Graduation Year


Document Type




Degree Granting Department

Electrical Engineering

Major Professor

Hüseyin Arslan, Ph.D.

Committee Member

Vijay K. Jain, Ph.D.

Committee Member

Mohamed K. Nezami, Ph.D.

Committee Member

Arthur D. Snider, Ph.D., P.E.


Frequency offset, Inter-symbol interference, Inter-carrier interference, Channel estimation, Frequency selectivity


Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation scheme that provides efficient bandwidth utilization and robustness against time dispersive channels. This thesis deals with self-interference, or the corruption of desired signal by itself, in OFDM systems. Inter-symbol Interference (ISI) and Inter-carrier Interference (ICI) are two types of self-interference in OFDM systems. Cyclic prefix is one method to prevent the ISI which is the interference of the echoes of a transmitted signal with the original transmitted signal. The length of cyclic prefix required to remove ISI depends on the channel conditions, and usually it is chosen according to the worst case channel scenario. Methods to find the required parameters to adapt the length of the cyclic prefix to the instantaneous channel conditions are investigated. Frequency selectivity of the channel is extracted from the instantaneous channel frequency estimates and methods to estimate related parameters, e.g. coherence bandwidth and Root-mean-squared (RMS) delay spread, are given. These parameters can also be used to better utilize the available resources in wireless systems through transmitter and receiver adaptation.

Another common self-interference in OFDM systems is the ICI which is the power leakage among different sub-carriers that degrades the performance of both symbol detection and channel estimation. Two new methods are proposed to reduce the effect of ICI in symbol detection and in channel estimation. The first method uses the colored nature of ICI to cancel it in order to decrease the error rate in the detection of transmitted symbols, and the second method reduces the effect of ICI in channel estimation by jointly estimating the channel and frequency offset, a major source of ICI.