Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department


Major Professor

Abdul Malik, Ph.D.

Committee Member

Theresa Evans-Nguyen, Ph.D.

Committee Member

Jianfeng Cai, Ph.D.

Committee Member

Chuanhai Cao, Ph.D.

Committee Member

Wayne Guida, Ph.D.

Committee Member

Srinivas Tipparaju, Ph.D.


Capillary Microextraction, Organophosphorus, Niobia sorbents, Sol-gel


Sample preparation is a key step in chemical analysis, and includes isolation of target analytes, removal of interferences, preconcentration, and/or modification of target analytes (if needed). Sample preparation is also the most time-consuming and error-prone step in the whole analytical process. Traditional sample preparation techniques involve hazardous solvents. Considering the environmental and health safety, it is desirable to reduce or eliminate organic solvents in sample preparation. Solid phase microextraction (SPME) was introduced as a solvent free sample preparation technique. Capillary microextraction (CME) is one of the formats of SPME that can be easily coupled to high performance liquid chromatography (HPLC). In SPME and CME a solvent free sample preparation is accomplished by using a sorbent coating instead of hazardous organic solvents commonly used in conventional extraction techniques. This research is focused on the development and systematic examination of novel niobia-, titania- and silica-based organic-inorganic hybrid sol-gel sorbents for CME. Conventionally silica and titania based precursors were used in organi-inorganic hybrid sol-gel sorbents for CME, here novel niobia based precursor was used in creating organic-inorganic hybrid sol-gel sorbents. Poly tetrahydrofuran (polyTHF) as well as electrically neutral and charged organic ligands were used to prepare the sorbents for CME coupled to HPLC. Characterization of created sol-gel sorbents, evaluation of extraction performance, and enrichment of environmentally and biomedically important analytes including organophosphorus compounds were performed. CME performances of the created sorbents were characterized by specific extraction (SE) (a measure of extraction efficiency) and desorption efficiency (DE) (a measure of completeness desorption of extracted analytes). Scientific findings of this research has shown that sol-gel niobia-polyTHF sorbent provides 60 to 70 % higher SE values for different environmentally important analytes compared to analogously prepared silica-polyTHF sorbent. This superior extraction performance can be attributed to the presence of surface Lewis acid sites undergoing Lewis acid-base interactions with analytes representing Lewis bases. The prepared sorbents also have the ability to undergo van der Waals interactions due to the presence of polyTHF. Absence of Lewis acid sites on silica surface resulted in inferior extraction efficiency compared to niobia-polyTHF sorbents. Extraction efficiency of the created sol-gel based niobia-polyTHF was also explored in the enrichment of organophosphorus pesticides and compared with that of the state-of-the-art titania-based sorbent. Sol-gel niobia-polyTHF sorbent has provided 40 to 50 % higher SE values in the enrichment of organophosphorus pesticides compared to sol-gel titania-polyTHF sorbent which can be attributed to the presence of bronsted acid sites on niobia surface (but lacking on titania) along with Lewis acid sites. To explore relative contributions of electrostatic, Lewis acid-base and van der Waals interactions between sol-gel sorbents and analytes, two sol-gel sorbents, one containing a positively charged octadecyl ligand and the other a neutral octadecyl ligand were created. Positive charge was imparted by using N-octadecyldimethyl [3-(trimethoxysilyl) propyl] ammonium chloride (C18 (+ve)) as ligand bearing co-precursor. Similarly N-octadecyl trimethoxysilane was used to impart a neutral C18 ligand in sol-gel coating. Experimental results have shown that sol-gel Nb2O5-C18 (+ve) sorbent has superior extraction efficiency compared to sol-gel based Nb2O5-C18 and purely inorganic Nb2O5 sorbents in enrichment of organophosphorus compounds (nucleotides and organophosphorus pesticides). Electrostatic interactions between the positive charge of organic ligand (C18 (+ve)) and negative charge of phosphate group has contributed to the higher extraction performance of sol-gel based Nb2O5-C18 (+ve) sorbent. TiO2-C18 (+ve) sorbent was also created to compare with the novel sol-gel niobia based sorbents, since titania-based sorbents are considered as the state-of-the-art extraction material in the enrichment of organophosphorus compounds. Established research results has shown that sol-gel based Nb2O5-C18 (+ve) sorbent has provided 40 to 50 % higher specific extraction values for organophosphorus compounds compared to sol-gel based TiO2-C18 (+ve) sorbent. Desorption efficiency of sol-gel Nb2O5-C18 (+ve) and TiO2-C18 (+ve) sorbents were 96% vs 90%. This superior DE of sol-gel Nb2O5-C18 (+ve) sorbent can be attributed the higher Lewis acid strength of titania than nioiba. The developed sol-gel niobia based sorbents have also shown high pH stability compared to traditional sol-gel silica based sorbents. The created sol-gel sorbents were characterized by less than 5% run to run RSD values and also less than 5% capillary to capillary RSD values which indicated the high reproducibility of developed method. The developed sol-gel niobia sorbents are applicable to sample preparation in different fields including biomedical, environmental, forensic, defense etc.