Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department


Major Professor

Matthias Batzill, Ph.D.

Committee Member

Sarath Witanachchi, Ph.D.

Committee Member

Srikanth Hariharan, Ph.D.

Committee Member

Garrett Matthews, Ph.D.

Committee Member

Humberto Gutierrez, Ph.D.


Gas sensing, Photocatalysis, Monolayer mixed oxides, Surfaces and interfaces


Surfaces of metal oxides play a vital role in many technologically important applications. The surfaces of titanium dioxide, in particular, show quite promising properties that can be utilized in solid-state gas sensing and photocatalysis applications. In the first part of this dissertation we investigate these properties of TiO2 surfaces through a vigorous surface scientific approach. In the second part, we investigate the possibilities of modifying the TiO2 surfaces by depositing multi-component transition metal oxide monolayers so that the properties of bare TiO2 surface can be influenced in a beneficial way. For instance, via formation of new surface sites or cations that have different valance states, the chemisorption and catalytic properties can be modified. We use sophisticated experimental surface science techniques that are compatible with ultra-high vacuum technology for surface characterization. All the experimental results, except for the photocatalysis experiments, were compared to and verified by supporting DFT-based theoretical results produced by our theory collaborators.

TiO2 based solid-state gas sensors have been used before for detecting trace amounts of explosives such as 2,4-dinitrololuene (DNT), a toxic decomposition product of the explosive 2,4,6-trinitrotoluene (TNT) that have very low vapor pressure. However, the adsorption, desorption and reaction mechanism were not well- understood. Here, we investigate 2,4-DNT adsorption on rutile-TiO2(110) surface in order to gain insight about these mechanisms in an atomistic level and we propose an efficient way of desorbing DNT from the surface through UV-light induced photoreactions.

TiO2 exists in different polymorphs and the photocatalytic activity differs from one polymorph to another. Rutile and anatase are the most famous forms of TiO2 in photocatalysis and anatase is known to show higher activity than rutile. The photoactivity also varies depending on the surface orientation for the same polymorph. So far, a reasonable explanation as to why these differences exist was not reported. In our studies, we used high quality epitaxial rutile and anatase thin films which enabled isolating the surface effects from the bulk effects and show that it is the difference between the charge carrier diffusion lengths that causes this difference in activities. In addition to that, using different surface orientations of rutile-TiO2, we show that the anisotropic bulk charge carrier mobility may contribute to the orientation dependent photoactivity. Moreover, we show that different surface preparation methods also affect the activity of the sample and vacuum reduction results in an enhanced activity.

In an effort to modify the TiO2 surfaces with monolayer/mixed monolayer oxides, we carried out experiments on (011) orientation of single crystal rutile TiO2 with few of the selected transition metal oxides namely Fe, V, Cr and Ni. We found that for specific oxidation conditions a monolayer mixed oxide is formed for all M (M= Fe, V, Cr, Ni), with one common structure with the composition MTi2O5. For small amounts of M the surface segregates into pure TiO2(011)-2×1 and into domains of MTi2O5indicating that this mixed monolayer oxide is a low energy line phase in a compositional surface phase diagram. The oxygen pressure required for the formation of this unique monolayer structure increases in the order of V2O5 mixed monolayer oxide by DFT-based simulations was verified by X-ray photoemission diffraction measurements performed at a synchrotron facility.

Included in

Physics Commons