Graduation Year


Document Type




Degree Granting Department

Computer Science

Major Professor

Rahul Tripathi, Ph.D.

Committee Member

Nagarajan Ranganathan, Ph.D.

Committee Member

Sudeep Sarkar, Ph.D.


Game theory, Optimal strategies, Algorithms, Computational complexity, Computational equilibrium


A simple stochastic game (SSG) is a game defined on a directed multigraph and played between players MAX and MIN. Both players have control over disjoint subsets of vertices: player MAX controls a subset VMAX and player MIN controls a subset VMIN of vertices. The remaining vertices fall into either VAVE, a subset of vertices that support stochastic transitions, or SINK, a subset of vertices that have zero outdegree and are associated with a payoff in the range [0, 1]. The game starts by placing a token on a designated start vertex. The token is moved from its current vertex position to a neighboring one according to certain rules. A fixed strategy σ of player MAX determines where to place the token when the token is at a vertex of VMAX. Likewise, a strategy τ of player MIN determines where to place the token when the token is at a vertex of VMIN. When the token is at a vertex of VAVE, the token is moved to a uniformly at random chosen neighbor. The game stops when the token arrives on a SINK vertex; at this point, player MAX gets the payoff associated with the SINK vertex.

A fundamental question related to SSGs is the SSG value problem: Given a SSG G, is there a strategy of player MAX that gives him an expected payoff at least 1/2 regardless of the strategy of player MIN? This problem is among the rare natural combinatorial problems that belong to the class NP ∩ coNP but for which there is no known polynomial-time algorithm. In this thesis, we survey known algorithms for the SSG value problem and characterize them into four groups of algorithms: iterative approximation, strategy improvement, mathematical programming, and randomized algorithms. We obtain two new algorithmic results: Our first result is an improved worst-case, upper bound on the number of iterations required by the Homan-Karp strategy improvement algorithm. Our second result is a randomized Las Vegas strategy improvement algorithm whose expected running time is O(20:78n).