Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Chemical Engineering

Major Professor

John N. Kuhn, Ph.D.

Committee Member

Venkat R. Bhethanabotla, Ph.D.

Committee Member

Babu Joseph, Ph.D.

Committee Member

Rudiger Schlaf, Ph.D.

Committee Member

Matthew M. Yung, Ph.D.


Reverse Water Gas Shift, Chemical Looping, RWGS-CL, Perovskite Oxides, Isothermal CO2 Conversion, Carbon Capture and Utilization, CCU


CO2 global emissions exceed 30 Giga tonnes (Gt) per year, and the high atmospheric concentrations are detrimental to the environment. In spite of efforts to decrease emissions by sequestration (carbon capture and storage) and repurposing (use in fine chemicals synthesis and oil extraction), more than 98% of CO2 generated is released to the atmosphere. With emissions expected to increase, transforming CO2 to chemicals of high demand could be an alternative to decrease its atmospheric concentration. Transportation fuels represent 26% of the global energy consumption, making it an ideal end product that could match the scale of CO2 generation. The long-term goal of the study is to transform CO2 to liquid fuels closing a synthetic carbon cycle.

Synthetic fuels, such as diesel and gasoline, can be produced from syngas (a combination of CO and H2) by Fischer Tropsch synthesis or methanol synthesis, respectively. Methanol can be turned into gasoline by MTO technologies. Technologies to make renewable hydrogen are already in existence, but CO is almost exclusively generated from methane. Due to the high stability of the CO2 molecule, its transformation is very energy intensive. Therefore, the current challenge is developing technologies for the conversion of CO2 to CO with a low energy requirement.

The work in this dissertation describes the development of a recyclable, isothermal, low-temperature process for the conversion of CO2 to CO with high selectivity, called Reverse Water Gas Shift Chemical Looping (RWGS-CL). In this process, H2 is used to generate oxygen vacancies in a metal oxide bed. These vacancies then can be re-filled by one O atom from CO2, producing CO. Perovskites (ABO3) were used as the oxide material due to their high oxygen mobility and stability. They were synthesized by the Pechini sol-gel synthesis, and characterized with X-ray diffraction and surface area measurements. Mass spectrometry was used to evaluate the reducibility and re-oxidation abilities of the materials with temperature-programmed reduction and oxidation experiments. Cycles of RWGS-CL were performed in a packed bed reactor to study CO production rates.

Different metal compositions on the A and B site of the oxide were tested. In all the studies, La and Sr were used on the A site because their combination is known to enhance oxygen vacancies formation and CO2 adsorption on the perovskites. The RWGS-CL was first demonstrated in a non-isothermal process at 500 °C for the H2-reduction and 850 °C for the CO2 conversion on a Co-based perovskite. This perovskite was too unstable for the H2 treatment. Addition of Fe to the perovskite enhanced its stability, and allowed for an isothermal and recyclable process at 550 °C with high selectivity towards CO. In an effort to decrease the operating temperature, Cu was incorporated to the structure. It was found that Cu addition inhibited CO formation and formed very unstable oxide materials.

Preliminary studies show that application of this technology has the potential to significantly reduce CO2 emissions from captured flue gases (i.e. from power plants) or from concentrated CO2 (adsorbed from the atmosphere), while generating a high value chemical. This technology also has possible applications in space explorations, especially in environments like Mars atmosphere, which has high concentrations of atmospheric carbon dioxide.