Graduation Year


Document Type




Degree Granting Department


Major Professor

Gary W. Arendash, Ph.D.

Committee Member

Jonathan K. Lindzey, Ph.D.

Committee Member

David G. Morgan, Ph.D.


behavioral impairments, tau pathology, discriminant function analysis, factor analysis, retinal degeneration


Behavioral characterization of animal models for Alzheimer's Disease is critical for the development of potential therapeutics and treatments against the disease. While there are several known animal models of AD, three current models--APPsw, P301L, and APPsw+P301L--have not been well characterized, if at all. This study, therefore, aimed to perform a full behavioral characterization of these three models in order to better understand the impairments associated with each one. Between 5 and 8.5 months of age, animals were behaviorally tested in a variety of sensorimotor, anxiety, and cognitive tasks. The number of tau+ neurons in the forebrains of P301L mice was then compared to their behavioral performance.

Results of this study indicate that retinal degeneration (rd) seriously impairs the performance of mice in behavioral tasks. Animals that carry the homozygous allele of this mutation must, therefore, be eliminated from any such study requiring visual acuity. After this elimination, my findings indicate that APP mice are impaired in several cognitive tasks (including platform recognition, Morris maze, Y-maze, and radial-arm water maze) at a young early age (5 to 8.5 months of age). These mice have fairly normal sensorimotor function, showing significant impairment only in balance beam performance starting at 5 months. Although P301L mutant Tau mice, as a group, did not have significant impairments in any sensorimotor or cognitive task, correlation analysis revealed that higher numbers of tau+ neurons in cortex and hippocampus were associated with poorer cognitive performance. Finally, discriminant function analysis (DFA) appears able to accurately discriminate between the three transgenic groups of mice using only an 8-measure data set.

In conclusion, this study provides the first comprehensive, multiple task behavioral assessment of the APPsw and P301L animal models of AD, indicating that APPsw mice are cognitively impaired at an early age while P301L mice are largely unimpaired through 8.5 months. Nonetheless, correlational analysis implicates the formation of neurofibrillary tangles in the onset of cognitive impairments. Finally, my findings recommend the continued use of DFA to determine if groups of animals, based on different transgenicity or therapeutic treatment, could be discriminated between from their behavior alone.