Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Biology (Cell Biology, Microbiology, Molecular Biology)

Major Professor

Lindsey Shaw, Ph.D.

Committee Member

James Leahy, Ph.D.

Committee Member

Bill Baker, Ph.D.

Committee Member

Edward Turos, Ph.D.


Antimicrobial drug discovery, Combinatorial libraries, Efflux inhibition, Quinazoline


Antibiotic resistance has been a developing problem for mankind in recent decades and multi-drug resistant bacteria are now encountered that are resistant to all treatment options available. In 2014, the World Health Organization announced that this problem is driving us towards a “post-antibiotic era” that will change the face of modern medicine as we know it. If lack of novel antibiotic development and FDA approval continues, by the year 2050, 10 million people will die each year to an antimicrobial resistant bacterial infection. With lack of pharmaceutical industry involvement in developing novel antibiotics, the responsibility now lies within the academic institutions to identify potential novel therapeutics to fuel the antibiotic drug discovery pipeline. Combinatorial chemistry is one technique used to expedite the discovery process by assessing a large chemical space in a relatively short time when compared to traditional screening approaches. Combinatorial libraries can be screened using multiple approaches and has shown successful application towards many disease states. We initially discovered broad spectrum antibacterial bis-cyclic guanidines using combinatorial libraries and expanded on the knowledge of the physiochemical attributes necessary to inhibit Gram negative bacterial pathogens. Following this success, we continued to assess the combinatorial libraries for adjunctive therapeutics that potentiate the activity of obsolete clinical antibiotics. The polyamine efflux pump inhibitors discovered in this subsequent study prove the benefits of using the large chemical space provided in the combinatorial libraries to identify a variety of therapeutics. Our studies always begin with identifying an active compound and active compounds undergo hit-to-lead optimization. This optimization studies are of utmost importance in developing a novel antibacterial agent for therapeutic applications. Our medicinal chemistry work described here is proof of the success of careful structure activity analyses to optimize a hit scaffold to create a more effective antibacterial agent. Overall, our work described here reveals the potential role of academic institutions in fending off the impending “post-antibiotic era”.