Graduation Year
2020
Document Type
Dissertation
Degree
Ph.D.
Degree Name
Doctor of Philosophy (Ph.D.)
Degree Granting Department
Biology (Cell Biology, Microbiology, Molecular Biology)
Major Professor
Conor C. Lynch, Ph.D.
Committee Member
Eric Lau, Ph.D.
Committee Member
Alvaro Monteiro, Ph.D.
Committee Member
Damon Reed, M.D.
Keywords
histone deacetylase, interleukin 28, mesenchymal stem cell, osteosarcoma, prostate cancer
Abstract
New treatment strategies are desperately needed for treating skeletal malignancy. Skeletal malignancies can be either primary cancer that originated in the bone, such as osteosarcoma, or metastatic cancer that spread from another organ to the skeleton, as in the case of breast or prostate cancer. In this thesis, I will detail two projects that focus on the discovery of new treatment strategies for both primary skeletal malignancy and metastatic skeletal malignancy.
The first project focuses on the primary skeletal malignancy, osteosarcoma, a rare cancer that is commonly diagnosed in children and young adults and metastasizes to the lungs. The survival rate for lung metastatic patients is dismal and has not improved in the decades since the approval of combination chemotherapeutics for treatment. Our recent work shows that targeting the epigenetic changes is effective in treating osteosarcoma as well as the resulting lung metastases. Using preclinical mouse models, using FDA approved pan-histone deacetylase (HDAC) inhibitors panobinostat and romidepsin we can significantly reduce the growth of primary osteosarcoma the resultant lung metastases as well as prevent the formation of these metastases. We propose that HDAC inhibition of HDACs could be effective in treating patients with primary and lung metastatic osteosarcoma.
The second project focuses on metastatic prostate cancer. By investigating the interactions of bone resident mesenchymal stem cells (MSCs) and prostate cancer cells, we discovered that secreted factors from the MSCs, including interleukin 28 (IL-28), promote the evolution of apoptotic resistant prostate cancer cells. The signal transducer and activator of transcription proteins (STAT) signaling pathway in these MSC educated prostate cancer cells becomes altered making them sensitive to STAT3 inhibition. Treatment both in vitro and in vivo with the small molecule STAT3 inhibitor, S3I-201 effectively kills the apoptotic resistant prostate cancer cells. We propose that prostate cancer cells are selected by MSCs in the bone microenvironment to become resistant to chemotherapies (e.g., docetaxel) while at the same time become more sensitive to STAT3 inhibition. Based on these findings, we believe that targeting STAT3 signaling is a therapeutic option for men with incurable bone metastatic prostate cancer.
Scholar Commons Citation
McGuire, Jeremy, "Mechanistic and Translational Studies on Skeletal Malignancies" (2020). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/9033