Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department


Major Professor

Richard A. Gitlin, Sc.D.

Committee Member

Huseyin Arslan, Ph.D.

Committee Member

Nasir Ghani, Ph.D.

Committee Member

Srinivas Katkoori, Ph.D.

Committee Member

Peter Fabri, M.D.


Neural Networks, Support Vector Machines, VCG, WBANs, IoT


This dissertation is directed towards improving the state of art cardiac monitoring methods and automatic diagnosis of cardiac anomalies through modern engineering approaches such as adaptive signal processing, and machine learning methods. The dissertation will describe the invention and associated methods of a cardiac rhythm monitor dubbed the Integrated Vectorcardiogram (iVCG). In addition, novel machine learning approaches are discussed to improve diagnoses and prediction accuracy of cardiac diseases.

It is estimated that around 17 million people in the world die from cardiac related events each year. It has also been shown that many of such deaths can be averted with long-term continuous monitoring and actuation. Hence, there is a growing need for better cardiac monitoring solutions. Leveraging the improvements in computational power, communication bandwidth, energy efficiency and electronic chip size in recent years, the Integrated Vectorcardiogram (iVCG) was invented as an answer to this problem. The iVCG is a miniaturized, integrated version of the Vectorcardiogram that was invented in the 1930s. The Vectorcardiogram provides full diagnostic quality cardiac information equivalent to that of the gold standard, 12-lead ECG, which is restricted to in-office use due to its bulky, obtrusive form. With the iVCG, it is possible to provide continuous, long-term, full diagnostic quality information, while being portable and unobtrusive to the patient. Moreover, it is possible to leverage this ‘Big Data’ and create machine learning algorithms to deliver better patient outcomes in the form of patient specific machine diagnosis and timely alerts.

First, we present a proof-of-concept investigation for a miniaturized vectorcardiogram, the iVCG system for ambulatory on-body applications that continuously monitors the electrical activity of the heart in three dimensions. We investigate the minimum distance between a pair of leads in the X, Y and Z axes such that the signals are distinguishable from the noise. The target dimensions for our prototype iVCG are 3x3x2 cm and based on our experimental results we show that it is possible to achieve these dimensions.

Following this, we present a solution to the problem of transforming the three VCG component signals to the familiar 12-lead ECG for the convenience of cardiologists. The least squares (LS) method is employed on the VCG signals and the reference (training) 12-lead ECG to obtain a 12x3 transformation matrix to generate the real-time ECG signals from the VCG signals.

The iVCG is portable and worn on the chest of the patient and although a physician or trained technician will initially install it in the appropriate position, it is prone to subsequent rotation and displacement errors introduced by the patient placement of the device. We characterize these errors and present a software solution to correct the effect of the errors on the iVCG signals.

We also describe the design of machine learning methods to improve automatic diagnosis and prediction of various heart conditions. Methods very similar to the ones described in this dissertation can be used on the long term, full diagnostic quality ‘Big Data’ such that the iVCG will be able to provide further insights into the health of patients.

The iVCG system is potentially breakthrough and disruptive technology allowing long term and continuous remote monitoring of patient’s electrical heart activity. The implications are profound and include 1) providing a less expensive device compared to the 12-lead ECG system (the “gold standard”); 2) providing continuous, remote tele-monitoring of patients; 3) the replacement of current Holter shortterm monitoring system; 4) Improved and economic ICU cardiac monitoring; 5) The ability for patients to be sent home earlier from a hospital since physicians will have continuous remote monitoring of the patients.

Included in

Engineering Commons