Carbon and Nitrogen Pools and Mobile Fractions in Surface Soils across a Mangrove Saltmarsh Ecotone

Document Type


Publication Date



Biogeochemistry, Climate change, Sea-level rise, Soil texture, Subtropics, Tidal wetland

Digital Object Identifier (DOI)



In the subtropics, climate change is pushing woody mangrove forests into herbaceous saltmarshes, altering soil carbon (C) and nitrogen (N) pools, with implications for coastal wetland productivity and C and N exports. We quantified total C and N pools, and mobile fractions including extractable mineral N, extractable organic C and N, and active (aerobically mineralizable) C and N, in surface soils (top 7.6 cm) of adjacent mangrove (primarily Avicennia germinans) and saltmarsh (Juncus roemerianus) vegetation zones in tidal wetlands of west-central Florida (USA). We tested whether surface-soil accumulations of C, N, and their potentially mobile fractions are greater in mangrove than in saltmarsh owing to greater accumulations in the mangrove zone of soil organic matter (SOM) and fine mineral particles (C- and N-retaining soil constituents). Extractable organic fractions were 39–45% more concentrated in mangrove than in saltmarsh surface soil, and they scaled steeply and positively with SOM and fine mineral particle (silt + clay) concentrations, which themselves were likewise greater in mangrove soil. Elevation may drive this linkage. Mangrove locations were generally at lower elevations, which tended to have greater fine particle content in the surface soil. Active C and extractable mineral N were marginally (p < 0.1) greater in mangrove soil, while active N, total N, and total C showed no statistical differences between zones. Extractable organic C and N fractions composed greater shares of total C and N pools in mangrove than in saltmarsh surface soils, which is meaningful for ecosystem function, as persistent leaching of this fraction can perpetuate nutrient limitation. The active (mineralizable) C and N fractions we observed constituted a relatively small component of total C and N pools, suggesting that mangrove surface soils may export less C and N than would be expected from their large total C and N pools.

Was this content written or created while at USF?


Citation / Publisher Attribution

Science of The Total Environment, v. 798, art. 149328