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Abstract

With the development of transportation network, social network, and communication
network, there are many applications in streaming data. For example, traffic congestion happens
between the origin and destination of daily trips. Traffic analysis can help plan the trips so that
traffic congestion can be avoided. Social network and communication network represent the
behaviors of the entire population. People build connections based on their hobbies, daily activities,
photos, videos, simple messages, and even anonymous web surfing. All of these can be turned into
commercial use, such as product marketing, business network building, and technology trending.

Data science is about how to model data for data issues, domain specific patterns, etc. If
the sample set is big enough and the data is relevant, it is possible to engineer this process and to
generate results. Once the data model is built, we can fit the model with the data and run proper
algorithms to get answers. However, the challenges can be from data store, sample quality to
information extraction.

Especially for graph analysis, it needs to deal with not only the valuation of the vertices
but also the connections between vertices, and how many connections each vertex can have.
According to empirical experiments, the distributions of vertices, edges, and derived
measurements, such as closeness, betweenness, and clustering coefficient have different
distributions. When we work on data modeling strategies, both graph properties and topology types
need to be under.

In this dissertation, we discuss how to efficiently perform information extraction from

graphs. Graphs can be considered as the structural representation of the social networks regarding

viii



the natural properties of information, such as recency, relevance, valuation, and validation. We

focus on data loading, graph sampling, and application development.
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Chapter 1: Introduction

With the development of network technology and social media, we can connect to each
other easily. Internet physically connects people and business in different geographic locations.
People can trade with each other through the Internet. Geographic distance is not an obstacle
anymore. On top of the physical connections, the interconnections among people and things are
developed as well. The network of discussions, commentary, and social media together build a
virtual community, which play a significant role in our lives. All these have a common pattern in
infrastructure — network, such as social network, information network, and economic network.

We can always see connections among people, organizations, and almost any entities.
Connected entities can initiate activities through face-to-face meetings, transportation, telephone,
mails, Internet, social media, and many other channels. Once the information exchange happened,
the social flow was built upon a network and will go on and on, evolve, and thrive.

We consider that individual entities can carry information and the information can be
delivered from one entity to another. The information that plays the role of the driving force in the
social network can be related to anything, such as an eye contact, a handshake, a travel plan, a
conversation, a letter, a web link, a friend request, a flu epidemic, a finical transaction, and even
more. What can be sent through the channel depends on the information carrier and sometimes
cannot be directly recognized, which make people think what really triggered the change.

In terms of data science, it is important to recognize the proper information carrier and the
interesting information which can flow through the network and can be used to build the data

model, to represent the network structure and to make predictions for future use. For example,



people can be considered as information carrier because people initiate activities, control both
people and resources, plan activities and accomplish tasks. However, the signals people send
between each other can be an attitude, an opinion, a mimicry of each other's behavior and even
more which can transfer information from one to another, influence people and trigger reactions
so that we call them social signals. Symbolization of social signals is the key to profile a population
of specific behaviors. The more detailed patterns we can catch, the more deeply we can understand
a specific community, and the more accurately we can model the real-world activities with machine
learning techniques.

In terms of data structure, the information carrier, and information channel can be modeled
as a graph, that has a network pattern. The vertices are the social entities, the edges are the
connections between entities, and the information as social signals is sent through the edges
between entities. A proper graph model can clearly explain what is happening in the modern
society and can be used to predict what will happen in the future. Moreover, the complexity of the
network as a whole to react to the central driving force is more important than that of individual
entities, such as entities and channels.

The efficiency of graph analysis can be affected the complexities of graph storage, graph
sampling, graph algorithm, and graph applications. For graph storage, the challenges can be in
space capacity, I/O, duration, and memory access. For graph sampling, the challenges can be how
to maintain graph properties and topology types. For graph algorithms, the challenges can be graph
search, dynamic update, parallel computation, partitioning, and compression. For graph
application, the challenges can be community profiling, small world phenomenon, and subgraph

finding.



The theories behind graph analysis include combinatorics for space management, graph
theory for decomposition and reconstruction, conditional probability theorem, Markov chain
theories, and attention mechanisms that helps achieve Markov-like updates in deep-learning
architecture.

In this dissertation, we apply these theories to solve open issues in graph space management,
sampling, entity detection, and classification. In Chapter 4, we discuss both space and duration
management focusing on how to apply bin-packing theories to estimate both space capacity and
time duration. In this chapter, we propose and prove eight theorems related to NP-complete for
both space management and integer packing, upper/lower bounds of space complexities,
uppet/lower bounds for sorted input, and upper/lower bounds for algorithms. In chapter 5, we
discuss graph sampling focusing on how to use Kronecker double cover and curvatures to solve
sampling issues in graphs. We propose and prove the complexities of Kronecker double cover for
graph sampling. In chapter 6, we discuss how to combine domain specific features to Conditional
Random Fields (CRF) model for entity detection on graphs. We summarize rich features in
linguistic, semantic, domain specific perspectives. In chapter 7, we discuss how to combine
domain knowledge with deep learning architecture. Based on attention mechanism, we propose to
use domain knowledge to influence Markov-like updates so that the domain specific entities can

be promoted.



Chapter 2: Background

2.1 GPU and Parallel Algorithms

Parallelism modifies the computing processing and boosts computing performance through
improving the infrastructure from single thread to multiple threads. Although the basic process of
a computing task stays the same, but, data partition, data synchronization and the integration of
the computing results must be under consideration. GPU provides a massive amount of parallelism
with the potential to outperform CPU. Especially, in graph processing, the individual vertex in
graph matrix can be mapped to each one of the processing units in GPU grid, which provides a
full utilization of the infrastructure, simplifies the data model and makes it possible to improve the
computing performance in an order of magnitude. There are several classical parallel algorithms,
such as prefix sum, sorting, and filter. These algorithms efficiently model the parallelism in high
performance computing.

Figure 2.1 below shows the highlights of comparisons between Central Processing Unit
(CPU) versus Graphics Processing Unit (GPU). Note that a CPU has a low compute density, and
a GPU has a high compute density. A CPU has a low latency tolerance, and a GPU has a high
latency tolerance, where latency refers to a measure of the time delay required for information to
travel across a network. A CPU has shallow pipelines compared to a GPU with high throughput.

GPU has a large amount of device and on-chip memory as well which avoid the memory
stall issue often happening on CPU. GPU algorithms are a counterpart of CPU algorithms. If we
can hide memory latency and solve read/write conflicts on GPU, we can convert CPU algorithm

to GPU algorithm with a few changes. Memory latency problem can be solved through pipelining.
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Figure 2.1. Comparison of CPU vs. GPU ([278] Public Domain)

We use Nested-loop join as an example to show how to convert a loop into a parallel
algorithm through an additional data structure — a histogram [106]. Nested-loop join is central of
many database operations which can be done in two steps: sort and merge. As shown in Figure 2.2,
during data sorting, data is hashed into histogram and then distribute data from histogram to output
memory. Each thread group maintains a histogram and the histogram stores the counts of each
value hashed into the histogram. In histogram, data are sorted because it is organized through radix
hash. Since histogram also stores the group index of the data, we can scatter data into new memory
locations by reading the new memory location of the data in the histogram and then data is sorted.
The strength of this idea is that, by adding a histogram to each through group, data sorting can be

done in parallel. The weakness of this algorithm is more space cost.
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Figure 2.2. Scatter and Gather Process in Parallel Sorting

Graph processing can also be accelerated through parallel mechanism. We use graph
splitting as an example to show how graph processing can be sped up through parallelism. Graph
analytics naturally allows more complicated reasoning by exploring many-to-many relationships
so that the workload we need to balance is the degree of each node. After graph splitting, the degree
of each node will be less than a threshold, which means the workload on each node is reduced and

balanced as well. During parallel processing, processor will assign threads to each one of the nodes

and conduct computation simultaneously.




Degree distribution of the graph follows power law that a small subset of nodes own the
majority of neighbors. The high irregularity of the degree distribution makes partitions imbalanced
and slow down parallel performance. Uniform-Degree-Tree (UDT) Transformation was proposed
and used in Tigr [210]. Tigr changes the topology of the graph without partitioning. It can
transform irregular graph into regular ones with provable correctness, efficiency and effectiveness.
Graph regulation was performed on an extra virtual layer instead of the physical layer, which was
handled by GPU parallel computing and returned results to the host machine. By combining virtual

layer and physical layer together, the entire graph was regulated.

N

+—

Step 1. Create a new node

Step 2. move K edges from V to the new node.

w
Step 3. If Degree(V) > K, go to step 1.

Figure 2.3. UDT Transformation Process.

Figure 2.3 shows the UDT transformation process. Given a vertex v with degree d greater

than the threshold K, we apply UDT iteratively until the degree of vertex v is less than the threshold



K. It ends up with we have more vertices in a graph, but the number of outgoing edges of each
vertex is reduced to no more than 2. When parallel processing is applied, each thread can take care
of one vertex, all of the vertices can be processed simultaneously, and the computing cost is O(E)
which is equal to 2, instead of 5, in this example.
2.2 Parallel Optimization

Classical graph processing algorithms can be parallelized, such as BFS [22], SSSP
[54][175], betweenness centrality [35]. Synchronous parallel model was discussed in [243]. Par-
allel graph processing algorithms are compared in [253]. Based on graph data structure, parallel
graph processing can be done through push and pull based schemes [Betta, M. et.al. 2017], input-
guided graph traversals [188][273][274]. A distributed graph programming system library were
implemented in Boost Graph Library [223]. Vertex centric parallel algorithms can be done through
different partitioning between high degree and low degree vertices [44] and are implemented in
several graph processing frameworks, such as Pregal [169], Apache Graph [13], GraphLab [161],
Power Graph [88]. Graph processing framework can be either on single PC, such as GraphChi
[140], GraphQ [252][253], or on parallel machines through memory sharing, such as Ligra [222],
Galois [202], Charm++ [116], STAPL [103] [105].
2.3 GPU Optimization

GPU has several bottlenecks, such as data transfer, kernel invocations and memory
latencies [264]. Optimize memory access efficiency on GPU was discussed in [271]. Load
balancing can be done through local balance [183][184], a queue-based task balancing in irregular
graph [240], decomposition of imbalanced load [146][266], and irregular graph processing

[183][184]. GPU warp optimization can be done also through virtual warps [25] and the trade-off



between path divergence and accuracy of result by forcing all the warp lanes to follow the majority
[213].
2.4 Parallel Join Operation

Maximal pipelined parallelism normally cannot lead to the superior performance.
Segmented bushy processing strategy combines pipelined parallelism with alternate forms of
parallelism to achieve an overall effective processing strategy in complex multi-join queries on
shared-nothing parallel system, in which the pipelined segment can be attached to the query tree,
not only at the first join operation but also in the middle of the join operation [156]. Partition tuning
for data skews through three new parallel hash join algorithms [117]: tuple interleaving parallel
hash join (TLJ), adaptive load balancing parallel hash (ABJ), extended adaptive load balancing
parallel hash join ( ABJ+). The three algorithms use best fit decreasing strategy to tune the load of
each partition. T1J and ABJ+ are good skew avoidance technique, which are robust against skewed
data, and ABJ is also a good skew resolution as well. Machine-specific communication primitive
to develop parallel join algorithms on SIMD connection machines [15]. Database operations, such
as Multi-threaded hash join in shared memory system [162] are tested to explore the implication
that the larger on chip multithreading can have for parallelism in database operations. The
conclusion is that the most important feature of using multi-threading is the cost of high latency
memory operations are hidden through multithreading [50]. Database join operation algorithm
with GPU can be done through scatter-gather mechanism and a hash table in the form of histogram
[106].
2.5 Parallel Query Operations

Spatial database operations are done in two steps: Filter step and refinement step.

Refinement step requires heavy computation which can be improved through GPU accelerated



parallel mechanisms, especially in rendering and search capabilities for spatial selection and join
operations [233], bitonic sort [91], fast quantile frequency estimation [90]. Multi-pass scheme can
be used to improve the scatter and gather operations on the GPU [106]. Similarity join algorithm
- LSS [155], uses simple GPU operations, such as sorting and search, to implement parallel
similarity join in two steps: one is to create space filling curves on one of its input data sets through
sorting, the other is to process each point of the other data set in parallel to search an interval of
one of the space filling curves which contain all the pairs the point participates.

2.6 Graph Processing with GPU

Graph Models are useful in identify influencers in social networks [179], spotting frauds
in band transactions [211], optimizing supply chain distribution [249], developing recommenda-
tions [61], and effective medical treatments [37].

Graph processing can be optimized through the utilization of GPU based on coalesced
accesses [132], the maximization of warp [113], and compiler-level optimization [192]. The
connectedness of the graph makes it easy to utilize GPU in processing [94][226]. Graph processing
algorithms can also be accelerated through GPU, such as BFS [174][164], SSSP [57][ 172],
betweenness centrality [123][172][212], vertex degree reduction [210] and graph reduction
[217][100]. Muti-GPU graph processing have several implementations, such as TOTEM [81],
Medusa [275], METIS [131], CPU-GPU methods [82][112]. GPU graph processing framework is
also implemented in [102].

2.7 Graph Store, Task Scheduling and Parallel Planning

Data stream is a sequence of unbounded data which need to be captured, stored and

processed [182] [171]. Normally, we capture a snapshot of the stream instead of the entire stream.

If the size of the time window for each snapshot is bigger than the time cost of processing data
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plus the time cost of read and write, it is feasible to continuously conduct analysis through the

entire data stream. However, a memory and a parallel plan must be made first.

Elements

1 0 1 1 0 1 0 1 1

Arrival Time

21 20 19 18 17 16 15 14 13
Time Stamp
9 8 7 6 5 4 3 2 1

98765432“1

Load Windowed Data to Local Data Store '

Head

Tail

Figure 2.4. Circular Queue Data Structure for Sliding Window

Streaming data window is a snapshot of the data stream. The data window moves along the

data stream one slice every time interval. Streaming data are a sequence of tuples with time stamps,
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partially ordered by time. The windowed data are stored locally for operational purpose. If we
store the data in the order of time stamps, data updates can be implemented within a small range
of data store: delete the outdated data from the head of the queue and add new data to the tail of
the queue. To handle this process repeatedly, we define the data structure of sliding window as a
circular queue, in which data can be updated always within the area between the head and tail of
the queue. If the circular queue has enough storage, the process can keep running along with the
movement of the data stream. The challenge in streaming window is the tradeoff between the space
capacity and the accuracy of the results. The optimal solution is that we can decrease the space
cost as much as we can, but also, increase the accuracy of the results as much as possible.
Bin-packing problem deals with the limited space capacity and unlimited items. Bin-
packing solution can be used to plan the space and the other resources in the first place because it
provides a way to utilize the space and to load as many items as possible. Given a list I of items,
and a list J of bins, all the items have the same size, and all of the bins have the same size. Without
splitting any items, we need to load as many items in bins as possible and to use as few bins as

possible. This problem can be modelled as the following

Minimize 2yj, (2.1)
Subject to Yaixij < Cyj, j € J, (2.2)
Xxij=1,1 €1, (2.3)

xii, yj € {0, 1},iel,jel. (2.4)
in which, the set of boxes Y= {yj|yj € {0, 1}, j=1, ..., m}, the set of items X = {xi | xi € {0, 1},
1=1, ..., n}, ai is the size of the item i. The constraint (2.1) can ensure that the number of boxes

needs to be minimized. The constraint (2.2) can ensure that the total size of items in each box
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cannot exceed the capacity of the box. The constraint (2.3) can ensure that one item can only be in

the box. We demonstrate the model in Figure 2.5, as shown below.

g

Figure 2.5. Bin-packing Items with Different Sizes.

2.8 Performance Ratio

Bin-packing problem is NP-complete [124]. When a problem cannot be solved with
polynomial algorithms, we use a near optimal solution to solve it. The near-optimal solution is
called approximation algorithm. The performance of approximation algorithms cannot be
evaluated with polynomial time complexity because its time complexity is not polynomial. We use

approximation ratio as the performance ratio of the approximation algorithm to do evaluation.

max (C£ + %) < p(n) (2.5)
in which C is the cost of the approximate solution, C* is the cost of optimal solution, p(n) is the
performance ratio of an approximate solution, indicating that the algorithm has p(n) -
approximation. p(n) must be greater than or equal to 1. A large approximation ratio means that
the approximation solution is much worse than the optimal solution. When it is hard to get the
worst case performance ratio, we use lower bounds and upper bounds, instead of performance ratio,

to measure the performance of the algorithms.
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For example, we have N bins with size B, and 2NB items: NB size-B/2 items and NB size-

1 items. If we use Next Fit algorithm to load items into bins, and items come in the order of B/2,

1,B/2, 1, ..., the approximate solution needs to use NB bins and the optimal solution needs to use

(NB/2 + N) bins, as shown in Figure 2.6. The performance ratio is

(NB/(NB/2 + N)) < p(n) (2.6)
(2/(1+1/B)) < p(n)

2< p(n)

NB Bins

B/2

B/2

Approximate Packing

NB/2 Bins

B/2

B/2

B/2

B/2

B/2

B/2

Optimal Packing

Figure 2.6. Next Fit Bin-packing Algorithm with Performance Ratio p = 2

Description of the data distribution is central in data management. Cumulative distribution

is characterized by the quantile of the data, especially in an online stream fashion [163].
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Computational complexity of streaming data requires the estimation of upper bound and lower
bounds. This gives rise to the strategy of bin packing, which can be used to manage both the space
and the schedule. With a bin packing strategy, we can manage resources for a system with or
without parallelism: the upper bounds and lower bounds of both memory and time costs of the jobs
can be estimated, data loading and task scheduling follow a predefined atomic process, and load
balancing and load efficiency are also under consideration. Given a list L of n numbers, for every
positive e, there exists an O(n) time algorithm S such that, S(L) is the number of bins used by L,
L* is the minimum number of bins needed to pack L, then S(L)/L* < 1+¢ [72].
2.9 Bin-packing Algorithms
2.9.1 Classic Bin-packing Algorithms

To solve bin-packing problem, several algorithms are generally used, such as Next Fit (NF),
First Fit (FF), Best Fit (BF) [124]. The difference among these algorithms is how to arrange the
next item. Next Fit algorithm keeps the last bin open for packing at any time. If the next item can
fit into the last bin, the problem is solved. Otherwise, a new bin will be added for the new item to
use and the item will be put into the new bin. The time complexity of Next Fit algorithm is O(n),
because, given n items, we can directly put each item into the last bin, no other options. When the
sizes of the items are random, there is a big waste of space. First Fit algorithm leaves all partial
filled bins open for packing. When a new item comes, the algorithm searches from the beginning
to the end to find the first box which has enough space to load the new item. So, the time
complexity of the algorithm is at least O(nlogn), in case bins are built on a tree structure. First Fit
algorithm sacrificed time cost for a better space complexity. Best Fit algorithm is similar to First

Fit algorithm, in which the new item will be loaded into an enough but least space of the bin. The
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space complexity of best fit algorithm is better than First Fit algorithm. The time cost of Best Fit
algorithm is also at least O(nlogn), in case, bins are built on a tree structure.

