Graduation Year


Document Type




Degree Name

MS in Electrical Engineering (M.S.E.E.)


Electrical Engineering

Degree Granting Department

Electrical Engineering

Major Professor

Sylvia Thomas, Ph.D.

Committee Member

Delcie Durham, Ph.D.

Committee Member

Andrew Hoff, Ph.D.


Electrospinning, Infrared, Life Cycle Analysis, Nanofiber Mesh, Thermally Reflective


This work investigates the fabrication, process optimization, and characterization of cobalt oxide-antimony doped tin oxide (CoO-ATO) nanofibersusing polystyrene (PS) solutions with toluene orD-limonene as solvents. These nanofibers are produced by anelectrospinning process. Nanofibers are fabricated using polymeric solutions of CoO doped ATO and mixtures of PS: D-limonene and PS:toluene. PSis a base aromatic organic polymer, a non-toxic material, and a versatile catalyst for fiber formation. PSsolutions are made by mixing polystyrene beads and D-limonene or toluene at specific weight percentages. These polymeric solutions of PS: D-limonene and PS:toluene are then mixed with CoO-ATO at various weight percentages. The two solutions are electrospun and the best process parameters optimized to obtain nanofibers with limited beading. Process optimization is completed by analyzing how changes in the electrospinningexperimental set up impact nanofiber formation and production efficiency (speed of formation). CoO-ATO nanofibers are characterizedby scanning electron microscopy, hydrophobicity via contact angle measurements, and viscosity measurements. Additional analysis is conducted to evaluate the environmental impact of using two different solvents to fabricate the CoO-ATO nanofibers. In this project, I was able to successfully produce novel nanofiber membranes of CoO-ATOusing two different solvents. These investigations were conducted and nanofiberprocess optimized to provide a technological contribution to future industrial scaleproductions of thermally reflective materials.