Graduation Year

2008

Document Type

Thesis

Degree

M.S.Ch.E.

Degree Granting Department

Chemical Engineering

Major Professor

Ryan G. Toomey, Ph.D.

Committee Member

John T. Wolan, Ph.D.

Committee Member

Martin Muschol, Ph.D.

Keywords

Soft lithography, Confocal microscopy, Microstructures, Poly(NIPAAm), Delaunay triangulation

Abstract

The fabrication and characterization of surface-anchored hydrogel microstructures are described. The hydrogel structures are constructed from poly(N-isopropylacrylamide), or poly(NIPAAm), which is a well-known thermoresponsive polymer that swells and contracts with changes in temperature. When patterned on a surface, these structures can experience a variety of shape changes induced by nonuniform swelling. Depending on the aspect ratio, patterns can, for instance buckle upon swelling and form wave-like patterns. Such structural changes replicate oscillatory motion of the smooth muscle cells and can be used to transport objects in microfluidics. The work, herein, investigates methods of pattern production and introduces a new technique for characterizing local swelling in the patterns. In order to achieve the latter, fluorescent microspheres were embedded in hydrogel patterns and their positions were mapped in three-dimensions using confocal microscopy. The measurements permit, for the first time, swelling maps of the structures based on relative movements of the microspheres. This information will ultimately aid in understanding how swollen macroscopic structures are related to gradients in localized swelling.

Share

COinS