Graduation Year

2018

Document Type

Dissertation

Degree

Ph.D.

Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Public Health

Major Professor

Yehia Y. Hammad, Sc.D.

Committee Member

Thomas E. Bernard, Ph.D.

Committee Member

Thomas J. Mason, Ph.D.

Committee Member

Steven P. Mlynarek, Ph.D.

Keywords

engineered nanomaterials, nanoparticles, direct reading instruments

Abstract

The purpose of this study was to evaluate the performance of scanning mobility particle sizers in the characterization of nanoaerosols. A sampling chamber was constructed from aluminum and tempered glass, had a volume of 4.6 cubic feet, and was designed for the introduction of aerosols and dilution air, maintenance of aerosol concentration, and continuous exhaust of chamber air. Penetration and aerosol distribution tests were conducted within the chamber. An aerosol generation and measurement system comprised of nitrogen gas, BGI 3 jet Collison Nebulizer, diffusion dryer, aerosol charge neutralizer, mixing chamber, critical orifice, hygrometer, condensation particle counter, scanning mobility particle sizer, air sampling pump, air sampling cassettes, and a vacuum pump was assembled. A BGI 3 jet Collison Nebulizer was used to generate the nanoparticle aerosols. The two types of nanoparticle aerosols utilized in the experiment were salt (NaCl) and polystyrene latex (PSL) spheres. Relative humidity and temperature measurements were obtained within the chamber. Real-time, direct-reading particle measurement instruments including a condensation particle counter (CPC) (TSI, Model 3007), and three scanning mobility particle sizer (SMPS) instruments (Particle Measuring Systems, Nano-ID NPS500; TSI, NanoScan SMPS Nanoparticle Sizer Model 3910) were used for particle measurements. For each test run, two air samples were collected on membrane filters for electron microscopy (EM) analysis. Eight trials were conducted using NaCl nanoaerosols, and twelve trials were conducted using PSL spheres. The selected particle sizes for the experiments were 57 nm, 92 nm, 147 nm, and 220 nm.

For the NaCl nanoaerosol suspensions, the SMPS lines of fit were log-normally distributed and predominantly parallel. The geometric standard deviation (GSD) of these distributions was approximately 1.7, which confirms that the distributions were approximately the same. In these experiments, instrument 3 identified a higher percentage of NaCl particles within the size range intervals of the selected NaCl size parameter, and the count median diameters (CMDs) for the instrument 3 measurements were closer to the selected NaCl size parameter more often than the other instruments. This suggests that instrument 3 was more responsive than the other instruments to the selected size range and the selected NaCl size parameters. The electron microscopy (EM) lines of fit for the NaCl experiments were predominantly parallel with the SMPS lines of fit, suggesting that the log-normally distributions are similar. The GSD of EM distributions was approximately 1.8, which confirms that the distributions were approximately the same as the SMPS distributions. Results from the regression plots demonstrated that the main effects and interaction were statistically significant with a p<0.0001. The coefficient of determination, R2, for the regression lines was 0.87. The post-hoc Tukey HSD results identified a significant difference between the instrument 3 dataset, and the datasets for instruments 1 and 2.

For the PSL nanoaerosol suspensions, the SMPS lines of fit were log-normally distributed and predominantly parallel. The GSD of these distributions was approximately 1.3, which confirms that the distributions were approximately the same. In these experiments, instrument 2 identified a higher percentage of PSL particles within the size range intervals of the selected PSL size parameter, and instrument 2 CMDs were closer to the selected PSL size parameter more often than the other instruments. This suggests that instrument 2 was more responsive than the other instruments to the selected size range and the selected PSL size parameters. Results from the regression plots demonstrated that the main effects and interaction were statistically significant with a p<0.01. The coefficient of determination, R2, for the regression lines was 0.44. The post-hoc Tukey HSD test identified a significant difference between the instrument 3 dataset and the instrument 1 dataset. Potential sources of variability include solution water background contamination, surfactants in the PSL solution, and agglomeration.

The performance of all the scanning mobility particle sizers compared in these experiments was acceptable for research and field applications, but caution should be taken when comparing the measurements of SMPS, especially SMPS from different manufacturers.

Included in

Public Health Commons

Share

COinS