Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Mathematics and Statistics

Major Professor

Razvan Teodorescu, Ph.D.

Committee Member

Sherwin Kouchekian, Ph.D.

Committee Member

Seung-Yeop Lee, Ph.D.

Committee Member

Leslaw A. Skrzypek, Ph.D.


Phase Transition, Geometric Deformation, Kuramoto Model, Synchronization, Dynamical Systems


The theory of thermodynamic phase transitions has played a central role both in theoretical physics and in dynamical systems for several decades. One of its fundamental results is the classification of various physical models into equivalence classes with respect to the scaling behavior of solutions near the critical manifold. From that point of view, systems characterized by the same set of critical exponents are equivalent, regardless of how different the original physical models might be. For non-equilibrium phase transitions, the current theoretical framework is much less developed. In particular, an equivalent classification criterion is not available, thus requiring a specific analysis of each model individually. In this thesis, we propose a potential classification method for time-dependent dynamical systems, namely comparing the possible deformations of the original problem, and identifying dynamical systems which share the same deformation space. The specific model on which this procedure is developed is the Kuramoto model for interacting, disordered oscillators. Studied in the mean-field limit by a variety of methods, its associated synchronization phase transition appears as an appropriate model for cooperative phenomena ranging from coupled Josephson junctions to self-ordering patterns in biological and social systems. We investigate the geometric deformation of the dynamical system into the space of univalent maps of the unit disk, related to the Douady-Earle extension and the Denjoy-Wolff theory, and separately the algebraic deformation into the space of nonlinear sigma models for unitary operators. The results indicate that the Kuramoto model is representative for a large class of non-equilibrium synchronization models, with a rich phase-space diagram.

Included in

Mathematics Commons