Graduation Year


Document Type




Degree Granting Department


Major Professor

Peter Stiling, Ph.D.

Committee Member

Susan Bell, Ph.D.

Committee Member

Bruce Cowell, Ph.D.

Committee Member

Florence Thomas, Ph.D.


plant-insect interactions, plant diversity, habitat structure, herbivore abundance, salt marsh herbivores


Herbivore abundances are determined by a set of interacting factors that vary among different habitat types. Specifically, herbivore abundances in monocultures and polycultures may be governed by the same set of factors but with varying influences in the different habitats. In addition, monophagous and polyphagous herbivores may respond differently to the same set of influencing factors. I examined several abiotic and biotic factors in manipulated monocultures and polycultures of Borrichia frutescens in a west central Florida salt marsh. The experimental plots differed in both plant diversity and aboveground habitat structure to see how each component of diversity contributed to variability in the abiotic and biotic factors and how those factors were related to differences in herbivore abundances. The monoculture treatment involved clipping all above ground non-host plant material to achieve a host plant monoculture. The polyculture treatments involved pinning all non-host plant material to achieve a polyculture with reduced above ground habitat structure. The second polyculture treatment was a control in which the naturally diverse plots were unmanipulated. Two monophagous and one polyphagous herbivores were chosen for this study because of their abundance and availability in the field. The two monophagous herbivores on the host plant Borrichia frutescens were Pissonotus quadripustulatus (Homoptera:Delphacidae) and Asphondylia borrichiae (Diptera: Cecidomyiidae) both of which have been well studied in the field where the current experiment took place. The polyphagous herbivore was Cyarda acutissima (Homoptera: Flatidae), a poorly known invasive from Cuba. Soil salinity and host plant leaf nitrogen content were the abiotic factors measured. Herbivore abundances, percent egg and gall parasitism by parasitoids, spider abundances on host plant stems and ground spider abundances were the biotic factors measured. Both salinity and host plant leaf nitrogen were significantly different among the different treatments with clipped plots having the highest salinity and leaf nitrogen content. Population densities of both of the monophagous herbivores were not significantly different between treatments. The polyphagous herbivore had significantly higher abundances in the pinned and control plots than in the clipped plots. Stem spider abundances were not significantly different among treatments. Ground spiders, however, were significantly more abundant in control and pinned plots than clipped plots. Parasitism of both monophagous herbivores was not significantly different between treatments but was generally higher in the control plots. The results suggest that for monophagous herbivores bottom-up and top-down factors act antagonistically in monocultures but for the polyphagous herbivore, the presence of multiple host plants is more influential in diverse plots even given the higher abundances of generalist predators.