Graduation Year


Document Type




Degree Granting Department

Marine Science

Major Professor

Kendall L. Carder, Ph.D.

Committee Member

Gabriel A. Vargo, Ph.D.

Committee Member

John J. Walsh, Ph.D.


photosynthesis, quantum yield, pigment, colored dissolved organic matter, absorbed radiation by phytoplankton


A method is presented, using calculations of the underwater light field, to examine viability of phytoplankton at depth. For this study, viability is defined as the ability of phytoplankton to harvest, and efficiently convert enough photons into primary production to overcome metabolic demands. How the available light field influences the production environment is examined. Changes in water column constituents, such as chlorophyll and colored dissolved organic matter (CDOM) concentration, alter the spectral quality and quantity of the light field at depth. Certain species with specialized survival strategies, such as assemblages of photoprotective and light-harvesting accessory pigments, may be better-suited to 'making a living' at depth in response to the spectral quality of the underwater light field.

Stations for study were identified from various cruises off the West Florida Shelf that exhibited variations in chlorophyll and/or CDOM concentration, including an optically complex, red-tide station. Optical and water column constituent measurements from these stations were used to develop input parameters to Hydrolight 4.1, a radiative transfer theory model, to simulate the underwater light field and to calculate absorbed radiation by phytoplankton (ARP). Values for respiration and quantum yield from the literature were used to calculate comparative values of net photosynthesis at these stations. The effect of differences in spectral light harvesting (pigmentation), photosynthetic efficiency rates, and respiration, on viability through the water column was examined.