Another modification of First Fit algorithm is First Fit Decreasing (FFD), in which the
items are first sorted in decreasing order, and then loaded into different bins with First Fit algorithm.
Similar to this algorithm, Best Fit Decreasing also needs to sort items in decreasing order before
running Best Fit algorithm to load items into bins. The time complexity and space complexity of
First Fit Decreasing and Best Fit Decreasing are almost the same. The performance of the two
algorithms are also as good as First Fit algorithm and Best Fit algorithms. In some scenarios, the
First Fit Decreasing and Best Fit Decreasing (BFD) are better than First Fit and Best Fit.

Difterent from NF, FF, FFD, BF, and BFD, Sum of Squares (SS) [55] uses a utility function
to decide how to arrange the next item. Two terms are introduced in this algorithm: One is the level
(1) of the bin, the other one is the utility function, N(1). The level of the bin indicates how much
the bin has been filled up. For example, if the total size of the items in a bin is 5, the level of the
bin 1 is 5. The utility function N(I) indicates how many bins have level . Given a new item, we put
the item into every bin which has enough space for hold it and then calculate the results of
Y:=1_5 N*(li). Whichever solution can generate the largest result will be final solution and the
arrangement of the solution is the final arrangement of the new item. The time complexity of Sum
of Squares algorithm is O(nB). The performance of Sum of Squares is not much better than Next
Fit, First Fit, Best Fit, First Fit Decrease, Best Fit Decrease, but, in each iteration, the total sizes of
the items in each bin are distributed evenly.

2.9.2 Oft-line Bin-packing
There are three classical bin packing problems: multiprocessor scheduling, bin packing,

and the knapsack problem. Surveys [48] [51] reviewed approximation algorithms for bin packing
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and the results, which includes online bin packing, offline bin packing, variations on size and item
packed, and packing with additional constraints. One dimensional bin packing solution was
discussed in [130].

Vector scheduling and vector bin packing are related to integer programming, which is to
pack a maximum number of vectors in a single bin of unit height [42]. Low-order polynomial time
algorithms for near-optimal solutions to the problem of bin packing, with linear time approxima-
tion to these packing rules have better worst case behavior than FIRST FIT under large variety of
restrictions on the input [ 112]. The absolute approximation ratio for first fit bin packing is exactly
1.7, and also matching lower bounds for a majority of values of OPT for any values of OPT [62].
In [108], bin packing problem can be solved with O(logOPT) bins.

The methodology for stock cutting, has been extended and adopted to the specific fully
scale paper trim problem. In [84], a new and faster knapsack solution was provided with method-
ology, experiments, formulation changes for multiple cutting knives available, n balancing of mul-
tiple machine usage and m introduction of a rational objective function. Experimental study of
Gilmore-Gomory cutting-stock heuristic and related LP-based approaches to bin packing was pre-
sented in [10]. By using dynamic programming to solve the unbounded knapsack problems that
arise in this approach, the average running time can be O(m*) and feasible for m in excess of 1,000.
In case d=2, the existence of an asymptotic polynomial time approximation scheme is P=NP [259].
2-dimensional bin packing can have tight approximate (1.5+ ¢), instead of 2. The result also be
rounded by exploiting various structural properties of optimal packings and using multi-objective
multi-budget matching techniques and expanding the round and approximation framework to go

beyond rounding based algorithms [18], a multiplicity scheduling, and d-dimensional bin packing

17



algorithm with constant d number of types [86], d-dimensional vector bin packing with lower
bound 1+¢&-approximation and run time (1/ £)°(dogloed) 1187,
2.9.3 Online Bin-packing

Efficient energy consumption can be estimated in real time through resource sharing
through workload consolidation. After spreading workload to a small set of machines, all the work
can be done in a short period of time and uses as few machines as possible.

Ja'nos Balogh, et al., revisited the online bin packing problem in [17] and, based on weight
function, provided analysis to illustrate online algorithms for the online bin packing problem.
Online placement of tasks can be done in real time but cannot arrange the tasks properly because
it cannot predict which task might come next. Therefore, the consolidation of online placement
has a poor performance in terms of wastage of resources, throughout, and consumption of electric-
ity. Offline placement can optimize the solution but scarify the solving time and space. Semi-
online framework is the trade-off between online and offline approaches in resource utilization
and the overall run time duration.

The constraints on bin packing is in both the bin capacity and the number of bins. The
solution of generalized bin packing problem to vector-capacity bin packing with or without
precedence constraints was provided in [77]. Due to the online nature of the assignment, we only
consider information available up to time i and the total duration in which the items can lock the
resources on its host bin. Based on the basic constraints, a First Merged Fit (FMF) [12] was
proposed to allow each task to be associated with either another task or a machine. Tasks can be
arranged together before assigned to a machine. When the tasks are assigned to machines, the order
of the tasks are already optimized to ensure the minimization of the duration for all available tasks.

In each iteration, the order of the machines prioritizes the longest remaining run time, and merging
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happens between the best ranked bin and the next compatible bin in the list. The performance of
online bin packing was improved to O(d'*) and upper bound can be B [15], the performance ratio
less than 1.692 in Harmonic [145], lower bound equal to 1.54037 for one dimensional online bin
packing for their asymptotic worst-case behavior [17]
2.9.4 Vector Bin-packing

Vector bin packing is associated with space management, resource scheduling and other
resource sharing. Although these resources are independent of each other, the optimal solution is
the number of bins can be minimized and the utilization of all the resources in each bin can be
maximized. As shown in Figure 2.7, we use the space and duration optimization problem as an
example to demonstrate vector bin packing problem. Given maximum duration and maximum
space in each bin, we want to maximize the total duration and the total space so that the area

between the total duration and the total space can be maximized.

LTI

‘ Duration Space Capacity

Figure 2.7. Space and Duration Optimization Bin-packing

The difference between vector bin packing and multi-dimensional bin packing is the
overlap. For vector bin packing, there is no overlap in any dimension. For multi-dimensional bin
packing, in a particular dimension, there is no overlap for its corresponding variable, but overlaps

are allowed for other variables, as shown in Figure 2.8.
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Figure 2.8. 2-Dimensional Bin-packing

Online streaming vector bin packing can be based on approximation of the number of bins.
When we determine the number of bins, we can estimate based on the big items only and expand
it based on the approximation ratio [53]. Round Approximation solution [18] was proposed to
solve d-dimensional and d-dimensional vector bin packing both with and without rotations. If the
boundaries are estimated properly, the estimate can result in a tighter integrality gap for linear
programming relaxation. Multi-objective/Multi-budget matching before applying rounding and
approximation framework [18] fixed a limitation of rounding and approximation algorithm, which
is a solution with better than d-approximation. Vector scheduling is a natural generalization of
makespan. The upper and lower bounds of vector scheduling is a double exponential dependency
ond[19].

In [120], the online complexity of the vector scheduling was solved that, for identical
machines, the optimal competitive ratio is O(log(d)/log(logd)) as lower bound through an online
coloring game and randomized coding scheme, for unrelated machines, the optimal competitive

ratio is O(log(m)+log(d)).
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In [73], for non-preemptive scheduling of jobs with known processing times on m identical

machines, when m goes to infinity, its competitive ratio is 1+ 1+2n2< 1.9201. For vector bin

packing, the competitive ratio is (1/B)! [15]. For d-dimensional vector bin packing, the lower

bound is 1+e&-approximation and run time (i) O(d*log(log)) 119]. For a Full Polynomial-Time
Approximation Scheme (FPTAS) of (i)o(mu—a))mom has running time O(n)+ (i)o(m). If FPTAS

-0 143
of (i)o(m(l ))+n0® 0(z+ (D7)

has running time 2 is optimal and prove dynamic programming

algorithm with running time 2°®™ is the best possible [43].
2.10 Sampling

Bin-packing problem can be solved through sampling. In [20], a weighted uniform
sampling was provided with time cost O(n?*poly(1/¢))+g(1/¢) time and O(blogs * loglogn/(}, a;

+ i # ) in [24]. Moser-Tardos framework was generalized in [104] to partial resampling in graph

traversals for packet routing algorithm.

The upper bound and lower bound of the bin packing solution are the significant factors
we care about, instead of the number of bins and the capacity of each bin, when design the strategy.
Bin-packing problems are to minimize the number of bins used and to maximize the space capacity
of each bin. Although both the number of bins and the space capacity of each bin need to be
optimized, the number of bins can be calculated based on the total space capacity required and the
bin space capacity we choose. In terms of space packing, given the total space cost of the sample
set, space capacity of each bin and the number of bins can be determined by each other. For parallel
scheduling, we normally map the number of bins to the number of processors and map the total
space capacity to the size of the assigned memory space. For streaming data processing, the task

must be done before next window slot coming, which sets an upper bound to the total time costs.
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In other words, space management and scheduling are highly restricted by both the infrastructure
and the operations. In practice, although we need to estimate the total number of bins and total
space capacity for each task, the priority is to design a strategy which can waste less space and
balance time costs in different bins.

2.11 Triangle Computations and Subgraph Finding

Graphs are increasingly used to study interactions in a variety of context. Triangle is the
smallest unit of a community. There is a growing need for graph analysis to profile behaviors of
the population, the online community, the transportation, the business and the consumers. Among
various metrics of interests, the triangle computation provides structural information about the
network being studied.5.4.1
2.11.1 Triangle Counting

In network modeling, a triangle represents a community and also big communities are
formed through triangle combination. Triangle computation, such as triangle counting, triangle
listing, triangle finding, is central in complex network analysis. For example, it can be used to
compute neighborhood density which is the number of the triangles over the number of wedges,
clustering coefficient which is the average of neighborhood density, and transitivity which is the
total number of triangles in a graph over the total number of wedges in a graph.

The mathematical model of a graph is an adjacent matrix so that triangle computation prob-
lems are solved through matrix multiplication. For example, given matrix A, as shown in Figure
2.9, the number of neighbors of each vertex v is equal to the value of vii in A*A, and the number
of triangles of each vertex v is equal to the value of vii in A*A*A. When the number of vertices

and the number of edges increase, this computation can go exponential.
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(a) A Undirected Graph (b) Triangle Counting

Neighbor(A) > 2 and Triangle(A) > 1

A*A=4,1,22,1 A=0, ,1,1, . A*A*A/2=3,

]" 91509

(c) Triangle Counting for Threshold=k with Skips

Figure 2.9. Triangle Counting in an Undirected Graph.

In theory, matrix multiplication solution can be expanded to solve subgraphs which consist
of 4-vertex, 5-vertex patterns, and n-vertex patterns. However, with the increase of the number of
vertices in a subgraph pattern, the cost of matrix multiplication makes it possible to compute so
that matrix multiplication is not a feasible solution. This problem can be solved through parallel
computing, direct pattern matching and heuristic learning.

Other than matrix multiplication that is a straightforward solution for triangle counting, the
triangle counting algorithms can be based on graph traversal with O(|V|?) time complexity, as listed
in Figure 2.10. In Figure 2.10(b), we pick two vertices v, and w, in which the degree of v is less
than the degree of w and also R(Vv) is less than R(w) as well. In Figure 2.10(a), on line 1, vertices

are sorted by degrees, and the list of result is stored in array R. On line 2-4, the intersections
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between the neighbors of vertex v and the neighbors of vertex w are counted, and the result is

stored in array C.

Algorithm Triangle Counting
Procedure Triangle-Counting(G(V,E)) °/
1. Compute an array R to store a selected list of
neighbors for each vertex v, such that if R[v] <
R[w], then d(v) < d(w)
. ForwinR[v]

I= intersect(R[v], R[w])
Clv,w] = [1]
Total Number of Triangles = sum(C)

I=[{v, w,wi}]

oW

(a) Triangle Counting Algorithm (b) A Graph with d(v) < d(w)

Figure 2.10. Triangle Counting Algorithm

Triangle computation is useful in network analysis [29][116]. Triangle computation can be
used for social network small community detection [185], thematic structure of the network [65],
spam and fraud detection [23][39], link classification and recommendation [237], join three rela-
tionships in database [186], data query optimization [21].

Triangle computation can be done in memory [49][116][134][140][173][191] or in distrib-
uted system [11][88][193][194][256].

Several triangle computation algorithms were compared in [260], a simple classification
scheme is designed to analyze the strengths and weakness of several existing algorithms in motifs
detection. Local topology structure of the network is central in network problems. In [207], graph-
let frequency distribution (GFD) was used as an analysis tool for understanding the variance of

local topological structure in a network and also developed an algorithm - GRAFT - to approximate
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the Graphlet frequency for all graphlets that have up to five vertices. Also, the NP-Hard list-col-
ored graph motif problem was studied in [31], with fixed-parameters (M| and |S|) algorithms in
the context of querying protein-protein interaction networks.

Vertex sampling can efficiently improve triangle computation. In [2], the proposed Graph-
let counting algorithms count a few graphlets and with these counts along with the combinatorial
arguments, we obtain the exact counts of others. GUISE [32] uses Markov chain Monte Carlo
sampling method to construct the approximate of a large network for Graphlet frequency counting.
In [122], based on 3-path sampling and a special pruning scheme to decrease the variance in esti-
mates. In [218], a new sampling-based methods for counting the number of triangles or the num-
ber of triangles with vertices of specified degree in an undirected graph and for counting the num-
ber of each type of directed triangle in a directed graph. The number of samples depends only on
the desired relative accuracy and not on the size of the graph. DOULION [237] is a new triangle
counting algorithm: 1. Reweighs an edge with 1/p survive and 1-1/p delete, 2. Count each triangle
as the product of the weights of the edges comprising the triangle. In [110], a new combinatorial
method for counting graphlets and orbit signatures of network nodes builds a system of equations
that connect counts of orbits from graphlets with up to five nodes, which allows to compute all
orbits from graphlets with up to five nodes and allows to compute all orbit counts by enumerating
just a single one.

Based on approximation, a randomized algorithm [238] is introduced to approximately
count the number of triangles in graph G: keep each edge independently with probability p, enu-
merate the triangles in the sparse graph G’ and return the number of triangles found in G” multi-

plied by P. A new fast approximation algorithm for the weighted clustering coefficient [215] also
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gives very efficient approximation for the clustering coefficient with O(1) time complexity and for
the transitivity with O(n) time complexity.

Some other ideas are also given to accelerate triangle computation, such as MapReduce,
combinatorial algorithm and distributed message passing. Large graph problems can be solved
through the power of the cloud if graph operations can be decomposed into MapReduce steps [52].
In [234], a new distributed triangle counting algorithm allows for a smooth tradeoff between the
memory available on each individual machine and the total memory available to the algorithm and
can be adapted to MapReduce setting. Edge searching of a graph was given in [47], which is useful
to the various subgraph listing problems, can help create four new algorithms: triangle listing al-
gorithm with O(a(G)m) time, quadrangles finding in O(a(G)m) time, complete subgraph listing in
O(pow(la(G), 1-2)*m) time, cliques listing in O(a(G)m) time. The theory behind the new distrib-
uted 3-profile counting algorithm is that sparse graphs can be used to approximate the full 3-profile
counts for a given large graph [67]. Edge pivoting allows us to collect 2-hop information without
maintaining an explicit 2-hop neighborhood list at each vertex. This enables the computation of
all the local 3-profiles in parallel with minimal communication. Meanwhile, a novel distributed
algorithm was given in [68], for counting all four-node induced subgraph in a big graph. This
algorithm is a local, distributed message-passing scheme on the graph and computes all the local
4-profiles in parallel. We proved the theory that local 4-profiles can be calculated using com-
pressed two-hop information, and also establish novel concentration results that show that graphs
can be substantially sparsified and still retain good approximation quality for the global 4-profile.
A generalization of fastest 5-node graphlet counting algorithm was given in [109]. The algorithm
requires the existence of a vertex with certain properties which exists for graph lets of arbitrary

size, except for complete graphs and a cycle with four nodes which are treated separately. In [110],
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a combinatorial method for counting graphlets and orbit signatures of network nodes builds a sys-
tem of equations that connect counts of orbits from graphlets with up to five nodes, which allows
to compute all orbits from graphlets with up to five nodes and allows to compute all orbit counts
by enumerating just one.
2.11.2 Subgraph Finding

Subgraph computation has many applications. In [38], opinions and behaviors are more
homogeneous within than between social groups. Structural holes exist between organizations.
Brokerage can help span connections across the structural holes between different groups. The
between-group brokers express ideas which are never dismissed and are evaluated as valuable so
that brokerage becomes the social capital, which can be identified through subgraph computation.
Triadic configurations are the basis for theoretical claims and substantive outcomes. By
considering constraints that lower order graph features place on the triad census, triad censuses
from 159 social networks of diverse species and social relations are largely explained by their
lower order graph features through formal constraints that force triads to occur in narrow range of
configuration. Within these constraints, a majority of networks exhibit significant triadic
patterning by departing from expectation [71]. The definition of social capital emphasizes the role
of social control, in family support, and in benefits mediated by extra familial networks. Several
examples were given to review four consequences. We also describe the conceptual stretch of this
concept from individual asset to a feature of the communities and even nations, and also examine
its limitations, the potential to lead to its heuristic value [203].

