Graduation Year


Document Type




Degree Name

MS in Electrical Engineering (M.S.E.E.)

Degree Granting Department

Electrical Engineering

Major Professor

Gokhan Mumcu, Ph.D.

Committee Member

Thomas Weller, Ph.D.

Committee Member

Jing Wang, Ph.D.


3-D printing, additive manufacturing, aperture coupled, microstrip antennas


Design and performance of fully-printed Ku-band aperture coupled patch antennas fabricated by a direct digital manufacturing (DDM) approach that integrates fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) thermoplastic with in-situ micro-dispensing of conductive silver paste (CB028) are reported. Microstrip line characterizations are performed and demonstrate that misalignment of ABS substrate deposition direction with microstrip line micro-dispensing direction can degrade the effective conductivity up to 60% within the Ku-band, and must be taken into consideration in antenna array feed network designs. Specically, over 125 µm thick ABS substrate, RF loss of 0.052 dB/mm is obtained at 18 GHz, demonstrating the feasibility of additively manufactured RF devices within the Ku-band. By varying ABS inll ratios and resorting to multi-layer printing with custom substrate thicknesses, single and stacked patch antennas are designed, fabricated, and characterized with bandwidth performances up to 35%, and radiation efficiencies up to 90%. This extensive utilization of the design flexibilities provided by the direct digital manufacturing (i.e. customized substrate thicknesses, multiple substrates with varying infill ratios, and in-situ micro-dispensing of conductors) distinguishes the present work from the recently reported 3-D printed antennas. Compared to the existing work in literature, the antennas presented within this thesis stand out as being fully printed structures, operating in higher frequency range (i.e. Ku-band), and exhibiting high radiation efficiencies with wide bandwidth performances.