Author Information

Justin Rodney
Alfredo Weitzenfeld

Location

USF

Document Type

Event

Keywords

AI, Deep Reinforcement Learning, SSL, Robot Soccer

Description

In this work, Machine Learning approaches were applied to attacking behaviors in RoboCup Small-Size League autonomous robot soccer. Neural networks were used in order to get a binary prediction of an attacking action’s success, while deep reinforcement learning was leveraged to learn low level skills which control the robot’s wheel speeds and kicker. A trained neural network was used to predict whether a shot would be successful, improving the number of goals scored by the attacking behavior by 84 to 186%. The reinforcement learning methodologies used in this work produced behaviors which were efficient in speed, beating manually programmed behaviors in time taken, but can benefit from future refinements to improve accuracy in shooting towards goal.

DOI

https://doi.org/10.5038/JHSP3238

Share

COinS
 

Machine Learning Approaches for Attacking Behaviors in Robot Soccer

USF

In this work, Machine Learning approaches were applied to attacking behaviors in RoboCup Small-Size League autonomous robot soccer. Neural networks were used in order to get a binary prediction of an attacking action’s success, while deep reinforcement learning was leveraged to learn low level skills which control the robot’s wheel speeds and kicker. A trained neural network was used to predict whether a shot would be successful, improving the number of goals scored by the attacking behavior by 84 to 186%. The reinforcement learning methodologies used in this work produced behaviors which were efficient in speed, beating manually programmed behaviors in time taken, but can benefit from future refinements to improve accuracy in shooting towards goal.