Simple models of networks can be tuned through this middle ground: regular networks
rewired to introduce increasing amounts of disorder. We find that these systems can be highly

clustered, like regular lattices, yet have small characteristic path lengths, like random graphs,
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which can be called small world network, by analogy with the small-world phenomenon, (popu-
larly known as six degrees of separation). Models of dynamical systems with small-world coupling
display enhanced signal-propagation speed, computational power, and synchronizability. Also, in-
fectious diseases spread more easily in small-world networks than in regular lattices [257]. Drawn
on the theory of graph homomorphisms to formulate and analyze the representation of domain-
independent coordinate system for a collection of graphs from social network, based on the sub-
graph frequencies, the subgraph frequencies are governed by combinatorial properties as well as
empirical properties. The coordinate system examined can be used to classify the structures of
different types of social graphs [241]. Standardized measurements in [111] are developed to model
the structure in interpersonal relations. A theorem is presented which yields expectations and var-
iance for measurements based on triads.

Although the degree distributions of the scale-free network are all similar, the key
topological features of such networks depend heavily on the specific model and the seed graph
used. For example, if starting with the right seed graph, the duplicated model can capture many
topological features of publicly available protein-protein interaction networks [114]. Protein-
protein interaction network use newly introduced measurements of local network structure as well
as standardly used measurements of global network structure. Four different Networks models
were built, such as Erdos-Renyi, scale-free and geometric random network models. Scale-free
model of PPI network fails to fit the data in several respects and a random geometric model
provides a much more accurate model of the PPI data. We hypothesize that only the noise in these
networks is scale-free [205]. To uncover the structural design principles, network motifs are
defined as patterns of interconnections occurring in complex networks, such as biochemistry,

neurobiology, ecology, and engineering. In comparison of motifs in different networks, we can
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draw the conclusion that motifs may be used to define universal classes of networks [178].
Community structure plays a significant role in the analysis of social networks and similar graphs.
We hypothesize that any graph with a heavy tailed degree distribution and community structure
must contain a scale free collection of dense Erdos-Renyi (ER) subgraphs. A block two-level ER
model was proposed and demonstrate that it accurately captures the observable properties of many
real-world social networks [218].

Subgraph computation needs to be conducted often, such as counting, enumeration,
summarization, especially frequent subgraph listing. The challenge is still disk based solutions
which can process massive graphs without maintaining exponential numbers of partial results, in
which pattern matching is the solution [200].

2.12 Community Detection and Clustering

Communities are small groups of vertices with common patterns, which means vertices
within the groups are similar to each other, and vertices between the groups are different. Com-
munity clustering are based on the structure of the edges to group vertices into clusters. The gen-
erally used similarity measurements are PageRank scores which are based on the connection be-
tween pages and indicates the importance of the pages, conductance which indicates how well-
knit the small group is, centrality measurement, such as degree centrality, closeness centrality,
betweenness centrality, and eigenvalue centrality.

Before we discuss the methodology of community detection, we can keep in mind some
interesting conclusions. After studying and comparing over 100 real world networks [151], these
conclusions are generally accepted that large networks have very different structure, tight commu-
nities barely connected to the rest of the network, large networks gradually merge into the core of

the network and becomes densified, and the growth of the network through forest fire burning
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process can produce a community profile, and the size of the community can affect the quality of
the community [152] so that size-resolved version of the optimization can be considered as a so-
lution, rather than changing the objectives. Size-resolved community structures are useful with
these assumptions [121]: (1) the best small groups of nodes can be better than the best large groups,
(2) the best small groups of nodes can have a quality that is comparable to the best medium-sized
and large groups, and (3) the best small group of nodes can be worse than the best large groups.
2.12.1 PageRank

Pages play important roles in the network. The motivation of PageRank [190] is that pages
can be both endorsers and endorsees. Endorsers send endorsement to endorsees across their out-
going links. The more important the endorser pages, the stronger the endorsements they send. All
the pages start out with the same PageRank, after infinity number of steps, their PageRanks are
converged to several values.

PageRank can be used in many different scenarios, such as citation network in which one
author cites several papers and his paper is also cited in other papers, friendship network in which
one individual person reached out to make several friends and that person is also in other people’s
circle of friends, and product recommendation in which you pick one product online, and also

receive recommendations of several highly co-purchased products.
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Figure 2.11. A Collection of Eight Pages.

Table 2.1. PageRank Results in Two Steps on Eight Pages

A B C D E F G H
Start 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Step 1 Ve 1/16 1/16 1/16 1/16 1/16 1/16 1/8
Step 2 5/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16

Table 2.2. PageRank Computation from the Beginning to Step 1 on Eight Pages

Endorsees Step 0 Results Endorsers Formulas Step 1 Results
A 1/8 D,E,F,G,H 12D+E+F+G+H %
B 1/8 A 12A 1/16
C 1/8 A 12A 1/16
D 1/8 B 1/2B 1/16
E 1/8 B 1/2B 1/16
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Table 2.2. (Continued)

F 1/8 C 1/2C 1/16
G 1/8 C 1/2C 1/16
H 1/8 D,E 1/2D+1/2E 1/8

Table 2.3. PageRank Computation from Step 1 to Step 2 on Eight Pages

Endorsees Step 1 Results Endorsers Formulas Step 2 Results

A V2 D,E,F,G,H 1/2D+E+F+G+H | 5/16

B 1/16 A 12A Va

C 1/16 A 12A Va

D 1/16 B 1/2B 1/32

E 1/16 B 1/2B 1/32

F 1/16 C 1/2C 1/32

G 1/16 C 1/2C 1/32

H 1/8 D,E 1/2D+1/2E 1/16

There is a similar algorithm - Authority Hub algorithm [136]. Both the two algorithms
follow the principle of repeated improvement and emphasize the property of Eigen values. The
difference of the Authority Hub algorithm is that Authority Hub algorithm uses two update rules:
one is authority update rule, and the other is hub update rule. For authority score updates, the
connections in adjacent matrix are in-links. For hub score updates, the connections in adjacent

matrix are out-links. We can start with either authority update rule or hub update rule, and then
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switch to the other rule, repeat this process until the changes of the scores between two steps are
smaller than a threshold and then stop. No matter what Initial scores we choose, after several steps
of updates, the final results can converge to limiting values, which are also a property of the link
structure.

PageRank model is a math model which can be modified through its math properties. Pre-
conditioned Chebyshev iteration [227] can run nearly-linear algorithms with preconditioners to
solve symmetric, diagonally-dominant linear systems for graph partitioning and graph sparsifica-
tion. Another useful statistic of social network is heave-tailed degree distribution and large clus-
tering coefficients - imply good communities, also known as ego nets with the existence of vertex
neighborhoods. Conductance scores of neighborhood community is as good as Fiedler cut. Also,
the conductance of neighborhood communities shows similar behavior as the network community
profile computed with personalized Pagerank and neighborhood communities can also help find
good PageRank seeds [85]. The second eigenvalue of Laplacian matrix and its associated eigen-
vector are fundamental features of an undirected graph. They have found their widespread use in
scientific computing, machine learning, and data analysis. Graphs have local regions of interest in
which the second eigenvector fail to provide information fine-tuned to the local region which is
called the locally-biased analogue of the second eigenvector. In [167], local properties of data
graphs in a semi-supervised manner provide a solution as a generalization of a personalized Pag-
eRank vector. Locally-biased vector is useful for identifying and refining clusters locally.

Based on the empirical discussion that small size communities are more meaningful than
large size communities, which give rise to the local PageRank clustering algorithms. A local graph
partitioning algorithm [7] finds a cut near a specified vertex, with a running time depending on the

size of the small side of the cut, rather than the size of the graph. We proposed a local graph
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partitioning algorithm using personalized PageRank vectors: approximate PageRank vectors, de-
rive a mixing result for PageRank vectors, derive an analogue of Cheegar inequality for PageRank
so that the cut with conductance p can be found in PageRank vectors. In [8], a randomized local
partitioning algorithm was presented that finds a sparse cut by simulating the volume-biased evolv-
ing set process, which is a Markov chain on sets of vertices. Protein-protein interaction can reveal
unknown functional ties between proteins. In [248], Protein network was partitioned to find small
communities in the networks. Local Protein Community Finder is a toolkit which quickly finds a
community close to a queried protein in any network available from bioGrid or specified by users.
Nibble and PageRank-Nibble are implemented in the toolkit. Heat kernel, similar to PageRank,
plays the role of diffusion in community detection around a nearby starting seed node. A deter-
ministic local algorithm [137] was presented to compute the diffusion and to study the community.
This algorithm use relaxation method within a linear system to estimate the matrix exponential in
a degree-weighted norm. It only depends on the parameters of the diffusion not the size of the
graph.

Subgraph partition is NP-Complete. The starting seed set plays an important role in gener-
ating high quality clusters. Overlapping community [258] is based on local optimization and ex-
pansion of a community metric around a seed set of vertices. The key idea is to find good seeds
and expand the seed sets using the personalized PageRank clustering procedure. Seed expansion
is suited for local community detection. In [138], several variants were evaluated to explore the
properties of seed set, use active learning solution, and also explored the topology properties of
communities and seed sets that correlate with algorithm performance and explain the empirical

observation with theoretical ones.
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2.12.2 Conductance

Conductance of a graph G(V, E) is also called Cheeger Constant, which is the ratio of edges
across the subgraph over edges within a subgraph. It can measure how well-knit the graph is. The
smaller the value of the conductance, the better the cluster. The conductance of a cut (S, S)of a

graph G is defined below

_ ZiES,jEEaU
?0) = ey Y

a(S) = Yies Xjev a;; (2.10)
in which, a;; are entries of the adjacent matrix. In Figure 2.12, we give an example of the
conductance measurement for graph clustering.

In [265],13 structural definition of network communities is examined based on their sensi-
tivity, robustness, and performance. Conductance and triad-participation-ratio are proved to be
better measurements in evaluating the quality of the community. Also, the local spectral clustering
algorithm was expanded into a heuristic parameter-free community detection method that easily
scale to network with more than hundreds of nodes. In [83], a similar measurement was given to
provide a worst-case guarantee for the quality of the approximation, which is as good as the Chee-

ger Constant measure.

Cluster Conductance
{A} 2/min(2,16-2)=1

{A,B} 2/min(4,16-4)=1/2
6 {A,B.C} | I/min(7,16-7)=1/7

{A,B,C,D} |3/min(11,16-11)=3/5

Figure 2.12. Graph Clustering with Conductance Measurement.

35



Conductance measurement is generally used in graph partitioning and graph clustering. In
[139], bicriteria approximation algorithms for the small sparsest cut problem can be implemented
locally using truncated random walk with running time almost linear to the output size. It provides
a local graph partitioning algorithm with a better conductance guarantee when k is sublunar. A
modification of normalized cuts is provided in [168] for constrained image segmentation: 1. It
allows us to use noisy top-down information 2. Constrained solution can be computed in small
additional time. Free riders are irrelevant vertices in a community. In [262], systematic explanation
of the existence of free rider and an algorithm is developed, based on query biased node weighting
scheme to reduce the free rider effect. A new clustering algorithm is proposed in [228], which can
be used to partition graphs into subgraphs and find an approximate sparsest cut with near optimal
balance. Protein-protein interaction network analysis can be split into two categories: local align-
ment and global alignment. In [248], global alignment through a multiple network alignment tool
was provided, which was based on spectral clustering on induced graph of pairwise alignment
scores to better identify functional orthologs across species.
2.12.3 Deep Learning

Deep learning [63][180][216] combines traditional neural network and machine learning
algorithms together to perform classification, clustering, and sequence analysis. This prototype has
several advantages. First, feature engineering process is built into deep learning framework.
During parameter tuning, significant features can be promoted and unsignificant features can be
suppressed. Secondly, the number of dimensions and the number of parameters can be reduced
significantly. Also, linear algebra naturally fits into the deep learning prototype which makes it

easy to operate both vectors and matrix.
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Deep learning prototype can be divided into several categories: feature function learning
framework [98], gated learning framework [153], and attention learning framework [245].
Convolution network can be considered as a special case of attention learning framework.

Feature function learning framework trains a model to generate embeddings by engineering
features for a node with its local neighbors. Learned feature functions can be trained with low
dimensional embeddings of nodes in large graphs. Local neighborhood information is integrated
together to interpret the characteristics of the nodes. After training, learned feature functions can
operate on unseen nodes as well.

Gated Graph sequence neural networks (GGs-NNs) expands the output neural network to
a sequence instead of a single class. GGs-NNs has two settings: specifying all intermediate
annotations and training the full model end-to-end given graphs and target sequences. The former
generates sequence outputs with observed annotations which can improve performance when we
have domain knowledge about specific intermediate information that should be represented in the
internal state of the nodes. The latter generates sequence outputs with latent annotations which is
more general. After training, GGs-NNs learns features on graph structures data through neural
networks.

Similar to GGs-NNs, graph attention network also output a sequence of features. However,
attention networks can learn the characteristics of the nodes not only with neighborhood
information but also beyond neighbor nodes on the networks. The attention mechanism is a single-
layer feedforward neural network, fully expanded out to the entire network by normalizing the

coefficients of the entire graph and by repeatedly train the layer for several literatures.
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Chapter 3: Notation and Terminology
3.1 Notation
This section provides a reference for the most used notation. In each chapter, additional

notation may be introduced if necessary.

Table 3.1. Notation Symbols and Explanations

Symbol Explanation

G A graph

V(G) Vertices of graph G

E(G), (v,w), vw | Edges of graph G. v and w are vertices of G

n The number of vertices.

m The number of edges.

deg(v), N(v) The number of edges incident with vertex v is he degree of v.

A The maximum degree in G

k-regular If all the vertices of G have the same degree k, then G is regular
of degree k.

D A directed graph D is the one in which each edge is assigned a
direction.
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3.2 Graph

A Countable Graph is the one in which V(G) and E(G) are finite or countably infinite. A
locally finite graph is the one in which the number of edges incident with each vertex is finite. If
V(G) and E(G) are infinite, the graph is called infinite graph.

Two graphs G and H are isomorphic if there is a one-to-one correspondence between their
vertex sets that preserves that adjacency of vertices. An automorphism of G is a one-to-one
mapping ¢ of V(G) onto itself with the property that ¢ (v) and ¢ (w) are adjacent if and only if v
and w are adjacent. An automorphisms of G form a group I'(G) under composition, called the
automorphism group of G.

For digraph D, if e=vw is an arc of a digraph D, then v and w are adjacent, and e is incident
from v and incident to w. If v is a vertex of a digraph d, then its out-degree outdeg(v) is the number
of arcs in D of the form vw, and its in-degree indeg(v) is the number of arcs in D of the form wv.

Let G be a graph with vertex set {vi, v2,..., v} and edge set {e1, €2, ..., en}. The adjacency

matrix of G is the n*n matrix A(G) = (aj) where

_ {1, if viand vj are adjacent, 31
% =0, if not, G-1)
and the incident matrix of G is the n*m matrix B(G)=(bij), where
b — { 1,if v;is incident with ej, 3.9
710, if not, (32)

The eigenvalues of A(G) are independent of the way in which the vertices are labelled,
called the eigenvalues of G, and the characteristic polynomial of A(G) is the characteristic
polynomial of G.

If an automorphisms of G form a group I'(G) under composition, I'(G) is transitive if it

contains automorphisms mapping each edge of G to every other edges.
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A sequence of edges of the form vovi, viva, ..., vr1vr, is a walk of length r between vi and
vr. If these edges are all distinct then the walk is a trail. If the vertices vo, v1, ..., vr are also distinct,
then the walk is a path. Two paths are edge-disjoint if they have no common edges and are vertex-
disjoint if they have no common vertices. A walk or trail is closed if vo=vr, and for r > 0, a closed
walk with all vo, vi, ..., vr-1 distinct is a cycle.

A graph G is connected if there is a path joining each pair of vertices of G; otherwise, it is
disconnected. Every disconnected graph can be split into maximal connected subgraphs, called
components.

A subgraph of a graph G=(V(G), E(G)) 1s a graph H=(V(H),E(H)) such that V(H)cV(G),
and E(H)cE(G). If e is an edge of G, then the edge-deleted subgraph G-e or G\e is the graph
obtained from G by removing the edge e. If v is a vertex of G, then the vertex-deleted subgraph
G-v is the graph obtained from G by removing the vertex v together with all its incident edges.

We can also obtain a new graph from G by removing the edge e=vw and identifying v and
w so that the resulting vertex is incident to all edges that were originally incident with v or w. This
is called contracting the edge e and G is contractible to H=G-e. A minor of G is any graph obtained
from G by a succession of edge-deletion and edge-contractions.

If e=vw is an edge of G, then we obtain a new graph by replacing e by two new edges vz
and zw, where z is a new vertex. This is called subdividing the edge. Two graphs that can be
obtained from the same graph by subdividing its edges are homeomorphic.

The complement of G of G is the graph with the same vertex set as G, but where two

vertices are adjacent whenever they are not adjacent in G.
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A connected graph G is Eulerian if and only if each vertex of G has even degree. A
connected digraph D is Eulerian if and only if the in-degree and out-degree of each vertex are
equal.

If G is a simple graph with n (=3) vertices, and if deg(v)+deg(w) >n for each pair of non-
adjacent vertices v and w, then G is Hamiltonian.

Given a graph X, a permutation o of V(X) is an automorphism of X if for all u, ve V(X)

fuv}e EX) © {a(w),a(v)} € E(X) (3.3)

The set of all automorphisms of a graph X, under the operation of composition of functions,
forms a subgroup of the symmetric group on V(X) called the automorphism group of X, and it is
denoted Aut(X).

