•  
  •  
 

Abstract

Understanding of the intersection of cyber vulnerabilities and bioprocess regulation is critical with the rise of artificial intelligence and machine learning in manufacturing. We detail a case study in which we model cyberattacks on network-mediated signals from a novel bioreactor, where it is important to control medium feed rates to maintain cell proliferation. We use a digital twin counterpart reactor to compare glucose and oxygen sensor signals from the bioreactor to predictions from a kinetic growth model, allowing discernment of faulty sensors from hacked signals. Our results demonstrate a successful biomanufacturing cyberattack detection system based on fundamental process control principles.

Share

COinS