Graduation Year


Document Type




Degree Granting Department

Marine Science

Major Professor

Thomas L. Hopkins, Ph.D.


Abundance, Biomass, Diet, Zoogeography, Reproduction


The Earth's most extensive living space is found in the bathypelagic zone of the oceans, yet research in these areas is scant. The micronekton of the bathypelagic zone in the eastern Gulf of Mexico (EGOM) was investigated with the goals of comparing its community structure and trophic interactions with those of the well-studied overlying mesopelagic micronekton. Significant changes in faunal structure were found, including shifts in dominant families as well as species. Compared to the mesopelagic zone, the bathypelagic community had increased abundance and biomass contributions from the Gonostomatidae, Oplophoridae,and Eucopiidae, with a simultaneous decrease in the importance of the Myctophidae and the Dendrobranchiata. The changed faunal structure within the crustacean assemblage includes a distinct difference in reproductive strategies. There is increased prevalence of taxa which feature egg brooding and abbreviated larval development. In addition, the bathypelagic zon

e was characterized by relatively large biomass contributions from rare but large species, particularly those within the families Oplophoridae and Nemichthyidae. The faunal shifts, in combination with a high percentage of bathypelagic species absent from mesopelagic samples (~50% of crustacean and ~37% of fish species), suggest the bathypelagic zone is home to a distinct pelagic community, with a biology and ecology fundamentally different from that of the mesopelagic zone. The broad zoogeographic distributions of bathypelagic species suggest the EGOM assemblage is possibly similar to that of other geographic locations at similar latitudes. Diet analysis was performed on several prominent species and revealed 2 major feeding strategies based on diet composition and prey size. Species of Cyclothone and Eucopia preyedon small planktonic crustaceans, while the decapods examined were primarily piscivorous. The fraction of fish in the diets of decapods was greater than in their mesopelagic

counterparts. It is suggested the primary trophic players in the system are oplophorid shrimps, followed by Cyclothone spp.