Let the components of X be X1, Xo, ..., Xk. Then

Aut(X) = [, Aut(Xy))  (3.4)
Aut(X) = Aut(X) (3.5)

A group G of permutations of a set S acts transitively or is transitive on S if for every x, y
€ S, there exists ae@G, such that a(x)=y, is vertex-transitive if Aut(X) acts transitiviely on V(X),
and acts doubly transitively on S if for any two ordered pairs of distinct elements (X1, X2),(y1,y2) €
SxS there exists a.e G such that a(x1)=y1 and o(x2)=y2.

For i = 1,2, let G be a group of permutations of the set Si. We say that G1 and G2 are
isomorphic as permutation groups if there exist a o group-isomorphism: G1—Gz and a bijection f:
S1—S:2 such that f(ou(x)) = [D( a)](f(x)) for all a € G1, X € S1.

An edge-isomorphism from a graph X1 to a graph X2 is a bijection n: E(X1) —E(X2) such
that edges e1 and e2 are incident with a common vertex of X if and only if n(er) and n(e2) are

incident with a common vertex of Xa.
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An edge-automorphism is an edge-isomorphism from a graph to itself. The set of edge-
automorphisms forms a subgroup of the symmetric group on E(X), called the edge-group of X.

A graph product of graphs X and Y is a graph with vertex set V(X) xV(Y), whose edge set
is determined in a prescribed way by and only by the adjacency relations in X and in Y. A graph
product & is associative if (W&X)&Y=W&(X&Y), for all graphs W, X, Y.

A graph X is a divisor of a graph Z with respect to a product &, if there exists a graph Y
such that

Z=X&Y NZ=Y&X  (3.6)
For all graphs W, X, Y. Interest is usually restricted to products that are associative. Four commonly
used associative graph products: Let Z be a graph product of arbitrary graphs X and Y. Let x1, x2
be vertices of X, and let y1, y2 be vertices of Y. Suppose that
{1, y1), (X2, ¥2)} EE(Z)  (3.7)
. In the Cartesian product Z=X [-]Y
[{x1, 223 € EX) Ayy = yalor[{xy = x2} A{yy, ¥2} € E(Y)] (3.8)
. In the strong product Z=X XY
[{x1, %23 € E(X) Ay, = y,] or
[x1 = x2 A{y1,¥2} € E(Y)] or
[{x1, %2} € E(X) A{y1,¥2} € E(Y)] (3.10)
. In the weak product Z=X XY
{x1,%2} € E(X) and {y,,y,} € V(Y) (3.11)
. In the lexicographic product Z=X[Y]

{x1,x,} € E(X) or [x1 = x, A{y1,¥2} € E(Y)] (3.12)
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Figure 3.1. The Four Products of the 2-Path by the 2-Path

These four products are illustrated in Figure 3.1. Graph X and Y are relatively prime if they
have no common proper divisor.
3.3 Topologies

We list pure topology types for networks in Figure 3.2. Graph sampling needs to keep both
the graph topology and other graph properties. The topology type of a network can be determined
based on either the network property or the scenario of the application.

1. Topology 1. Ring Lattice Network. As shown in Figure 3.2(1), each node is connected to
its neighbors, according to the ring-induced distance. Ring lattice network forms a regular
graph and is vertex-transitive. To identify ring lattice network, we can start with any vertex
and then check the degree of the vertex and the edges between the vertex and its adjacent
neighbors.

2. Topology 2. Small world network. As shown in Figure 3.2(2), each node is connected to
several of its neighbors and few distant nodes, according to the ring-induced distance. We
can consider small world network is a ring lattice network with several random edges.
From ring lattice network, to small world network to Erdos random network, the

randomness of the network increases.
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3. Topology 3. Erdos Random network. As shown in Figure 3.2(3), each node is connected to
a random set of the remaining nodes. Erdos random network has random connections
between vertices. The degree distribution follows a power law.

4. Topology 4. Core-Periphery network. As shown in Figure 3.2(4), nodes belong exclusively
to either the core or the periphery. Core and periphery nodes are connected to core nodes,
while there are no edges among periphery nodes. Core-periphery network has two different
sets of vertices: core vertices and periphery vertices. Core vertices have one or more than
one degree. Periphery vertices have one degree.

5. Topology 5. Scale free network. As shown in Figure 3.2(5), most of the nodes are connected
to few other nodes, while few nodes are connected to many other nodes. This relation is
formally described with a power law, between the number of edges and the number of
connections. We can consider scale free network as a core-periphery network with several
random connections. In scale free network, most of the vertices have a small number of
degrees, and a few vertices have a large number of degrees.

6. Topology 6. Cellular network. As shown in Figure 3.2(6), nodes are divided into cells.
Connections are frequent between nodes within each cell, and rare between nodes in
different cells. Cellular network consists of several subgraphs which are cells. Within the
cells, vertices are connected to each other closely so that there are more connections.
Between the cells, vertices are rarely connected to each other so that there are less

connections. Subgraphs can be identified through clustering.
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1. Ring Lattice 2. Small World 3. Erdés Random

4. Core Periphery 5. Scale Free 6. Cellular

Figure 3.2. Pure Topology Types [5]

3.4 Data Sampling

Data sampling is the processing of selecting samples from task or problem specific domains
with the objective of estimating the population parameters. Sampling and resampling are two
different concepts. Data sampling focuses on what is the best way to represent the characteristics
of the task or problem with the sample. Resampling focuses on what is the best way to quantify
the uncertainty of the estimate.

In term of methodology, data sampling can be conducted through simple random sampling,
systematic sampling, and stratified sampling. However, no matter which methodology is selected,
we also need to define sample goal, population, selection criteria and sample size. Random
sampling can be performed by selecting samples with a uniform probability from the domain.
Systematic sampling can be performed by selecting samples with a specified pattern, such as

intervals. Stratified sampling works on the population which can be partitioned into subpopulations.
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Stratified sampling is also called stratified purposive sampling. It can ensure the
characteristics of the study sample represent the characteristics of the task or problem specific
population. For example, we conduct a survey in three towns with 1 million, 2 million and 3 million
voters in population. when applying stratified sampling, 100 voters are selected from 1 million in
town A, 200 voters are selected from 2 million in town B, and 300 voters are selected from 3
million in town C, instead of randomly selecting 600 from 6 million. The influence factors can be
any demographic factors, other than town, such as gender, age, education, income, and so on.
However, the selection of the influence factors requires prior knowledge about data collection and
what variables need to be controlled. Moreover, stratified sampling can efficiently reduce sample
errors when the partition can be influenced by domain specific factors.

3.5 Graph Sampling

To obtain a subset of the population, we apply data sampling to select individual members
through probabilistic or non-probabilistic methodologies. The selected subset is transformed from
the original data set, has smaller size, and represents the characteristics of the original data set.
Since sampling is a time-convenient and cost-effective way to prepare, transform and research the
entire population, it is the basis of research design.

Graph sampling is a simple and effective way to transform large graphs into a smaller one.
If we consider the generation algorithm as a family of graphs, the procedure of graph sampling is
to sample one graph from the family. Different from the individual and independent data points,
graphs have both vertices and connections between vertices. When sampling comes into play,
graph sampling needs to handle more variables than individual independent data points.

Graph sampling is needed for several reasons, such as lack of data, hidden population

survey, graph sparsification, reduce test cost, and visualization.
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Lack of data happens when the entire data set is related to large population and randomly
partially selected sample sets cannot be used to represent all the properties of the entire population.
In such a scenario, we can randomly start with a small set of seed vertices and crawl them. The
quantity of the sample set is determined by the number vertices we start with and the number of
hops we crawl. To ensure a good coverage, we can evaluate the sample sets by measuring graph
properties, such as degree centrality, cosine centrality, coefficient centrality and so on.

Hidden populations can be explored through sampling algorithms. Hidden populations
cannot be directly enumerated and sampled in the entire population, for example, drug abusers in
the sociology study. To sample the hidden population, we can define a heuristic procedure, start
with a small set of seed vertices, and expand the sample set along the edges. The quality of the
sample set can be evaluated through both the graph properties and the usefulness of the sample set
for a certain application.

Graph sparsification makes it difficult to load useful information into limited space by
manipulating the entire graph. Graph sparsification is a classical problem. It can happen in vertices,
edges and even both and can be solved by adding constraints on the transformation, such as
preserving all cuts, etc.

To reduce test cost, the most important factor is the number of samples. In biochemical
research, the tests in protein interaction network are very expensive. In clinical study, it is difficult
to collect many patients to participant in research.

For graph visualization, the graphs must fit into the screen and to be readable for human.
Graph sampling can be used to aggregate similar records, summarize the characteristics of the

original graphs, and reduce the number of records in the sample set. After graph sampling, the
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sample set can be easily visualized, show all the preserved graph properties, and show the
preserved characteristics of the original graphs.

Graph sampling methodology needs to satisfy two requirements. First, we need to get
representation subset of vertices. When the valuation of the attribute in the population cannot be
directly used, for example, the drug abusers, the sample set needs to be discovered through
sampling algorithms. Normally, the hidden attributes can be represented with either the
combination of several attributes or the output of the attribute filters. Secondly, the sample graph
needs to preserve certain properties of the original graph, at least, to preserve certain properties
within a certain error margin. After sampling, graph properties can be preserved within a certain
confidence and graph algorithms can be conducted on the sample set.

3.6 Feature Extraction

Feature extraction is the process of reducing dimensions by evaluating the relevance
between variables and targets. After removing non-informative and redundant variables, several
advantages can be achieved in data modeling, for example, computation costs can be lowered,
noise in inputs can be decreased, the contribution of relevant variables can be magnified, and the
performance of the model can be improved.

Although feature representation is problem or domain specific, once all the variables
potentially influencing the change of the target variables are collected, the evaluation and
extraction process can be converted into machine learning problems, such as supervised feature
extraction and unsupervised feature extraction. For supervised feature extraction, the training set
is needed to build subsets of the features. On the other hand, unsupervised feature extraction does
not require the training set. However, both supervised and unsupervised feature extraction can have

the statistical theories behind to perform the hypothesis testing.
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The methodology for feature extraction can be divided into several categories, based on
data types. The data can be both numerical variables and categorical variables. For numerical input
and numerical output, the most common correlation measures are Pearson’s correlation coefficient,
Spearman’s rank coefficient and so on. For numerical input and categorical output, the most
common correlation measures are ANOVA correlation coefficient, Kendall’s rank coefficient, and
so on. For categorical input and numerical output, the process can be defined as reversed
“numerical input and categorical output”. For categorical input and categorical output, the most
common correlation measures are chi-squared test, mutual information and so on.

3.7 Prior Knowledge

In data analysis, prior knowledge in application domains can bring big impacts in each one
of the steps. For problem formulation, domain knowledge can help us form precise and accurate
problem definitions. For data preparation, domain knowledge can efficiently reduce the burden of
data collection and improve the quality of the data sets. For data preprocessing, domain knowledge
can help us have a high-level understanding of the valuation of the variables, the correlation
between the variables, and the noise, which paves the way to the proper data processing
methodology. For data modeling, domain knowledge can be used to evaluate the quality of the
results. For result interpretation, domain knowledge can help understand insights, correctness, and
flaws.

AlphaGo Zero is a perfect example of how beneficial the prior knowledge is. AlphaGo
Zero was trained by Google by combining the rules of Go. AlphaGo Zero defeated both human
players and AlphaGo which was trained with the expertise of expert Go players. In real-world
applications, human, as experts in the field, may have partial but not all prior knowledge, such as

all the rules of Go, so that it is impossible to train a perfect system. However, this example also
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shows that the more prior knowledge we apply to the model training, the more accurate the system
can be.

However, it is difficult to combine prior knowledge to data modeling. When the data set
size is too big to be handled by human, when rules and boundaries are ambiguous, especially when
noise is involved, the question is which prior knowledge is really related and how complete the
prior knowledge is.

3.8 Computation Graphs

Computational graphs are generally used in Neural Networks (NN) to represent
mathematical expressions in network architecture and describe required computation provided by
the network. Computational graphs have two directions: one is forward computation; the other is
backward computation.

As shown in Figure 3.3, computation graphs include nodes and edges in which nodes can
be used to represent variables, and edges can be used to represent data dependencies and function
arguments. From one layer to next layer, operations are the way to combine variables and to build

functions.
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Figure 3.3. Computation Graphs
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In Figure 3.3, we demonstrate how to use a computation graph to compute derivative. On
the bottom layer are the input variables — a, b, ¢. On the middle layer are the functions to compute

dande:d =a+b,e = b — c. On the top layer is the function to compute Y: ¥ = d * e. Based

ad de de ay

) . .. ad

on these functions, we can have the derivative: —=1,—=1,— =1, —= -1, —=¢, and
da dab db dac ad

ay . ay 9y ad 8y 9y ad ay 9y ode

—=d.Since—=—x—=¢ex]l=¢e. —=—x—=¢ex1l=e. —=—x—=d=x(—1) =

de da 9dd Oa >db dd ob > dc de dc ( )

—d. This example simulates the computational unit in NN. The architecture of NN can be the
combination of multiple computation units and even the combination of several sub networks. We
will illustrate different architectures, such as Multi-Layer Perceptron Networks (MLP) [209],
Recurrent Neural Networks (RNN) [87], Convolution Neural Networks (CNN) [144], Long Short
Term Memory (LSTM) [79] and so on.

Computation graphs are adaptable to complex computations by allowing self-circles,
interleave graph generation and evaluation. Forward and backward computation can be built into
one process to repeatedly optimize parameters. The drawbacks are dealing with high dimensional
data through multiple iterations can be time-consuming and untraceable.

3.9 Deep Neural Networks

Deep learning is a branch of machine learning, in which computation graph can be used to
build hierarchical structures, so that deep learning is also called hierarchical learning. There are
several advantages in hierarchical models, for example, the performance of deep learning models
scales with the amount of data they are trained on so that the more data, the better the model; also,
deep learning is capable to automatically promote significant features and suppress insignificant
features. In other words, deep learning normally outperforms traditional machine learning.

Deep learning is generally used in image recognition, text mining, and graph analysis. We

use Figure 3.4 to formulate the computation process in deep learning. As shown in Figure 3.4, for
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vertex 5, given output O, weights w, and bias 8 from the previous layer, we can compute output

Oj, Error Errj, the change of weights wij and the change of bias 6.

Input Output

Figure 3.4. Deep Learning Prototype

Feature selection in deep learning can be included in modeling in several different ways

which can be interpreted as the following.

L
= ! 3.14
T T 1+ el (3.14)

Erry=0;*(1- oj)z Ermgwy; (3.15)
k

Aw;;j =1 % E.;0; (3.16)
wij = wij + Aw;; (3.17)
AB; =L x Err; (3.18)
0; = 6; + Ab; (3.19)
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In which j is the input matrix of j-th layer, Oj is the output matrix of j-th layer, Errj is the
error matrix of j-th layer, w;; is the weight on the i-th vertex, the j-th layer, Aw;; is the change of
weight on the i-th vertex and the j-th layer, 6;; is the bias on the i-th vertex and the j-th layer, A;;
is the change of bias on i-th vertex and the j-th layer.

As a convention, we use x € X, y € Y to represent the input and the output, parameterized
by 8, so that the model can be formulated as

y=F(x,0) (3.20)
Each hidden layer h! can be computed from the previous layer,
ht = f,(h71,0) (3.21)
fi(ht,0) = ac(W'ht + bY)  (3.22)

In which, h! € RHt for the I-th layer, weight matrix W' € RH1*H1 for the I-th layer, bias matrix b’ €

1
1+e~*’

RH1 for the I-th layer. Typical choice for o(x) is the logistic sigmoid function g (x) =

Multi-layer models can be defined as
FX,0) = f(fi-1( (f1(x,01) ..., 0%71),6%) (3.23)

Deep learning has a vast number of variants, differing mostly in the architecture. Moreover,
the weight matrix and bias matrix can be tuned differently.
3.10 Graph Neural Networks

Graph neural networks (GNNs) extend recurrent neural networks, which can process most
of the graphs and can be applied on both graphs and nodes focused problems. Graphs can be posi-
tional and non-positional. The intuitive idea underlying GNN is that nodes in a graph represent

objects or concepts and edges represent their relationships.
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The learning problem is always implemented by the minimization of the quadratic error
function. Several optimization algorithms can be used: almost all of them are based on sub proce-
dure that computes the error gradient w.r.t the weights. The possible optimization methods include,
for instance, gradient descent, scaled conjugate gradient, Levenberg-Marquardt and resilient back-
propagation.

The unfolding tree often contains most of the original information, in theory the pre-pro-
cessing may cause a loss of information, because it may happen that two different graphs and nods
are unfolded to the same tree. On the other hand, a theoretical condition ensuring the lossless
unfolding is described in [33] that the generated tree contains the same information of the original
graph.

3.11 Graph Kernel

In kernel methods, all computations are done via a kernel function which is the inner prod-
uct of two vectors in a feature space [133], [221]. There are several kernel methods. Most of them
are based on the idea of an object that can be decomposed into substructures and a feature vector
that is composed of the counts of the substructures.

3.12 Graph Propagation

One interesting class of neural networks are dynamical systems with three salient proper-
ties [201]. First, they possess very many degrees of freedom, second, their dynamics are nonlinear
and, third, their dynamics are dissipative. Systems with these properties can have complicated
attractor structures and can exhibit computational abilities.

A learning algorithm is a rule or dynamical equation which changes the location of fixed
points to encode information. One way of doing this is to minimize, by gradient descent, some

function of the system parameters. The formalism is illustrated by deriving adaptive equations for
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a recurrent network with first order neurons, a recurrent network with higher order neurons and
finally a recurrent first order associative memory.

Weisfeiler-Lehman [221] can be used to map the original graph to a sequence of graphs,
whose node attributes capture topological and label information to measure the similarity of graphs.
The kernel of WL is a function of two graphs that quantifies their similarity.

