Graduation Year


Document Type




Degree Granting Department


Major Professor

Charles Connor, Ph.D.

Committee Member

Stephen McNutt, Ph.D.

Committee Member

Rocco Malservisi, Ph.D.


Flagstaff, Monogenetic fields, Monte Carlo simulation, Natural disaster, Spatial density


This study serves as a first step towards a comprehensive hazard assessment for the San Francisco volcanic field in northern Arizona, which can be applied to local response plans and educational initiatives. The primary goal of this thesis is to resolve the conditional probability that, given a lava flow effusing from a new vent in the San Francisco volcanic field, it will inundate the city limits of Flagstaff. The spatial distribution of vents within the San Francisco volcanic field was analyzed in order to execute a lava flow simulation to determine the inundation hazard to Flagstaff. The Gaussian kernel function for estimating spatial density showed that there is a 99% chance that a future vent will be located within a 3.6 x 109 m2 area about 20 kilometers north of Flagstaff. This area contains the location of the most recent eruption at Sunset Crater, suggesting that the model is a good predictor of future vent locations. A Monte Carlo analysis of potential vent locations (N = 7,769) showed that 3.5% of simulated vents generated lava flows that inundated Flagstaff, and 1.1% of simulated vents were located within the city limits. Based on the average recurrence rate of vents formed during the Brunhes chronozone, the aggregate probability of lava flow inundation in Flagstaff is 1.1 x 10-5 per year. This suggests that there is a need for the city to plan for lava flows and associated hazards, especially forest fires. Even though it is unlikely that the city will ever have to utilize such a plan, it is imperative that thorough mitigation and response plans are established now-- before the onset of renewed volcanic activity.