate the molecular evolution of various vampire bat venom-components and highlight the dominant role of positive selection in the evolution of these proteins. Conspicuously many of the proteins identified in the proteome were found to be homologous to proteins with known activities affecting vasodilation and platelet aggregation. We show that vampire bat ve

Notes

Journal of Proteomics, Vol. 89 (2013-08-26).

Keywords

Molecular Evolution, Vampire Bat, Venom, Positive Selection, Desmodus Rotundus

Description

RDA

Subject: topical

Molecular Evolution; Vampire Bat; Venom; Positive Selection; Desmodus Rotundus

Type

Article

Genre

serial

Identifier

SFS0069824_00001

Share

COinS