3.13 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [79] is a modified edition of Recurrent Neural Network
(RNN) which can be used to continuously go through text sequences and to build a word network.
The network information is stored in memory cells and three adaptive, multiplicative gating units
shared by all cells in the block as shown in Figure 3.5. Also, each memory cell has a recurrent self-
connected linear unit - Constant Error Carousel (CEC), which is the core of the cell and stores the
state of the cell, as shown in Figure 3.5. The Constant Error Carousel (CEC) overcomes a funda-

mental problem in RNNs and can prevent error signals from decaying quickly.
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Figure 3.5. Long Short-Term Memory Prototype [80]
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LSTM can learn the fine distinction between sequences of spikes spaced either 30- or 50-
time steps apart without the help of any short training exemplars. Temporal distance between
events conveys information essential for numerous sequential tasks, such as speech recognition,
motor control and rhythm detection. This makes LSTM a promising approach for tasks that require
the accurate measurement or generation of time intervals.

The cell output, y,, is calculated based on the current cell state s, and four sources of input:
net, is input to the cell itself while net;,, net, and net,, are inputs to the input gates, forget
gates, and output gates. We consider discrete time steps t = 0,1,2,... A single step involves the
update of all units (forward pass) and the computation of error signals for all weights (backward
pass). For each discrete time step, we use a two-phase update scheme that computes as the
following:

1. Phase one:
a. Input gate activation y'™,
b. Forget gate activation y?,
c. Cell input and cell state s,
2. Phase two:
a. The input gate activation y™™ and the forget gate activation y% are computed as

follows
netin;(£) = Ton Winymy™ (¢ = 1) + XL Wiy co5cr(t = 1),y ™M(0) = fin,(netin () (3.24)
net(pj(t) = Ym Wq,jmym(t -1+ Zijzl W(pjc;;sc}z(t —1),y%i(t) = f(pj(netq,j(t)) (3.25)
and the state of memory cell s, is calculated by adding the squashed, gated input of the cell to the
state at the previous time step s.(t — 1)(t > 0), which is multiplied (gated) by the forget gate

activation (sc}: (0) =0)
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netc;g(t) =Y. WC}:mym(t - 1),56}7(1:) = yq’f(t)sc;z(t —-1) + yi”i(t)g(netc;z(t)) (3.26)

b. The output gate activation y°%“ is computed as follows

netoyt; ) =%m Woutjmym(t -+ Zi]=1 Woutjc}’sc}’(t):youtj () = fout;(netoye; ) (3.27)
c. The cell output is computed as follows
Y9 =y @sa () (3.28)

Finally, assuming a layered network topology with a standard input layer, a hidden layer

consisting of memory blocks, and a standard output layer, the equation for the output units k are:
net(t) = Lm Wiemy ™ (), Y*(t) = fi(nety () (3.29)
where m ranges over all units feeding the output units and f;, is the output squashing function.

Generally used LSTM are Bidirectional LSTM which captures both the past and the future
information. The standard LSTM architecture allows strictly sequential information propagation.
Multilayer LSTM which let the higher layers capture longer term dependencies of the input se-
quence. Tree structured LSTM [235] allow for richer network topologies where each LSTM unit
can incorporate information from multiple child units.

Order-insensitive models are insufficient to fully capture the semantics of natural language
due to their inability to account for differences in meaning because of differences in word order or
syntactic structure. Order-sensitive sequential or tree-structured models are a linguistically attrac-
tive option due to their relation to syntactic interpretation of sentence structure.

3.14 Problem Specific Neural Networks
Kernel methods represent the characteristics of the data set which can be based on common

substructures, statistical model, and local transformation of data. [99]
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Simple kernels defined on subparts of given structures can be extended by generic opera-
tions to complex and convolutional kernels. These simple kernels normally have self-similar prop-
erty, such as sequences and graphs.

For sequences, the string kernels can represent a sequence of entities in a particular order.
Long Short-Term Memory (LSTM) with forget gates [79] integrates sequential data into deep
learning prototype by adding memory block into the prototype. The memory block contains one
or more memory cells which have recurrently self-connected linear units, called Constant Error
Carousel (CEC). By recirculating activation and error signals indefinitely, the CEC provides short-
term memory storage for extended time periods. The input, forget, and output gate can be trained
to learn what information to store in the memory, how long to store it, and when to read it out.

For graphs, the graph kernels can represent the networked data with vertices and edges:
vertices represent entities and edges represent relationships. Images can be considered as a special
type of networked data in which vertices are positional. Graph neural network (GNN) is based on
neural network model and can fit graph data into it. In GNN, each node is attached with neighbor-
hood information. Vertex information can be updated based on neighborhood information. For
positional graphs, vertex propagation can be applied to entire graphs. For non-positional graphs,
vertex propagation can be conducted along the neighbors of the vertices.

For kernels based on a statistical model, finding an appropriate kernel function for a par-
ticular problem can be difficult and sometimes may be largely unresolved issues. In graph analysis,
several statistical kernels are already discovered. For example, the distribution of the number of
vertices is Gaussian, the distribution of the number of edges given vertices is exponential, and the

distribution of the number of vertices with degree k follows Poisson distribution. [5]
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For kernels based on local transformation of data, local transformation of data can be used
to highlight specific features. For example, in image processing, different transformation kernels
can be used for blurring, sharpening, embossing, edge detection, and more. This can be done by
doing a convolution between a kernel and an image, which adds each element of the image to its
local neighbors, weighted by the kernel. For graph neural network, graph propagation can be con-
ducted among neighbors and the operation can be specified to result in a particular selection, such

as maximum, minimum, mean, median and customized regression.
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Chapter 4: Graph Space Management and Parallel Planning
4.1 Introduction

In parallel planning, both space management and job scheduling need to be taken care of
before parallel execution. Only limited space can be assigned to all the tasks which need to be
scheduled simultaneously.

Data stream bin packing can be used to estimate both the upper bound and the lower bound
of the space cost and time cost, which can be done through minimizing the number of bins we can
use, and the maximum number of items (or the maximum duration of jobs) in each bin. By using
bin packing to optimize both the space complexity and the task scheduling, we can efficiently
manage data store, schedule data processing, and find a way to split data and to schedule job
execution for the best of both world. This problem can be modelled as vector bin packing, as shown
below,

Minimize 2yi, 4.1)

Subject to Yaixij < Cyj, j € J, (4.2)

Xxij=1,1 €1, (4.3)

xi, yje {0, 1},ie,jel]. (44)
in which, Y= {yj|yj € {0, 1}, j=1, ..., m} is the set of boxes, X = {xi | xi € {0, 1},i=1, ...,n}
is the set of items, aj is the size of the item i. The constraint (4.1) can ensure that the number of
boxes needs to be minimized. The constraint (4.2) can ensure that the total size of items in each
box cannot exceed the capacity of the box. The constraint (4.3) can ensure that one item can only

be in box.
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There are several scenarios for bin packing. One is that we need to put a bunch of stuff into
a knapsack, and we need to put as much stuff into the knapsack as possible. The other one is that
we have a list of boxes and a bunch of items. We need to use the minimum number of boxes to
hold all the items and the number of items in each box are as small as possible. The two scenarios
look different. However, if we look at the two scenarios carefully, we will see both are about the
same problem. In the first scenario, the problem is that each item has different size so that it needs
enough space to hold it. If the space in knapsack is not big enough, the items cannot be put into
the knapsack. In the second scenario, we have a big space and then divide the entire space into
several small boxes, so, the space capacity is not critical anymore. What we need to do is to put
each one of the items into different boxes which is easy to implement. Since this condition can be
satisfied easily, the challenge in the second scenario is different, however, if we tweak the problem
in the second scenario and each item have different sizes instead of the same size, the two scenarios
become comparable. They are about the same problem, in which the size of each item is completely
random in the range from 1 to n. In the second scenario, we need to fill up multiple knapsacks but
the restriction to pick items and to fill up each one of the boxes is the same. In the two scenarios,
there are several characteristics in common. First, the space capacity is limited. Second, we need
to include as much stuff as possible.

The mathematical description of bin packing problem can be simplified as: given a positive
space capacity C, a list of items L= (p1, p2, ..., pn), we need the number of bins m, such that L =
B1 UB2U ... UBm, sum(s(pi) ) < C and m is minimized.

The applications of bin packing problem can be derived into several categories, based on
the variety of terminology and the variety of parameters. Based on terminology, we can interpret

bin packing problem as a storage problem. In computer memory, we have limited space and need
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to load unlimited data for computation. We don’t need to load all the data into memory at once
which is also impossible. But, each time, we need to load as much data as possible and the total
data size cannot exceed the size of the memory and the data size in each block cannot exceed the
size of the block either. There is another example with different terminology. To have a long cable
with a certain length, we need to connect small pieces of cables together: each segment cannot be
longer than C and the total length of the segments cannot be longer than L.

These examples are only related to three parameters: the size of the entire space, the
maximum size of segments in the space, and a list of items. Based on parameters, we can interpret
bin packing problem as truck packing problem, in which we need to consider, the size of the items,
the weight of the items, the maximum size of each unit, the size of the truck. The condition
becomes that the maximum weight in each unit cannot exceed the upper limit w, the maximum
size in each unit cannot exceed the upper limit of s, the total weight in the truck cannot exceed the
upper limit W, the total size of the items cannot exceed the size of the truck S.

Another example is the commercial in station breaks on television. We need to assign
commercials to each station break. The maximum length of commercials cannot exceed the length
of the station break, the minimum income of commercials cannot be less than the budget of the
station break, the maximum cost of the commercials cannot exceed the budget of the station break.
In these examples, we have various parameters, such as total capacity, unit capacity, the maximum
weight in each unit, the maximum capacity in each unit, the minimum capacity in each unit. These
parameters are independent.

When we discuss the upper and lower bounds of the parameters, we can split the problem
into several separate problems according to the different parameters and solve the upper and lower

bounds of each parameter separately.
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Scheduling problem is also a bin packing problem with the execution time as a parameter.
In computer task scheduling, we need to load tasks into memory and execute the tasks. The
conditions are that the maximum size of the tasks in each memory unit cannot exceed the size of
the memory unit, the maximum execution time of each memory unit cannot exceed the execution
limit of each unit, the total size of the units can be minimized. The execution time can be different
for different operations, such as search, read, write, calculation and so on. In data processing, we
have similar applications. We normally take a snapshot of the data which is also called data
window. When the data window moves one slot forward, we update the snapshot. In a snapshot,
we divide the space into several segments, and, in each segment, the data set size cannot exceed
the size of the segment, the execution time in each unit cannot exceed the execution limit of each
unit. The execution can be insertion, deletion, update, data join, search, and so on. This problem
cannot be easily converted to parallel processing. Because the execution time in each unit has
upper and lower bound, when multiple processors are applied, the finishing time can be within a
range and the size of the range are determined by the upper bound and lower bound of the execution
time. If tasks are scheduled very well, parallel computing can be efficient. The challenge is how
to decide the upper bound and lower bound of the execution time in each unit.

Streaming data processing can be modeled as a bin packing problem in which we consider
the size of the data window is the total space capacity. When the data stream is flowing through
the data window, we take a snapshot of the data stream and update the data window we cached.
Sliding window is a general solution for data stream processing. Although sliding window can
provide a snapshot of the data stream, it cannot ensure the data processing result can be concise
and windowed stream can be stored efficiently. The challenge is still how to arrange data items

efficiently so that we can load as many data items into the space as possible and finish data
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processing as quick as possible. The way we handle the data model is that we divide the total space
into equal units and, in each unit, the total data size cannot exceed the size of the unit and the total
execution time cannot exceed the time limit for each unit so that the total time cost of all of the
units is less than the speed of the window movement. For operation execution time cost, we need
to consider several data operations, such as data join, data insertion, data deletion, data search, data
copy and so on.

A good trade-off between the size of the space and the accuracy of the results is required
when dealing with a data stream. For some aggregation operations, the more data we use, the more
accurate the result is, such as maximum, minimum, sum, count and so on. For some operations,
such as data join, select, group by and so on, if and only if the sample set is complete, the query
result can be complete. However, given a certain time interval and memory space, we don't have
random access to the entire data stream, neither store the entire streaming data set to the memory,
we output partial results.

4.2 Space Management

We use I to indicate the set of items. N(I) is the number of items in set I, SIZE(I) the total
size of all items in I, OPT(I) the total number of bins used in an optimal solution for set I.

Packing Properties are listed below. In property 1 and 2, the total number of bins used by
the list of vectors <Ispace, lduration™ 1s greater than the total number of bins used by Ispace, O lduration,
and less than the total number of bins used by (1+¢&)-approximate of Ispace and (1+¢&)-approximate
of lduration. In property 3, the number of items in I, Ispace, and lduration are the same. Because we
basically use the same set of items with different variables: one indicates the space cost of the item
set, the other indicates the time cost of processing the item set. Bin-packing of the vector set is still

NP-Hard. We use greedy algorithm to pack items: we manually pick a starting point and develop
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the approximate solution. For the item set I, space capacity and processing time of each job are
two independent variables so that two sets of items in Ispace and lduration are independent.
1. OPT(Ispace)<OPT(<Ispace, lduration>)<(1+&)OPT(Ispace)
2. OPT(Iduration)<OPT(<Ispace, lduration>)<(1+&)OPT(Iduration)
3. SIZE(I) = SIZE(Ispace) = SIZE(Iduration)
4. Bin-packing of space capacity and duration is NP-Hard.
5. Ispace and lduration are independent.
4.3 Space Boundary Estimation
Theorem 1. Fork € {1,2,...,n}, and a batch I contains <Ii, I, ..., Ik>, the decision
problem k-BP(I, C, k+1) on input (I, C) is NP-Complete.
Proof.
1. Prove L is NP
Given a set L(<Ii, I2, ..., [k>), we can verify in polynomial time that all of the n items are
packed into m bins, so that Bin-packing items L<Ii, I>, ..., [x> )is a NP problem.
2. Select a known NP-Complete language L’
Bin-packing items L’(I) is NP-Complete.
3. Describe an algorithm that computes a function f mapping every instance of L’ to an in-
stance f(x) of L
Bin-packing items L<Ii, Iz, ..., Ix> )< Bin-packing items I, so that we can define a function
f mapping every instance of Bin-packing items L(<Ii, Iz, ..., [ki>) to Bin-packing items L’(I).
4. Prove that the function f satisfies x €L’ if and only if f(x) € L for all x < {0,1}.
If and only if the set Ispace and the set lauration can be packed into L, items in set I1, I2, ..., Ik

can be packed.
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5. Prove that the algorithm computing f runs in polynomial time.

Bin-packing the set Ispace and Iduration can be done in between O(NlogN) and O(N). In other
words, Bin-packing L(<Ii, I, ..., Ik>) can be done in polynomial time. m

Theorem 2. Given a batch I, there is a deterministic algorithm that pack input into bins
satistfying P1 — Ps, with 0 = O(NlogN) for sorted batch [ and ¢ = O(N) for unsorted batch 1.

Proof.

Bin-packing stream I can be done with a complete scan of the list of bins for each one of
the items. The time complexity of the algorithm is O(N) for unsorted array, and O(NlogN) for
sorted batch I with binary search. m

Theorem 3. For any ¢, there is no comparison-based data structure for item matching
which stores O(elogN),0 < € < 1 on any given input stream of length N.

Proof.

The space complexity to search one item is between O (logN) and O(N), logN <s<N. So,
comparison-based data structure for item matching cannot be done in O(elogN),0 < e < 1.m

Theorem 4. Given a batch I, we can derive a set of <Ii, I, ..., Ix> that satisfies P1 — Ps,
and the solution S of <Ii, Iz, ..., li> uses at least O(logN) bins and at most OPT(I) bins. Let
ALG<Ii, I, ..., > be the number of bins that our algorithm outputs. Then, it holds that
O(logN) < ALG(I) < (1 + &)OPT(D)

Proof.

O(logN) < min(OPT(I), OPT(I2 ), ..., OPT(Ix)) < OPT(<Ii, L2, ..., Ix>) < max(OPT(I1),
OPT(I2), ..., OPT(Ix)) < OPT(I). In other words, O(logN) < OPT(<Ii, L2, ..., Ix>) < OPT(I). For
the number of bins our algorithm outputs ALG(I), ALG(I) < OPT(I) < (1 + €)OPT(I), and also,

ALG(I) >OPT(I) > O(logN). In other words, O(logN) < ALG(I) < (1 + &)OPT()m
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Theorem 5. For multi-variable Bin-packing, given a stream I, we can derive a set of <Ii,
I, ..., Ii> and use at least max(SIZE(I1), SIZE(L2), SIZE(I3), ..., SIZE(Ix)) memory and at least
max(OPT(I1), OPT( I2), ..., OPT(Ix)) bins.

Proof.

For each bin occupying memory space m with items <ai, az, ..., aK>, m > maxi<i<k(SIZE(ai))
so that SIZE(<Iy, Iz, ... , In>)=max(SIZE(I1), SIZE(L2), ... , SIZE(Ix)).

For each bin of capacity ¢ with items <ai, az, ..., ak™>, m > maxi<i<k(OPT(ai)) so that
OPT(<Iy, Lo, ..., Im>)=max(OPT(I1), OPT(L2), ..., OPT(Ix)). m

Theorem 6. If ai —an < C in which a; > a2 > ... > an, then, after bin packing, the capacity
of the largest box Cmax and the smallest box Crmin satisfy Cmax — Cmin < C

Proof.

cH oW

Atstep 1, ¢ = max(ai, 0), ¢V max min = A < C

NG i = min(ai, 0).

