Graduation Year


Document Type




Degree Granting Department

Electrical Engineering

Major Professor

Thomas M. Weller


barium strontium titanate, Flexible antennas, Frequency selective surface, Liquid Crystal Polymer, polydimethylsiloxane


This dissertation shows a detailed investigation on reconfigurable low profile antennas using tunable high impedance surfaces (HIS). The specific class of HIS used in this dissertation is called a frequency selective surface (FSS). This type of periodic structure is fabricated to create artificial magnetic conductors (AMCs) that exhibit properties similar to perfect magnetic conductors (PMCs). The antennas are intended for radiometric sensing applications in the biomedical field. For the particular sensing application of interest in this dissertation, the performance of the antenna sub-system is the most critical aspect of the radiometer design where characteristics such as small size, light weight, conformability, simple integration, adjustment in response to adverse environmental loading, and the ability to block external radio frequency interference to maximize the detection sensitivity are desirable.

The antenna designs in this dissertation are based on broadband dipole antennas over a tunable FSS to extend the usable frequency range. The main features of these antennas are the use of an FSS that does not include via connections to ground, their low profile and potentially conformal nature, high front-to-back radiation pattern ratio, and the ability to dynamically adjust the center frequency. The reduction of interlayer wiring on the tunable FSS minimizes the fabrication complexity and facilitates the use of flexible substrates.

This dissertation aims to advance the state of the art in low profile tunable planar antennas. It shows a qualitative comparison between antennas backed with different unit cell geometries. It demonstrates the feasibility to use either semiconductor or ferroelectric thin film varactor-based tunable FSS to allow adjustment in the antenna frequency in response to environment loading in the near-field. Additionally, it illustrates how the coupling between antenna and HIS, and the impact of the varactor losses affect the antenna performance and it shows solutions to compensate these adverse effects. Novel hybrid manufacturing approaches to achieve flexibility on electrically thick antennas that could be transitioned to thin-film microelectronics are also presented.

The semiconductor and ferroelectric varactor-based tunable low profile antennas demonstrated tunability from 2.2 GHz to 2.65 GHz with instantaneous bandwidths greater than 50 MHz within the tuning range. The antennas had maximum thicknesses of λ/45 at the central frequency and front to back-lobe radiation ratios of approximately 15dB. They also showed impedance match improvement in the presence of a Human Core Model (HCM) phantom at close proximity distances of the order of 10-20 mm. In addition, the use of thin film ferroelectric Barium Strontium Titanate (BST) varactors in the FSS layer enabled an antenna that had smaller size, lower cost and less weight compared to the commercially available options.

The challenging problems of fabricating robust flexible antennas are also addressed and novel solutions are proposed. Two different types of flexible antennas were designed and built. A series of flexible microstrip antennas with slotted grounds which demonstrated to be robust and have 42% less mass than typically used technologies (e.g., microstrip antennas fabricated on Rogers® RT6010, RT/duroid® 5880, etc.); and flexible ferroelectric based tunable low profile antennas that showed tunability from 2.42 GHz to 2.66 GHz using overlapping metallic plates instead of a continuous ground plane. The bending test results demonstrated that, by placing cuts on the ground plane or using overlapping metallic layers that resemble fish scales, it was possible to create highly conductive surfaces that were extremely flexible even when attached to other solid materials. These new approaches were used to overcome limitations commonly encountered in the design of antennas that are intended for use on non-flat surfaces.

The material presented in this dissertation represents the first investigation of reconfigurable low profile antennas using tunable high impedance surfaces where the desired electromagnetic performance as well as additional relevant features such as robustness, low weight, low cost and low complexity were demonstrated.