Document Type


Publication Date



miR146a, FANCM, Fanconi anemia pathway, DNA interstrand cross-links (ICLs) repair, NF-κB

Digital Object Identifier (DOI)


Inflammation is a potent inducer of tumorigenesis. Increased DNA damage or loss of genome integrity is thought to be one of the mechanisms linking inflammation and cancer development. It has been suggested that NF-κB-induced microRNA-146 (miR146a) may be a mediator of the inflammatory response. Based on our initial observation that miR146a overexpression strongly increases DNA damage, we investigated its potential role as a modulator of DNA repair. Here, we demonstrate that FANCM, a component in the Fanconi Anemia pathway, is a novel target of miR146a. miR146a suppressed FANCM expression by directly binding to the 3’ untranslated region of the gene. miR146a-induced downregulation of FANCM was associated with inhibition of FANCD2 monoubiquitination, reduced DNA homologous recombination repair and checkpoint response, failed recovery from replication stress, and increased cellular sensitivity to cisplatin. These phenotypes were recapitulated when miR146a expression was induced by overexpressing the NF-κB subunit p65/RelA or Helicobacter pylori infection in a human gastric cell line; the phenotypes were effectively reversed with an anti-miR146a antagomir. These results suggest that undesired inflammation events caused by a pathogen or over-induction of miR146a can impair genome integrity via suppression of FANCM.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Was this content written or created while at USF?


Citation / Publisher Attribution

Oncotarget, v. 7, issue 29, p. 2024-2025