Graduation Year


Document Type




Degree Granting Department

Industrial Engineering

Major Professor

William A. Miller , Ph.D.

Co-Major Professor

Stanley C. Kranc, Ph.D., P.E.

Committee Member

Grisselle Centeno, Ph. D.


highway utilities, optimization, fuzzy sets


This thesis focuses on a decision-making model for finding the locations for placement of utilities in roadway corridors. In recent years, there has been a rapid growth in the volume of traffic on roadways and in the number of utilities placed in Right of Ways. The increase in the demand for utilities is making it more difficult to place all the utilities within the Right of Way and also provide safe roads and highways with good carrying capacity. The public agencies approving the location for utilities are now using a first come first served method, which provide neither an efficient nor good economic solution. This model considers all the utilities within the corridor as a single system, including factors like installation costs, maintenance costs and also some future factors such as accident costs. A weighted coefficient optimization approach is used to find the solution in this model. These costs are modeled as fuzzy numbers or probabilistic random numbers depending on their characteristics. This algorithm will locate each utility at all its possible locations and find the total cost of all the utilities at all these locations, i.e. cost of the system. The least cost locations among all the possible locations are the good locations for utilities in the utility system. When utilities are placed in these locations the overall cost of the system will be lower compared to other locations. This model provides a flexible and interactive method for finding cost saving locations for the utilities in the highway corridor. Users will be able to change the parameters of the utility system according to their requirements and get reduced cost solutions.