Suppose at step k, C o _c® < ¢

max min —
At step k+1, C9rD =max(CY) +ai, €19, ¥4 =min(c) +ai, ¢S, ).

cod) — ¢ < ¢l — ¢ Also, since CYP < ¢ ¢l — U < ¢~

max min max min min® “max min max

c®

min’

C(k+1) _ C(k+1) < C(k) _ C(k) < C~ n

In other words, C,, min = Umax min =

Theorem 7. Give a multiset A = {Ii, I, ..., In} of positive integers with total sum S, the
problem of deciding whether there exists a subset I € A of sum % is NP-Complete.
Proof.
1. Prove L is NP. Given a set L(<I1, I, ..., Ix>), we can sum the Euclidian distance between

each vector [a1, az, ..., ax] and the bin ceiling vector [bi, b2, ..., bk] and verify in polynomial

time that all of the n items are packed into m bins, so that Bin-packing items L<Ii, Iz, ...,
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Ii> ) is a NP problem.
2. Select a known NP-Complete L’
Bin-packing problem L’(I) into m bins is NP-Complete.
3. Describe an algorithm that computes a function f mapping every instance of L’ to an in-
stance f(x) of L.
Bin-packing items L<Ii, Iz, ..., > ) < Bin-packing I, so that we can define a function f
mapping every instance of Bin-packing items L(<Ii, Iz, ..., Ii>) to Bin-packing items L’(I).
4. Prove that the function f satisfies x €L’ if and only if f(x) € L for all x < {0,1}*
If and only if the set L( 11, I2, ..., Ik ) can be packed into m bins, each one of the items in
setI1, Iz, ..., Ik can be packed into m bins.
5. Prove that the algorithm computing f runs in polynomial time.
Bin-packing the set I1, I2 , ..., Ik can be done in between O(NlogN) and O(N). In other
words, bin packing L(<I1, Iz, ..., [i>) can be done in polynomial time.m
Theorem 8. Given a multiset A = {I1, L2, ..., In}, OPT(I) < ALG(I) < OPT(I) logOPT(I)
Proof.
O(logN) < min(OPT(I1), OPT(I2 ), ..., OPT(Ik))
<OPT(<Iy, I2, ..., Ir>) <max(OPT(I1), OPT(I2 ), ..., OPT(Ik)) < OPT(I). In other words,
O(logN) < OPT(<Iy, 12, ..., Ir>) < OPT(I).
For the number of bins our algorithm outputs ALG(I), OPT(I) < ALG(I) < (1 + &)OPT(I),
and also, (1 + £)OPT(1) < OPT(I)log(OPT(I)), since 0(OPT(I)) < O(OPT(I)log (OPT(I)),

In other words, OPT(I) < ALG(I) < OPT(I)log (OPT(I) m
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Chapter 5: Graph Sampling

5.1 Introduction

The connectedness nature of the network links distributed entities together and expand the
size of the connections to different forms of infinity from entire population to entire supply chain
and entire work fields. For the purpose of data analysis, it highlights the importance of graph
sampling. We need smaller representatives of the entire network which can fit into main memory
easily and maintains all the graph properties and topology types of the original graphs. We
proposed two methodologies to sample graphs: one is based on the self-similar nature of the graph;
the other is based on the curvature of the graph.

Based on the self-similar nature, graphs can be generated through edges, as shown in [40],
and subgraphs, as shown in [148]. We want to apply these ideas to graph sampling that, given a
graph, instead of dropping subgraphs to data sets we define a recursive process to consistently
select subgraphs from original graph and put them into sample sets. The prime graphs can be used
to select subgraphs and to decompose the original graphs, such as R-MAT and Kronecker graphs.
In comparison with graph generators, sampling process is based on original graphs so that the
change of the graph properties and graph topology types can be evaluated during graph generation.

There are many different types of networks. In daily life, people communicate with each
other through phone calls, emails, what’s app messages, Facebook, Twitter, LinkedIn, and other
social media platforms. In business, because of materials, energy, labor fees, and market sizes,
companies open branches in different locations, and cooperate with other businesses. In science,

cross-edge projects and knowledge sharing can be seen everywhere. Scientists from different areas
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and different organizations build co-authorship, cite each other’s papers, cite each other’s patents,
and also propose new ideas together. In other areas, such as film making, power grid, biology, and
Internet, networks play the central role in activities, such as co-actors, electricity delivery, protein-
protein interactions, and cyber security.

We are interested in extracting valuable patterns, trends, and knowledge from networks.
For example, in citation network, we want to know which research is popular and is highly related
to each other, and what are the trends of the development of the technology. In online news network,
we want to know which topics people care about the most. In co-purchase network, we want to
know how many products are highly related, and what are the trends of the purchase.

Network research has been conducted for many years, especially in the fields of physics
and mathematics. The structure of the network is represented by graphs in data structure, and by
adjacent matrix in mathematics.

For finite graphs and graph morphisms, the connectedness can be preserved during
projection and join operations and be recovered under pullbacks. This property can ensure that
graph merge and graph product can preserve the connectedness of the graph. In comparison with
randomly sampling edges and vertices, it is much easier to maintain the graph properties and graph
topologies by sampling through graph merging.

In Geometry, curvature is the force felt by observers moving along the curve. Curves evolve
in two directions: one is tangent direction; the other is normal direction. Curvature is along the
normal direction which can change the direction of the movement and eventually change the shape
of the curves. During curve evolution, any free shape curves can evolve into circles. We use
curvature model to simulate the dynamic of the community growth and to sample social graphs

based on their topology.
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Influence physically exists among people. We keep learning from the environment and
other people. Human signals can be delivered during activity, communication, and any human
interaction. The strength of the influence can be defined with several properties: mimicry,
consistency, and communication. When we mimic other people’s behaviors, we can be accepted
easily. Most of time, when we deeply understand and accept other people, we can mimic other
people very well. Consistency plays an important role when we try to convert other people with
our opinions, behaviors, and styles. On the other hand, if we keep making changes when we try to
connect to other people to directions, we can never build connections. Over time, people can
understand, remember, and accept what we try to propose, such as opinions, behaviors, and styles.
Communication is the key in relationship. A successful communication can draw people together.
Resistance exists among people as well. People naturally want to keep a distance between each
other for respect and for protection which was researched in sociology about one hundred years
ago. In social network, we only consider the influence among people which strengthen the social
ties and contribute to the construction of the communities.

Social analysis is based on connections and interactions among people to extract significant
patterns and to interpret dynamics and trends of communities. For data entities, we are interested
in significant individuals, significant connections, and significant subgroups. For insights, we are
looking for social trends and social dynamics. The challenge normally comes from the size of the
network which makes it impossible to conduct analysis and from the measurements which may
not properly model the characteristics of the interactions within communities.

The speed of the community growth depends on the influence of the community, which is
also well-known as rich get richer. Based on observations given in [150], the structure of the

community shrinks and densifies over time. The bigger the community, the harder it is to attach to.
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The stronger the influence of the community center, the more members it can attract. With the
increase of the level of the community, the strength of its influence to the bottom level decreases
exponentially. The influence of the community center is strong but cannot be as strong as that of
their adjacent neighbors, which explain some members of the big communities can be separated
from the community and attach to other communities. The influence of the community plays two
roles: one is to draw their members closer and closer, the other one is to tear apart the connections
of the members with other communities. A member can have connections with several different
communities. Overtime, which connections can be kept, depends on the influence of the
communities.

In this dissertation, we discuss related work in section 2, section 3 introduces related theory
for interesting layer construction and network decomposition. In section 4, we discuss the
construction of interesting layers. In section 5, we present experiments on several data sets. We
conclude our work in section 6.

5.2 Related Work
5.2.1 Graph Theories and Operations

For all the graphs which are finite, no loops or multiple edges, the operations we need for
graph sampling include graph reconstruction, graph decomposition, X-graph join, and Kronecker
double covers. These operations have been generally discussed.

Indecomposable and decomposable graphs can be differentiated through conditions and
can convert from one kind to another by removing a few edges [232].

In [107], graph automorphisms, connectedness and partition of joined graphs, especially
X-join graphs, were provided. Graph X-join operation can be performed by replacing each x of X

by graph Yx. Conditions that G(X*Y) consists precisely of those automorphisms induced from
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G(X) can indicate the topology of X-join graphs. In other words, when we apply graph X-join to
symmetric graphs, graph and topology properties of jointed graphs can be verified.

Graph double cover is a graph projection operation given in [Waller, D. A. 1976]. Graph
double can merge both the two vertices which results in merging edges. At this point, this operation
is Similar to Cartesian product of two graphs on the two vertices instead of one. In terms of graph
mapping, the difference between automorphism and double covers is that automorphism is one to
one mapping, and double cover morphism is two to one mapping. Graph double cover can reduce
the graph size, which is a two-fold projection onto G and preserves local structure as well. For
graph sampling, in order to keep local structure, we choose to use graph double cover to repeatedly
fold similar edges and vertices instead of removing them so that topology properties can be kept
during graph sampling.

When graphs are categorical graphs, the local projection of graphs [70] can be performed
though graph product, n-fold cover and other graph operations. Functional operations can perform
graph merging which maps vertices to the same vertices, and edge generation which maps vertices
to different vertices. Especially, X-join graph as a special case of local join is discussed in terms
of graph properties, category graph properties, and the complexity of the X-join graphs.

Graph properties can be changed when graph operations are performed. The change can be
quantitatively measured with additive combinatorics and extreme graph theory [Zhao. Y. 2019].
For example, the maximum number of edges, distinct distances, triangles, and other quantities of
the graphs can be estimated when we conduct graph operations, such as edge and subgraph removal,
and randomized and algebraic construction. We are especially interested in upper bounds and lower
bounds of graph sizes, such as the maximum number of edges, during graph operations to ensure

that the space complexity of the operations is within the upper limit of main memory.
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The development of a purely metric, intrinsic geometry of networks can help the
independent study of curvature flow without the vagaries associated to the embedding in an
ambient space of certain dimension. Given the lack of smoothness of the graph structure, hence
the full force of the differential geometric apparatus, in the network context, each discretization of
curvature captures only an essential aspect of the classical notion, and as such, it can satisfy only
a restricted set of the properties of the classical notion. Therefore, it is desirable to devise different
notions of discrete curvature and explore their specific advantages for various task.

Ricci curvature and Forman curvature are theoretically developed in discrete differential
geometry to provide geometric approach to explore curvature evolution. In [214], Haantjes-Ricci
curvature, Menger-Ricci curvature were provided to formulate the curvature evolution on vertices
and edges. Haantjes curvature has a clear advantage over Menger curvature as it is applicable to
graphs without any assumption on the background geometry. Forman curvature for complex
network [229] was developed in the new way to apply the discretization of the classical Ricci
curvature proposed by R. Forman [74] in large-scale networks.

5.2.2 Graph Generators

Graphs can be generated recursively with individual graph patterns, such as R-MAT [40],
and Kronecker Graphs [148]. This gives rise to the question if we can define a recursive process
to sample graphs by factorizing the graph with prime graphs to find the meaningful portion of the
graphs, meanwhile topology types and graph properties remain.

R-MAT [40] simulates the generation of social networks. Adjacency matrix represents the
social network which can be partitioned into four regions: region a and region d contain separate
groups of nodes that correspond to communities, region b and region c are the cross-links between

region a and region b, that represent cross-link relations, such as friends of separate interests. The
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way it creates the sample set is that it randomly drops edges into different regions. It has simple
structure and can capture the essence of the graphs in several parameters. R-MAT can be used to
generate undirected graphs, directed graphs, and bipartite graphs.

Although R-MAT algorithm divided the adjacency matrix into four regions, when it
recursively looks for the exact location of the connection, it is not quantitatively defined how to
quantitatively find the location of edges in different regions. In the four regions, the distribution
and correlation among edges are related to graph properties and topology properties of the graph.
Based on topology types, in each region, vertices and edges can be divided into two categories:
core and periphery so that, the properties of these vertices and edges follow different distributions.
Given the definition of the four regions, for example, in friendship network, we can arrange friends
of the same or different interests into the four regions, but we must find a way to define which
ones can be arranged to the core and the periphery set, and which ones cannot be determined by
randomly drop edges into different regions.

R-MAT generator [6] can cause combing problems that graph distribution can be
significantly changed at regular geometric intervals. For example, the distribution of certain
degrees can be very different from the distribution of the entire graph. Also, this change happens
in regular basis and is a weakness of the R-MAT generator. R-MAT generator defines the meanings
of the edges. However, it also needs to combine topology types into simulation process.

Like R-MAT, graph sampling can be done by randomly selecting edges. With no regard to
regions, the methodology in [2] randomly select edges from graphs to make a seed set. After edge
selection, connections between vertices in the seed set can be added. When we test this algorithm,
we found that it requires a large seed set to generate large samples. When the seed set is large,

there are only a few additional connections between vertices in the seed set.
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Kronecker product [148] is based on the symmetric structure which can help produce self-
similar graph for any size, obey the main static patterns and the temporal evolution patterns, and
match the combination of properties. For the purpose of graph sampling, the symmetric nature of
the Kronecker graphs can ensure that Kronecker graph pattern can be recursively used to join and
project graphs. Also, this process can be done recursively, and the connectedness of the graphs can
be preserved. Symmetric structure of the Kronecker graph simplifies graph operations. Kronecker
graph structure defines a similar pattern and is also the smallest similar graph pattern which can
be used to define prime graphs as the graph computation unit.

Kronecker product can also be used to manipulate graphs, such as graph factorization and
expansion [26] [27]. Graph factorization is based on user/item incidence matrices and apply the
Kronecker graph to reduce the dimensions of the graphs. Kronecker product can help expand data
sets better than product setting in user base size, item vocabulary size, number of observations and
other sample statistics, and the high order statistical properties are also preserved. One limitation
of Kronecker product is that it creates similar graphs through block-wise low rank matrix product
for graph expansions. But it will not affect graph factorization.

5.2.3 Graph Sampling

Snowball sampling [89] is based on vertices. Sampling process selects first k individual
vertices. After that, each individual vertex reaches out to k more individual vertices. This process
is repeated in s stages. When s = 0, snowball sampling becomes Bernoulli sampling in which we
choose a particular portion from the population. However, it causes the variance of the estimation
of mutual relationships (with individuals in the population are either in the sample or in the first
stage) at least twice as large as the variance of the estimation with Binomial sampling, especially

when the characteristic of the population is unknown. For networked data, multiple stage sampling
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is a better option. For our graph decomposition and reconstruction sampling, we adopt multiple
stage sampling methodology, especially set the order of merging graph from low frequency to
higher up, so that the difference between the sample sets and the original data can be observed.

Graph factorization can be used to reduce the size of the sample set. Sample quality and
data clustering can be two separate steps. We are looking for a better way to systematically pick
significant vertices and edges so that we can shrink the sample set size and reduce the workload
for data clustering. Graph factorization can decompose graphs into smaller ones and the smaller
graphs can be merged through projection if they are similar. When we keep factorizing graphs and
projecting common factors, large networks can be converted into smaller ones with a few
connections and a few vertices, which makes graph computation possible. In terms of data
sampling, when we eliminate some of the data, the topology properties of the graphs need to be
kept the same.

Graph decomposition can be conducted on each individual vertices to form low-
dimensional embeddings [98]. Embeddings have both the vertex and neighborhood information.
Both graph properties and topology types can be carried in neighborhood information. This
methodology can convert global graph into local subgraphs and this process is reversible. In other
words, the information loss is low. When the computation is based on local subgraphs, it requires
low space complexity that makes it possible for most of workstations to perform.

Community Guided Attachment (CGA) model as shown in Figure 5.1: the bigger the
community size, the harder to attach to it. We use a graph model in Figure 5.1 to model these
observations. h(v, w) is the height of the least common ancestor. f(h) is difficulty function of h(v,
w), f(h) = ¢™. fis level independent. C is the difficulty constant 1<c<b. D = log(b, n) = constant.

D is the expected average out-degree of a node.
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Difficulty Function
Vit Vi Vis Via |— Vis f(v: vertex, w: lease common ancestor)
/ / / The probability of w attaches to v:
Vo || V2 Va3 || Vo

Average Degree: D(b: branching factor, n: #nodes)=log(n)

Figure 5.1. A Community Influence Strength for Different Layers.

In each step t, the tree grows from t-1 to t by adding b new leaves to the current leaf as
children leaves. New leaves can be new node of the graph. New nodes can also connect to internal
nodes with probability ¢ W2

CGA model takes into consideration the association between the hierarchical structure and
the probability of attaching new nodes. But the structure between the new node and existing nodes
is not indicated. The difficulty constant C and the branching factor b are not quantitatively
explained.

Forest fire model exhibits both densification and diameter decrease. Nodes with high out
degree can serve as the bridge of the disparate parts in the network. Nodes arrive one at a time,
start with node v and then attach a node w uniformly at random in the graph. Forest fire model
starts burning links from w with forward burning probability p and backward burning ratio r, where
v is the bridge.

Two random numbers x=p/(1-p) and y=rp/(1-rp). Vertex v selects x out-links and y in-links

of w, (W1,W2, ..., W(x+y)). Vertex v forms out-links to wl, w2, ..., w(x+y), starts with w (wi,w, ...,

W(x+y)) and then repeats this process.
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Forest fire model can build a sample set based on the original topology. However, only
local structure of the connections is recorded. The hierarchical structures of the communities are
ignored. Also, the vertices with high degrees can be promoted. The forward burning probability p
and the backward burning ratio r are neither proportional to the total number of edges nor the total
number of nodes. Since we start with vertex V, vertex V is supposed to be the bridge of the two
communities. If vertex w only has a few links, V cannot have many links either. In that case, V
cannot be the bridge of two communities. The addition of vertex V does not show any specialty.
In other words, we cannot oversee through forest fire model how many significant nodes and how
many communities can be generated in the results.

The strength of the forest fire algorithm is that the way forest fire model grows the graph
is based on breadth first search, which can keep the topology of the graph.

The degree distribution of the original set and the sample set needs to belong to the same
family of probability distributions [230]. Based on the degree distribution, the probability that a
node of degree i in the full net connecting to k (k<7) other nodes can be estimated with binomial
distribution. The probability generating function is based on the degree distribution and can be
used to uniformly build subnets.

5.3 Graph Theories

When we conduct graph sampling, graph topology types need to be kept and the graph
properties cannot be changed. For this research, we reduce the sample set size through graph
projection.

