Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)



Degree Granting Department


Major Professor

Michael J. Zaworotko, Ph.D.

Co-Major Professor

Brian Space, Ph.D.

Committee Member

Julie Harmon, Ph.D.

Committee Member

Gregory McColm, Ph.D.

Committee Member

Shengqian Ma, Ph.D.


Metal-Organic Frameworks, Porous Materials, Design, Topology, CO2 Capture, Xe/Kr Separation


The separation of industrially important gases into pure supplies that can be used for many practical applications is based mainly on energy intensive methods such as the cryogenic distillation which is costly and energy intensive. Therefore other routes have been introduced to industrial separation of gases such as the selective adsorption using porous solid materials. Zeolites and activated carbon are the most widely used recyclable energy-efficient porous solid materials for industrial gas separations, however the low uptake and selectivity hurdles their commercialization in some separation applications. Metal organic frameworks (MOFs) have been extensively studied as solid porous materials in term of gas separations nevertheless the future of MOFs for practical gas separations is considered to be vague and stringent due to their low stability, low capacity and selectivity especially at low partial pressures of the adsorbed gas, the competitive adsorption of the contaminants such as H2O, NOX and SOX, high cost of the organic ligands, besides the challenges of the formulation of MOFs which is very important in the MOFs marketing. In this context we present new porous materials based on inorganic linkers as well as the organic molecules, Organic-Inorganic Hybrid Materials, which were found to conquer the current challenges for the exploitation of MOFs in practical gas separation such as separation of trace and low CO2 concentrations and Xe separation from Xe/Kr mixtures.

The work presented herein encompasses the development of novel 48.67 topology metal organic material (MOM) platform of formula [M(bp)2(M'O4)] (M= Co or Ni; bpe= bipyridine-type linkers; M'= W, Mo or Cr) that have been assigned RCSR code mmo based upon pillaring of [M(bp)2] square grids by angular WO42-, MoO42- or CrO42- pillars. Such pillars are unexplored in MOMs. They represent ideal platforms to test the effect of pore size and chemistry upon gas sorption behavior since they are readily fine-tuned and can be varied at their 3-positions (metal, organic linker and the inorganic pillar) without changing the overall structure. Such an approach allows for systematic control of pore size to optimize interactions between the framework and the adsorbent in order to enhance selectivity and/or gas uptake. Interestingly, these nets showed a high chemical stability in air, water, boiling water and in a wide range of pH which is certainly a desirable property in industry and commercialization of MOMs.

[Ni(bpe)2(MoO4)] (bpe= 1,2-bis(4-pyridyl) ethane), MOOFOUR-1-Ni, and its chromate analog, CROFOUR-1-Ni, exhibit remarkable CO2 affinity and selectivity, especially at low loading. This behavior can be attributed to exceptionally high isosteric heats of adsorption (Qst) of CO2 in MOOFOUR-1-Ni and CROFOUR-1-Ni of ~56 and ~50 kJ/mol, respectively, at zero loading. These results were validated by modeling which indicate that the electrostatics of such inorganic anions towards CO2 affords favourable attractions to CO2 that are comparable to the effect of unsaturated metal centres.

The use of WO42- instead of CrO42- or MoO42- as an angular pillar in mmo topology nets has afforded two isostructural porous nets of formula [M(bpe)2WO4] (M = Co or Ni, bpe=1,2-(4-pyridyl)ethene). The Ni variant, WOFOUR-1-Ni, is highly selective towards CO2 thanks to its exceptionally high isosteric heat of adsorption (Qst) of -65.5 kJ/mol at zero loading.

The fine-tunability and the inherent modularity of this platform allow us exquisite design and control over the pore chemistry through the incorporation of different functionalities inside the channels of the networks which was then demonstrated as valuable strategy in terms of carbon dioxide capture at condition relevant to the direct CO2 capture from air. The exploitation of 4,4'-azopyridine in the design and synthesis of CROFOUR-2-Ni, an isostructure of CROFOUR-1-Ni, affords a paradigm shift in the CO2 adsorption properties as exemplified by the enhanced CO2 isosteric heat of adsorption at moderate and high loading in CROFOUR-2-Ni and the superior CO2 selectivity even for trace and low CO2 concentration.

The two isostructures, CROFOUR-1-Ni and CROFOUR-2-Ni have been also investigated in term of Xe adsorption and separation from Xe/Kr mixtures. The two structures were found to exhibit the remarkable Xe affinity and selectivity which, together with high stability, good recyclability, low regeneration energy and low cost of the two materials could not only diminish the cost of the Xe and Kr production but also can potentially afford a high purity of the separated gases.

Included in

Chemistry Commons