Graduation Year


Document Type




Degree Granting Department


Major Professor

Julianne P. Harmon, Ph.D.

Committee Member

Abdul Malik, Ph.D.

Committee Member

Xiao Li, Ph.D.

Committee Member

Norma Alcantar, Ph.D.


Conductivity relaxation, Dielectric analysis, Electric modulus, nanoball, poly(hydroxyethyl methacrylate) (PHEMA), poly(methyl methacrylate) (PMMA)


Polymer composites containing nanosized fillers have generated explosive interest since the early 1980's. Many recent studies have been conducted incorporating nano-fillers into polymer matrices to design and synthesize materials with tunable mechanical, thermal, and optical properties. Conventional filled polymers, where the reinforcement is on the order of microns, have been replaced by composites with discrete nanosized fillers. Gradually, theories that predicted that composite properties are independent of particle size in the micron range were challenged by nanocomposites. Rather, nanocomposite properties are greatly influenced by the surface area of the. All of this is complicated by the fact that nanoparticles are inclined to aggregate or migrate to interfaces. Much effort has been devoted to optimize dispersion of nanofillers in the polymer matrices, as polymer-nanoparticle interactions and adhesion greatly influence performance of the material. A well- dispersed composite system with various noncovalent interactions such as those that arise from hydrogen bonding, electrostatic attractions and π-π interactions between the filler and the matrix, can transfer stress and the interface will stop the development of cracks and impede stress concentrations. Overall, large reinforcement increases are noted at low nanoparticle loadings. Additionally, functional properties such as thermal, electrical conductivity and porosity can be tailored for specific applications. The design of high performance composites requires optimizing dispersion, nanoparticle-polymer noncovalent interactions and the chemistry of the materials. Therefore polymer composites with different types of nanofillers were investigated to prove various noncovalent interaction and to improve the mechanical, thermal and electrical properties in this study.

Poly (methyl methacrylate) (PMMA) with BaTiO3 and Bi2O3 composites were fabricated by two different methods; sonication of fillers in PMMA and in situ polymerization. Samples were irradiated in air via a JL Shepherd Mark I cesium-137 source. The dose rate was 985 rads/min and the total dose was 2.0 Mrad. The polymer sonication (PSON) method has a greater effect than in situ polymerization on sample uniformity. With the PSON method there was a slight improvement in rad hardness in the barium titanate composites. This is the case with and without MWNTs and coupling agents. The storage modulus and loss modulus were measured via Dynamic Mechanical Analyzer (DMA) under the tension film mode using a heating rate of 5 °C min-1 from -150 °C to 200 °C and a scanning frequency range of 1-100 Hz. Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites.

An aliphatic isocyanate, polyether, polyol thermoplastic polyurethane, Tecoflex® SG-85A, was solution processed with the varying amounts of silica nanowire. A new grade polyurethane, Tecoflex®, was synthesized from the aliphatic 4,4-methylene dicyclohexyl diisocyanate (H12MDI) with polytetramethylene ether glycol. Despite Tecoflex®'s longevity and wide use, this polymer's dielectric behavior has not been widely studied. Therefore, the dielectric response of neat PU, Tecoflex®, and PU composites with silica nanowire from -150 to 150 °C is presented. The mechanism of nanowire growing with diameters ranging from 50 to 500 nm has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Our previous thermal stability study of PU nanowire composites have yielded increased heat stability to 330 °C. In comparison, neat PU only maintains thermal stability in temperatures that range to 250 °C. The onset of decomposition temperature was measured by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites.

A series of PMMA-dodecyloxy NB and PHEMA-dodecyloxy NB composites were synthesized in situ and characterized. The dodecyl groups significantly alter the solubility of the nanoballs, imparting hydrophobicity to the surface of the nanoball. A comparison study was made between the PMMA-NB and PHEMA-NB nanocomposites. Structure property relations are discussed in terms of interactions between the polymer matrices and nanoball surfaces and interiors. These OC12 NB and the hydroxyl NB polymer composites are the first studies to date that probe relaxations and conductivity in discrete polyhedral metal-organic polymer composites.

A novel ultra-flexible polycarbonate-polyurethane (PCPU) was synthesized with methylene bis(4-cyclohexylisocyanate), 1,4 butanediol as a chain extender and a polycarbonate polyol containing 1,6-hexanediol and 3-methyl-1,5-pentanediol. Through the techniques of water coagulation, the synthesis of self-healing PCPU with various concentrations of SWNT (Single-Walled Nanotubes) is possible. The resulting features of this synthesized rubber-like substance are to be evaluated to determine glass transition temperature. This novel type of polyurethane material targets growing markets for biocompatible polymers. Also, a secondary goal of this project is to obtain information useful to determining whether PCPU-carbon nanotube composites would be good candidates for use as a gel electrolyte in polymer batteries.

All nanocomposites were characterized by differential scanning calorimetry (DSC) to determine glass transition temperatures. The dielectric permittivity (ε’) and loss factor (ε”) were also measured via Dielectric Analysis (DEA) in the frequency range 1Hz to 100 kHz and between the proper temperatures in all polymer composite. The electric modulus formalism was used to reveal structural relaxations including conductivity relaxation. The activation energies for the relaxations are presented.