Document Type


Publication Date



resonator, Q factor, motional resistance, piezoelectric transducer, mass loading, sensitivity, limit of detection

Digital Object Identifier (DOI)


In this work, we have investigated the design, fabrication and testing of ZnO-on-SOI fourth-order contour mode disk resonators for mass sensing applications. This study aims to unveil the possibility for real-time practical mass sensing applications by using high-Q ZnO-on-SOI contour-mode resonators while taking into account their unique modal characteristics. Through focused ion beam (FIB) direct-write metal deposition techniques, the effects of localized mass loading on the surface of three extensional mode devices have been investigated. Ten microfabricated 40 mm-radius disk resonators, which all have a 20 mm-thick silicon device layer and 1 mm-thick ZnO transducer layer but varied anchor widths and numbers, have exhibited resonant frequencies ranging from 84.9 MHz to 86.7 MHz with Q factors exceeding 6000 (in air) and 10,000 (in vacuum), respectively. It has been found that the added mass at the nodal locations leads to noticeable Q-factor degradation along with lower induced frequency drift, thereby resulting in reduced mass sensitivity. All three measured devices have shown a mass sensitivity of ~1.17 Hz·fg−1 at the maximum displacement points with less than 33.3 ppm of deviation in term of fractional frequency change. This mass sensitivity is significantly higher than 0.334 Hz·fg−1 at the nodal points. Moreover, the limit of detection (LOD) for this resonant mass sensor was determined to be 367 ag and 1290 ag (1 ag = 10−18 g) for loaded mass at the maximum and minimum displacement points, accordingly.


The authors published an addendum to this article in 2016. It is located at

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Was this content written or created while at USF?


Citation / Publisher Attribution

Actuators, v 4, issue 2, p. 60-76