We illustrate symbols that are used through this chapter. V(X) is the vertex set of the graph
X, and E(X) is the edge set of the graph X. Let vw be an edge {v,w} and v ~x w be the adjacency

of v and w vertices in graph X.
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Centrality measures are generally used to evaluate how similar the vertices are. However,
some measurements are based on the search of the entire graph, such as, betweenness centrality,
eigenvector centrality, closeness centrality and so on. For computational efficiency, we intend to
use local measurements to evaluate the similarity of the vertices instead of the global
measurements. For this purpose, we derived several local measurements to evaluate the similarity
of the vertices in each Kronecker graph.

Pattern Frequency measure the frequency of similar pairs measures if the similar pairs can

represent the characteristics of the graphs. Let the frequency of the similar pairs X~ Poisson(4)

e~ Axx

x!

P(X = x|A) = x=012.. (5.1)

in which A is the average frequency.

Density within a Hop 1s when we not only care about the frequency of the similar patterns
but also care about the connectivity of the similar patterns. Hop plot studies the size of the
neighborhood around the similar patterns. It is a local measurement which can be computed by

loading a small portion of the network.

_ <k>

D=-— (5.2)
in which <k> is the number of common neighbors of the two end vertices of the Kronecker graphs,
E is the number of edges in the subgraph.

Effective Diameter Distribution measures distances between two vertices in a subgraph.

5= (5.3)

T N+2E

For a complete graph, E is equal to N(N-1) and then § is equal to N/(2N-1). For Ring-
lattice network, E is equal to (1;'), 6 is equal to N/(1+N-1)=1. For other topology types, after

removing isolated vertices, & is between N/(2N-1) and 1.
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Automorphism is that, given a graph x, a permutation a of V(X) is an automorphism of X
if forall u,v € V(X)

Ve EX) o {aw),aWM}eEX) (54

With the composition function, automorphisms of a graph X can form the automorphism
group of X, and it is denoted Aut(X). Aut(X) is a subset of the symmetric group on V(X).

From the definition of graph automorphism, we can derive these facts in automorphism
groups, that, let the components of X be Xi, ..., Xk then

Aut(X) = [, Aut(X) (5.5
Also, the following shows edge-complement X for a graph X, we have
Aut(X) = Aut(X)  (5.6)

A group X acts transitively or is transitive on the permutation set S of X if, for every x, y
€ S, there exists @ € X such that a(x) = y is vertex-transitive. Aut(X) is transitive on V(X), and
is doubly transitive on S if ,for any two ordered pairs of distinct elements (x;, x5), (y1,V2) € S*S,
there exists @ € G such that a(x;) = y; and a(x,) = y,.

A graphon (graph function) is symmetric measurable function W: [0,1]* -> [0,1]

A graph homomorphism from H to G is a map ¢:V(H) — V(G) such that if uv € E(H).

Given graphs H and G, let hom(H, G) be the set of all such homomorphisms and let

hom(H, G) = |hom (H, G)|. Define homomorphism density as

hom (H,G)

t(H,G) = I

(5.7)

It also defines the probability of the homomorphism for a given uniformly random map.
X and Y are two sets of vertices in a graph G and ec(X,Y) denotes the number of edges
between X and Y; that is
ec(X,Y) = [{(X,Y) € (X X Y|xy € E(G)}] (5.8)
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We can use the definition of ec(X,Y) to define the edge density between X and Y to be

eqc(X,)Y)

dG(X! Y) = x|y

(5.9)

Given a graph X, let the collection of its vertex-deleted subgraphs X-v for all veV(X) be
the deck of X, denoted by D(X).

Convergent is that, given graphs H and X, the sequence converges to X if t(H, Xn)
converges to t(H, X) for every graph H.

Existence of Limit is that, for graphs or graphons, every convergent sequence has a limit
graphon.

Equivalence of Convergence is that sequence of graphs or graphons is convergent if and
only if it is a Cauchy sequence with respect to the cut (distance) metric. (A Cauchy sequence with
respect to metric d is a sequence {xi} that satisfies sup,;0d (X, Xp4m) = 0 as n - ).

In general, given graphs X and Y, a graph product is a graph that the vertex set is defined
as V(X)*V(Y), and the edge set is defined by (and only by) the adjacency relations in both X and
Y. The symbol & denotes a generic graph product X&Y for given graphs X and Y.

Kronecker product X; A X, of the graphs X1 and X2, as shown in Figure 5.2, has vertex set
V(X; AX,) =V (X)) AV(X,) with adjacency in X; A X,, given by v,v,~w;w, if and only if
Vy ~y,V, and v, ~, w,. It can be represented as

[{x1, %2} € EQX) Ayy = yalor[xy = x5 A {y1, y2}

€ E(Y)] or [{x1,x,} € E(X) A{y1,¥2} € E(Y)]
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Given graph X, Kronecker double cover X has vertices (v,1) and (v,2) for each vertex v in
X, with adjacency v ~, w, if and only if (v, 1)~,(w, 2) and (v, 2)~,(w, 1) are in X. The equation
for the vertex is in (5.10) and the equation for on edges is in (5.11).

)
el =v (510

w,1)(w,2)
(v,Z)(w,1)} = (v,w) (5.11)

(v.1) (w.1)

(m,2)

(n.2)

(v.2) \

(n,1) (m,1)

(w2)

Figure 5.2. Kronecker Double Cover

5.3.1 Graph Decomposition and Reconstruction

Graphs are self-similar in terms of the structure of the graphs. Graphs can be formed by
keep adding vertices and edges. Prime graphs as subsets of the graphs can be considered as the
basic patterns on the graphs. It can carry more information and more characteristics of the graphs
and can be specific to particular graphs. We use Kronecker graph as the primary graph to factorize
graphs, as shown in Figure 5.3. There are some advantages in choosing Kronecker graph as the
prime graph. For example, it is the smallest symmetric graph with no loops, and the symmetric
nature of the Kronecker graph can make it possible for the graphs to expand and to shrink to any

sizes through Kronecker operations.
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Figure 5.3. Kronecker Graphs

1. Kronecker Graph

1 1 0
1 11
01 1

2. Mathematical Model of
Kronecker Graph

Figure 5.4. Prime Graphs in Social Network

5.3.2 Graph Factorization

Graph decomposition can be based on different prime graphs. For friendship network,
graphs can be decomposed into a set of triangles, as shown in Figure 5.4(a). In each triangle, a pair
of friends connect to each other and some of their friends are common friends for both. When a
circle of three friends is defined, an interesting pattern of similar entities is formed. In the same
way, we can also apply graph decomposition to other graph networks. For citation network, graphs
can be decomposed into a set of Kronecker graphs which consists of one paper with two reference
papers, as shown in Figure 5.4(b). For co-purchase network, graphs can be decomposed into a set
of items, which consists of at least three items, as shown in Figure 5.4(c). To define similar vertices

with neighbors, we can use as many of the common neighbors as possible in order to increase the
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strength of the similarity, if needed. Also, it is easier to compare adjacent neighbors than adjacent
graphs.

To make it possible for graphs to decompose and to reconstruct, it requires that the graphs
to be reconstructible, the homomorphism density can converge as n goes to infinity, and the upper
and lower bounds of the number of the prime graphs needed for graph construction can be
estimated. To satisfy these criterions, we list the following theorems.

Lemma 1. Every graph with at least three vertices is reconstructible [96].

Lemma 2. Every graph on at least four edges is edge-reconstructible [96].

Lemma 1 and Lemma 2 put restrictions on the lower bounds of both the vertices and the
edges for graphs reconstruction. Other than the lower bounds of both the vertices and the edges,
the upper bounds of both the vertices and the edges also need to be determined so that we can
estimate if, after factorization, the size of the subgraphs can be enough to load into main memory.
We prove the upper bounds in Theorem 4. Other than the upper/lower bounds of both edges and
vertices, we are also interested in the number of subgraphs.

Lemma 3. Given a graph G-v in the deck of G, the degree of v and the degrees of the
neighbors of v in G are reconstructible [96].

Lemma 4. Suppose G and F are graphs with |V(F)|<|V(G)|. Then
W@ =IVEDE) = Zveww (7)) (12)
Therefore, (g) is reconstructible. [96]

In other words, given graphs G and F, the total number of subgraphs of G choosing F can
be computed with equation 5.12. After quantitatively evaluating the upper bounds and the lower

bounds of the space complexity, we want to show how to reconstruct subgraphs.
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Let D(G) be the deck of G that can be formed through removing vertices from the graph G.
Meanwhile, when vertices are removed from the graph, connected edges can also be removed, if
any.

In other words, D(G) consists of subgraphs of G. The subgraph of G can also be generated
through graph factorization based on prime graphs. The results of graph factorization can be the
subset of the deck D(G).

Lemma 5. Let G be a graph without isolated vertices. The deck of G D(G) is edge-
reconstructible, that is D(G) is uniquely determined from €D (G). Therefore, if G is reconstructible,
then it is also edge-reconstructible [96].

Based on Lemma 5, we know graph factorization with prime graphs can be conducted
because the deck of G is edge-reconstructible so that the subset of the deck of G is reconstructible
which is the factorization results we are looking for.

Lemma 6. Let A be a n*n symmetric matrix with eigenvalues

M =2 =2 =24, (5.13)
and matrix B can be derived from A by removing i-th row and i-th column from A, and if matrix
B has eigenvalues

U =y 2 2 Uy (5.14)

Then the eigenvalues of B interlace those of A, that is, [96]

A = p = A (5.15)

Based on Lemma 6, after matrix reconstruction, the order of the eigenvalues stay the same.
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As shown in Figure 5.5(a), given a Kronecker graph Gi and the number of Gi n, when n

goes to infinity, the graphon Wan: [0,1]" > [0,1] converges to a function which looks like Figure

5.5(c).
1 1 0 Gl |Gl |0
M = (1 1 1)
0 1 1 G| G| Gi
0 |G| Gi

(a) Adjacent Matrix of G1  (b) Adjacent Matrix of Gi*G1  (c) Graphon of G, as n— o

Figure 5.5. A Kronecker Graph G1 and the Limit of Wan.

5.3.3 Clustering Coefficient
The clustering coefficient of a vertex u on unweighted graphs is the fraction of possible

triangles through that vertex, that exist,

_ 2T (u)
“u = Geg W (degw-1)

(5.16)

in which T(u) is the count of triangles through the vertex u and deg(u) is degree of the vertex u.
For weighted graphs, let clustering coefficient be the geometric average of the edge weights

on subgraphs,

1

“u = Fog @y aegt—1) 2w WurWuwWow) * (5.17)

The edge weights w,,,, are normalized through total edge weights over the maximum
weight in the network w,;, = w,,;,/max (w).

For directed graphs, let clustering coefficient be a fraction of all possible directed triangles
or geometric average of the subgraph edge weights, respectively. This definition can be applied to
both unweighted and weighted directed graphs.
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_ T(w)
“u T Gegtorw) (degtot(u)—1)-2deg™ (u)

(5.18)

where T(u) is the total number of directed triangles through vertex u, deg'(u) is the total of both

in and out degrees of vertex u and deg“ (u) is the reciprocal degree of vertex u.

Figure 5.6. The Tangent T(p) and the Normal N (p) along the Parametric Curve C(p)

5.3.4 Differential Geometry in a Plane

Let the curve C(p) = {x(p), y(p)}, where p€[0,1]. P is the parameter of the curve where for
every value of p between 0 and 1, C(p) is the coordinate of one point along the curve.

Formally, we say the curve C maps the interval I=[0,1] to the Euclidean plane R? and write
C: I-R2

Unit Tangent is that we let T be the first derivative Cp of the curve C with respect to its
parameter p, or the velocity.

The second derivative Cpp of the curve C is the derivative of the velocity according to the

parameter p. The unit tangent is obtained by normalization

T=L=twl (s

IT| 2.2
XptYp

88



Unit Normal is that, given a vector in the plane, the normal to this vector is obtained by
changing the positions of its arguments and inverting the sign of one of them. The unit normal is

obtained by normalization.

N = &) (5.20)

xX3+y5
The inner product between the tangent and the normal is 0.

<TN>=x,2 r o~ 521
e T e, (5-21)

Curvature 1is that the length from 0 to p can be measured by

s() = [P|csB)|dp = [T \/xzﬁ(ﬁ)wzﬁ(ﬁ)dﬁ (522)

The first derivative Cs of the curve C is
Cs = Cpapp = Cp/lel (5.23)

The second derivative Css of the curve C is

Cys = Coop) 5 (5.24)
ICpl?
: : . (CpCpp) . _ de :
in which the quantity k_W is called curvature. K =6, = ol 1/p, where p is called the
14

curvature radius.
5.3.5 Differential Geometry in a Network

Forman curvature for an edge is given in the following formula:

w. wy Wy

— + 2—]) (5.25)

\/Wewevl JWeWevz

F(e) = We(

V1 W‘Uz
+ 2= Y ey~
We We Zevl e,evz e[

in which e is the edge under consideration between vertex vi and vertex va, we is the weight of the
edge e, wvi and wv2 are the weights of vertex vi and vertex vz, evi~e and ev2~e are the set of edges

incident on nodes vi and vz after excluding the edge e.
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Forman curvature on vertices is
FO0) = o Zeme Fle)  (5.26)
in which ev denotes the set of edges on the vertex v and deg(v) is the degree of the vertex v.
Menger-Ricci curvature of an edge is given by
Kuo (e) = Ricy o (e) = ZTe~e K 0(Te) (5.27)
Kyo(T) =¢e(T)*Ky(T) (5.28)
where Te~¢ denotes the triangles connected to the edge e, €(T) € {—1,0,1}, Km(T) can be
Euclidean, spherical, or hyperbolic version and the Menger-Scalar curvature of a vertex is given
by
Kuo (v) = scaly o (v) = Zek~v Ricy o (ex) = X1y Ky o(T) (5.29)
where ex~v and T~v denotes that vertex v connect to all the edges ex and all the triangles T as a
vertex.
Haantjes-Ricci curvature of an edge is given by
Ko (e) = Ricy o (e) = Xre Ky o (1) (5.30)
Ky o () = e(m) * Ky () (5.31)
where p~e denotes the paths connect the vertices anchoring the edge e, e() € {—1,0,1}, Ku(T)
can be Euclidean, spherical, or hyperbolic version and the Menger-Scalar curvature of a vertex is
given by
Kyo(w) = scalyo(v) = X, ~v Ricyo(ex) = Xy Kno(T) (5.32)
where ex~v stands for all the edges ex adjacent to the vertex.
Haantsjes-Ricci curvature for an edge in undirected and unweighted simplicial complexes
can be obtained by counting the triangles T containing an edge e, that is
Ricy(e) = #{T|T > e} (5.33)
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5.4 Graph Sampling through Kronecker Graph Merging

Data sampling is the first step in data analysis. Through data sampling, we can not only
shrink the size of the data set but also improve data quality. Network data set is different from the
data set of independent samples. We need to control the quality of both vertices and edges which
correspond to entities and entity relationship.

At this point, there are more data properties to check in networked data set than in
independent samples. After adding connections between data points, all the data entries are
organized in the form of different topology types, such as ring lattice, small world, Erdos random,
core-periphery, scale free, and cellular network.

Data sampling needs to keep both the distribution of vertices and edges, and the original
topology of the data set, which can be verified through topology properties, such as the distribution
of degrees, degree frequencies, degree ranks, effective diameters, eigenvalues, and other centrality
measures. For a data set with independent samples, we only need to think about the sample
distribution which is equivalent to the distribution of vertices.

The data property we normally use in data sampling is the frequency of the data entries.
Different from the data set with independent samples, network sampling needs to consider both
the frequency and the stability of the samples.

First, selected items must be frequent. For example, normally, random vertices and edges
are not frequent and cannot be used to analyze the characteristics of the network. Secondly, since
connections play an important role in social network, the stability of the connectedness between
vertices is also required in sample selection. On the other hand, random connections are not stable

and cannot be used to represent the characteristics of the network. Other than the local properties
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of vertices and edges, we also care about the global properties of the networks, which is presented
in network topology.

Except Erdos-Renyi random graphs, most of graphs can be divided into two regions based
on the degree distribution: one is core region which has high degree vertices, and the other is
periphery region which has low degree vertices. For the number of vertices, the different between
the two regions is in an order of magnitude so that the vertex hierarchy is from core to periphery
vertices. In social networks, the core region contains people with strong influences and the
periphery region contains people with weak influences.

The idea of top-down sampling is that, if we group core and corresponding periphery into
one region, which is equal to slice the graph from core to periphery, we can have many different
regions each one of which represents the characteristics of the graph. When the sample set is large
enough, a portion of the regions are enough to represent the graph and the rest of the regions can
be ignored.

The idea of the bottom-up sampling is that, because of the huge difference in the number
of vertices in core and periphery, if there are redundant samples, more redundant samples are in
periphery and less redundant samples are in core. It can effectively shrink the sample size if we
remove redundant samples from periphery.

Meanwhile, both top-down and bottom-up sampling remove some vertices and some edges,
which gives rise to a question that, when the regions, no matter they are the entire slice of the
hierarchy or the bottom layers of the periphery, are cut off from the graph, the methodology we
choose to deal with the connectedness on the cut need to be in favor of maintaining the

characteristics of the graph.
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For vertices and edges on the borders of the regions, we define similarity among these
vertices and edges and merge similar vertices and edges. Sampling process can be affected by two
factors: one is the time complexity, and the other is the merging methodology. The time complexity
of the sampling process depends on similarity comparison. Because, given vertices, the number of
edges can go exponential so that it can be impossible to conduct the similarity comparison. The
merging methodology can have big impacts to the topology properties of the graph. We provide
proofs and experiments on complexities of graph merging methodology in the following sections.
5.4.1 Graph Merging

For different topology types, both the meanings and the significance of vertices and edges
are different. We can divide most of graphs into two regions: core region (which can also be called
bridge group for scale free topology, small world topology, and cellular topology), and periphery
region (which can also be called ordinary group for small world topology, scale free topology, and
cellular topology). When we conduct graph sampling through decomposition and reconstruction,

graph properties and topology types need to be maintained. This can be illustrated in the following.

a;(1,1) a,(1,2) a3

P PUW

bi(2,1) by(2,2 bs

Figure 5.7. Graph Merge through Kronecker Double Cover. (a) ai and a2 are similar because
graphs aibibz and azbib2 have two vertices, b1 and bz, in common. Vertices bi and bz are similar
because they appear together in more than one graph (graph aibib2 and graph a:bib2) (b) aib1 and
axb1 are merged. (c) a2bi and axb2 are merged.

