Graduation Year


Document Type




Degree Name

MS in Public Health (M.S.P.H.)

Degree Granting Department

Public Health

Major Professor

Rene R. Salazar, Ph.D.

Committee Member

Yehia Y. Hammad, Sc.D.

Committee Member

Steven P. Mlynarek, Ph.D.


total, respirable, PNOR, paper dust


Purpose. Exposures to paper dust, classified as Particulates Not Otherwise Regulated (PNOR), in an industrial setting can cause irritation to the eyes, skin, throat and upper respiratory tract. An exposure assessment was conducted to evaluate the paper dust exposures in the coupon manufacturing facility during a normal production working period. Methods. Total and respirable personal dust sampling was performed according to NIOSH 0500 and 0600 methods. Six total dust samples and seven respirable dust samples were taken within the sampling areas where airborne paper dust was produced to evaluate the Time Weighted Average (TWA) of the exposed employees. Results. Results showed that the TWAs for total dust within the three sampling areas ranged from 0.4% to 4.7% of the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and 0.5% to 7.1% of the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV), except sample RD-4 in the Baler Room. TWAs for respirable dust within the Press Room and Collation Area ranged from 0.8% to 0.9% of the OSHA PEL for all samples and 1.4% to 1.5% of the ACGIH TLV. Descriptive statistics showed the sample standard deviation for both total and respirable dust to be below 1.0. The coefficient of variation for TWAs of total dust in the Press Room was 32.7% while all other total dust and respirable dust coefficient of variations for TWA ranged from 1.3% to 3.4%. Conclusion. Exposures to paper dust ranged from 0.4% to 7.1% of either the OSHA PEL or ACGIH TLV with an exception of sample RD-4 in the Baler Room which was 34% of the OSHA PEL and 56.7% of the ACGIH TLV. Identical respirable dust data and variable total dust data in the Press Room and Collation Area suggest that the dust being generated is of a larger particle size and therefore affects the nose, throat, and upper lungs. The engineering and administrative controls present appeared to be adequate based on the sampling data. Respiratory Personal Protective Equipment (PPE) was not considered a requirement but should be permitted if requested. Present workplace practices also appeared adequate based on the sampling data.