93



Algorithm 1. Kronecker Double Cover

Input: G: original Graph, V(Q): vertex set of graph G, E(G): edge set of graph G, T: Cutoff
Threshold, sim: Similarity Measure
Output: G’: sample graph
1. Periphery setP= {(v,e)| v € V(G),e € E(G),degree(v) < T}
2. Core setC=G-P
3. Kronecker set K ={(v,w;,w,)| v € V(P),w; € V(P),w, € V(P),(v,w;) €
E(P), (v,w;) € E(P)}
4. Kronecker similar groups S = {(count, w;, w,)|count =
len([vs]) for ([vs], w1, w,) in K}

5. For sim = S.count.min() to S.count.max()

6. Frequent set F = {(v,wy,w,)|(v,w;,w,) € K, count(wy,w,) = sim}

7. Merged_set M={(v, w)|if ([v,],w;,w;) € F,v replaces[v,], w replaces w; and w;}
8. V={vlveV(M + C)}

9. EE={ele€e E(M + C)}

10. V=V’

11.E=F

Figure 5.8. Kronecker Double Cover Algorithm

As shown in Figure 5.7, Kronecker double cover methodology is used to merge edges. In
Figure 5.7 (a), a1 and a2 have two neighbors b1 and b2 in common so that a; and a2 are similar. bi
and bz are in graphs, aibiaz and azaibz, respectively, and both b1 and b2 in graph aibibz and azbiba,
so that bi and bz are similar. New names (1,1), (1,2), (2,1), and (2,2) can be assigned to ai, az, b,
b2. (1,1) and (1,2) can be merged, and (2,1) and (2,2) can be merged, as shown in Figure 5.7 (¢).

On line 1, Periphery set P can be generated by selecting all the vertices with degrees less
than T and also adding the edges between these vertices. On line 2, Core set C has the vertices and
edges in the graph after excluding Periphery set P. On line 3, Kronecker graphs K can be generated
by selecting two neighbors (w1 and w2) of a vertex v. On line 4, the graph frequencies of the
Kronecker graphs with two neighbors (w1 and w2) in common are counted and the results are saved

to the frequent set S(count, wi, w2). Kronecker similar groups are created based on the frequency
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of the isomorphic graphs. We assume that vertices and edges in periphery region are end vertices
and edges. If they are by chance connected, those connections are considered as random
connections. From line 5 to line 11, we conduct Kronecker double cover operation to merge edges.
On line 6, we select Kronecker graphs with frequency greater than sim and save the results to the
frequent set F. On line 7, Kronecker double cover operation can be performed to generate merge
set M. On line 8 through line 11, we update Kronecker graph, vertex and edge sets with new names
in the merge set M.

According to Theorem 1, vertices with at least two neighbors can be called constructible,
otherwise, they are called residuals. After merging, some vertices become residuals, but they are
not removed from the graph. Although Kronecker double cover sampling can ensure that the
connectedness of the graph is not changed, however, when these vertices become residuals, they
can be less significant.

5.4.2 Complexity of Kronecker Double Cover

Kronecker graphs can be denoted in matrix format. Therefore, Kronecker product and
Kronecker double cover operations can be performed through matrix operations, such as matrix
multiplication and factorization.

Theorem 1. Kronecker graph join has a limited graphon.

Proof. Kronecker graphs can be used to make a sequence of graphs through Kronecker
graph join. Existence of Limit Theorem proves that, if a sequence of graphs or graphons are
convergent, then they have a limited graphon. Therefore, Kronecker graph join can generate the
sequence of graphs with a limited graphon. m

Theorem 2. Any binary graphs can be generated from Kronecker graphs with no self-loops

and multiple edges.
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Proof.

We use the following equations to illustrate how to generate any binary graphs with no
self-loops and multiple edges with Kronecker graphs.

Kronecker graphs can be defined with matrix M

1 10
M = <1 1 1) (5.34)
0 1 1

We want to multiply two Kronecker graphs M*M to generate a binary graph N, as shown below

in 5.35. Figure 5.9 (a) shows that we can factorize graph N to form graph M. m

N=Mx«M
1 1 0 1 1 0
=<1 1 1)*(1 1 1)
0 1 1 0 1 1
1 1 0 1 1 0 0 0 O
1 1 1 1 1 1 0 0 O
0 1 1 0 1 1 0 0 O
1 1 0 1 1 0 1 1 0
= 1 1 1 1 1 1 1 1 1 (5.35)
0 1 1 0 1 1 0 1 1
0 0 O 1 1 0 1 1 0
0 0 O 1 1 1 1 1 1
0 0 O 0 1 1 0 1 1
Nyp 0 Ny M M 1 1
(5 5>=<M M M)=<1 1 1>*M=M*M=M
Nyp o Ny M M 1 1

(a) Mathematical Model of Kronecker Graph Factorization

1 1 0 1 1 0 1 10
(1 1 1)*(1 1 1)*...*(1 1 1)
011 0 1 1 01 1
1 1 0\" 1 10
=<1 1 1) =<1 1 1)
01 1 01 1

(b) Mathematical Model of Kronecker Graph Multiplication

Figure 5.9. Kronecker Graph Join and Factorization
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Theorem 3. During projection, Kronecker graph properties remain.
Proof. a Kronecker graph sequence {G| G=Gi,1=1, ..., n} can be written in mathematical

form, as shown below,

1 10 1 10 1 10 1 10
G = (1 1 1) * <1 1 1) * Lk (1 1 1) = (1 1 1) (5.36)
0 1 1 0 1 1 0 1 1 0 1 1

As shown in Figure 5.9 (b), Kronecker graph multiplication can be used to generate
Kronecker graphs. In other words, for a sequence of Kronecker graphs, Kronecker properties
remain during projection. m

To estimate the space complexity of a sequence of graphs, Homomorphism density can be

useful. After decomposing Kronecker graphs, we can use Theorem 4 to estimate the space
complexity, as shown in Equation 5.38. The complexities of both (k(jz) and |V(G)|? are O(n?),

that is, for Kronecker graphs, the homomorphism density is O(1).
Theorem 4. Homomorphism Density of Kronecker graph
Proof. Let a Kronecker graph Gi1 = ki2 and let hom(ki2, G) denotes the number of

Kronecker graph Gi in G. That is

hom(ky2,G) = (5) * () * (kiz) =2 (kf_z) (5.37)

Let t(ki2, G) denote the homomorphism density. That is

% G
t(kl,ZrG) _ hom(ky,,G) _ 2 (k1,2) (5.38)

BTOILCDINIGE

in which ki 2 is a bipartite graph. This theorem can also be expanded to bipartite graphs kin. ®
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5.5 Graph Sampling through Curvature

When a community just starts growing, we only have the center of the community and
randomly add other members, so that the influence of other members can be ignored, although,
with the growth of the community, all the members gain more influence.

To keep the topology of the community, sampling process is based on edges instead of
vertices. Each significant edge represents both significant vertices and the stable connections
between significant vertices. For the rest of the edges, we have two options. One is we can project
edges to vertices so that, the vertices can be connected if a path exists between them. The other is
we can also remove the rest of the edges.

In short, if there is a path between two vertices, when the edges are removed, the connection
between two vertices is cut and the two vertices become disconnected. Based on graph evolution,
we want to simulate graph densification and shrinking so that vertices merge to other vertices along
edges.

The sampling methodology we proposed can be illustrated in Algorithm 2. In this model,
the influence of the community centers is based on the distance between the community center and
the observed vertices. The influence of the community centers is taken into consideration. The
simplified model is based on two assumptions:

Assumption 1 is that we consider clustering coefficient can indicate how much influence a
vertex has. Clustering coefficient is the ratio of the number of triangles over the number of wedges.
A triangle is the smallest community. The larger the clustering coefficients, the larger portion of
neighbors are in triangles which are communities. The larger portion of the neighbors are in

communities, the stronger influence the vertices have.
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Forman-Ricci curvature can be represented by the total number of neighbors which the
edge can have, and Haantjes-Ricci curvature can be represented by the number of triangles which
the edge can form. Clustering coefficient evaluates not only how many stable connections a vertex
can have, which is the number of triangles, but also the ratio between the number of stable
connections over the total number of wedges, which indicates the stability of the connections, so
that Clustering Coefficient can better represent the influence of the vertices.

Assumption 2 is that, at a particular moment, other than strong connections, whether the

rest of the connections can be merged into strong connections randomly happen.

Algorithm 2.

input: p: the portion of sample set s/total set t, c: curvatures of edges, G: input graph
output: s: sample set
1. Gmoment = {e: edges|ce > t, t is threshold at the moment and t > 0}.
2. Find adjacent edges and add edges to sample set s with probability
f(v,d,)=c(e) *p
3. Ifs.size() <t*p, decrease t and then go to step 1,
else s = Gmoment and continue.
4. Returns.

Figure 5.10. Curvature Algorithm for Community Detection

Community structure is based on the network structure which it embeds. Communities are
subsets of the network. Sampling process needs to create a graph similar to the original network
so that the properties of the sample set need to be similar to the original network.

5.6 Experiments

We use three data sets to prove the hypothesis: DBLP citation network, Amazon co-
purchase network, Email-EU communication network. We further did preprocess on these data
sets. Because we only need to merge edges with periphery vertices from the lowest degree to higher

up, we separate core vertices and periphery vertices into two subsets and work on periphery vertex
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set only. In this way, we need to work on less vertices and edges. Degree distribution is exponential
so that there is a clear gap between core and peripheral regions. We use three thresholds as cutoffs,
such as the mean of the degrees (mean), the mean plus the standard deviation (mean+std), and the
mean plus 2 times standard deviation (meant+2*std). Because degrees follow exponential
distribution, the standard deviation can be greater than the mean so that we do not need to set the
cutoff to the mean minus the standard deviation (mean-std).

For the three sample sets with cutoff equal to mean, mean+std, and mean+2*std, degree
properties and Kronecker graph similarity counts are not related. In each sample set, for the core
vertices group, we keep all the vertices and all the edges between core vertices and between core
vertices and periphery vertices. The periphery vertices and edges between periphery vertices can
be merged. In Figure 5.11, we group Kronecker graph based on similar graph frequency and
visualized the similar graph counts, maximum, minimum and average degree of all the vertices in
the subgroup. For the sample sets with cutoff equal to mean, mean+std, and mean+2std, the number
of similar graph subgraphs are different. The sample set with cutoff mean has a smaller number of
vertices and edges in periphery set so that it has less similar graph subgraphs. The sample set with
cutoff equal to mean+2std has a greater number of vertices and edges in periphery set so that it has
more similar graph subgraphs. In each similar graph subgraph, maximum, minimum and average
degrees are random. Kronecker similarity frequency and vertex degree are two different
measurements. During Kronecker graph merging, the number of edges is reduced but this
operation does not directly change the degree distribution.

Based on graph similarity, we merge Kronecker graphs from low frequency groups to high
frequency groups. This process converges within several iterations. Some high frequency groups

cannot participate in graph merging because, after merging several vertices and edges, all of the
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Kronecker graphs are already separated. We show in Figure 5.12 the number of vertices and edges
in periphery subgraph when we merge similar Kronecker graphs from low frequency groups to
high frequency groups. The number of edges and vertices are converged when graph merging stops.
For sample set with cutoff equal to mean, the Kronecker similar groups are from 2 similar graph
group to 339 similar graph group. The number of edges and vertices converge at 160 similar graph
group. For sample set with cutoff equal to mean+std, the Kronecker similar groups are from 2
similar graph group to 1874 similar graph group. The number of edges and vertices converge at
160 similar graph group. For sample set with cutoft equal to mean+2*std, the Kronecker similar
groups are from 2 similar graph group to 3461 similar graph group. The number of edges and
vertices converge at 550 similar graph group.

During Kronecker graph merging, the neighbors of similar vertices are merged as well.
Since all the similar Kronecker graphs are merged, no two vertices share more than one neighbor,
which means the connections between vertices on periphery region are merged. For topology types,
Erdos-random graphs can have random connections, other than Erdos-random graphs, random
connections play the role of the bridge between core region and periphery region and the
connections between periphery region can be ignored. To maintain the connectedness of the graph,

those connections can be merged.
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Figure 5.11. Degree Property of Different Sample Sets
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Figure 5.12. Edge and Vertex Counts During Merging Low to High Frequency Kronecker Groups
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Figure 5.13. Comparison of Degree Frequency and Degree Rank Measurements between
Original and Sample Sets
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We use Pearson Correlation Coefficient to test the similarity of both degree frequency and
degree rank between original and sample sets. The correlation coefficients for different sample sets
are between 0.85 and 1. For degree frequency, when the cutoff is set to mean and mean+std, the
Pearson correlation coefficient of degree frequency decrease when merging Kronecker groups
from low similarity to high similarity and then converge to around 92%. For degree rank, when
the similarity groups are from 0 to 220, the Pearson correlation coefficient of degree rank is within
97% to 99%. When the cutoff is set to mean and mean+std, the Pearson correlation coefficient is
converged at similar group 220. When the cutoff is set to mean+2*std, the Pearson correlation
coefficient is converged at similarity group 650. When the similarity groups between 220 and 650
are merged, the Pearson correlation coefficient of the degree rank does not have clear trends.

When the cutoff is set to mean, as shown in Figure 5.13(a), the trends of coefficients are
consistent. When the cutoff increases from mean to mean+std and mean+2*std, the change of
coefficients randomly go up and down within the range from 91% to 94%. That is because, when
the cutoff is large, some core vertices are included into periphery set and can be merged during
sampling. When high degree vertices are merged with the periphery vertices, the total number of
degrees may increase. For periphery vertices, when vertices and edges are merged, the degree
frequency and degree rank decrease. In this way, the change of the degree frequency and the degree
rank can be inconsistent.

We use the generated sample sets to detect communities with Lou-vine clustering. We show
the true positive rate in Figure 5.14(a) and false positive rate in Figure 5.14(b). When similarity
thresholds are set between 15 and 30, the TPs are always greater than the ones of other similarity
thresholds and the FPs are always less than the ones of other similarity thresholds. When similarity

thresholds are between 35 and 40, the TPs are less than the ones of other similarity thresholds and
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the FPs are always greater than the ones of other similarity thresholds. In other words, the sample
sets generated with similarity thresholds set between 15 and 30 have better quality and the sample

sets generated with similarity thresholds set between 35 and 40 have worse quality.
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Figure 5.14. Clustering Conductance on Different Email Eu Data Sets

Based on the properties of the topology and the clustering conductance measurement, the
sample sets generated with similarity thresholds set between 20 to 25 are like the original data set
and also have good quality and the sample sets generated with similarity thresholds set between
35 and 40 are different from the original data set and also have bad quality. When the similarity
thresholds are set between 5 and 20, the topology of the sample sets are different the original data
set, but the sample quality increases when the similarity thresholds increase from 5 to 20.

We compare Forman-Ricci curvature, Haantjes-Ricci curvature, and Clustering Coefficient
curvature methodology for graph sampling on Email-Eu data set. Clustering conductance is used
to show the quality of the sample sets. In Table 5.1 are sample set sizes for all data, data after
Forman-Ricci curvature sampling, data after Haantjes-Ricci curvature sampling, data after Clus-

tering Coefficient curvature sampling.
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Table 5.1. Sample Set Sizes

Data set #Edges
All 16706
Forman Sampling 14850
Haantjes Sampling 14183
Coefficient Sampling 14648

In Figure 5.16, we show the clustering results for different sample sets. After Forman-Ricci

curvature sample selection, the conductance of the sample sets is 15.18% greater than that of the

original data. After Haantjes-Ricci curvature sample selection, the conductance of the sample sets

18 7.57% less than that of the original data. After Clustering Coefficient curvature sample selection,

the conductance of the sample sets is 15.035% less than that of the original data. Both Haantjes-

Ricci and Clustering Coefficient curvatures are based triangle countering which provide more sta-

ble connections than the edge counting. That is why Haantjes-Ricci and Clustering Coefficient

curvature sample selection provide better sample quality than Forman-Ricci curvature sample se-

lection methodology.

(a)References to Paper Network.

(b)Paper to References Network

Figure 5.15. Citation Network Sampling
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Figure 5.16. Comparison of Sampling Methodology Based on Clustering Conductance
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We use citation network to test our methodology. In the original data set, we had 27770
nodes and 352324 edges. After sampling, we kept 1308 nodes and 2688 edges. The sample set had
0.5% of the original data. However, community network structures were formed, and all of the
network properties are kept. The citation network was visualized in Figure 5.15.

5.7 Conclusion

We presented two new network sampling methodology: Kronecker graph double cover and
graph curvature.

By using Kronecker graph double cover methodology, graphs can be decomposed and
reconstructed into subgraphs with both graph properties and topology types unchanged. Graph
sampling is conducted through merging similar vertices and edges, in order to keep the
connectedness of the network. Other than Erdos-random graphs that cannot be real-world graphs,
graph topology types normally have hierarchical structures that can be divided into two regions:
core and peripheral regions. To evaluate the performance of Kronecker double cover, we evaluate
several different ways to separate core and periphery regions so that we can generate several
sample sets. We evaluate the degree rank and degree frequency between the original and the sample
sets, and use Pearson correlation coefficient to evaluate how much the sample sets are similar to
the original. We also use Louvain clustering to evaluate the quality of the original and the sample
sets.

For curvature methodology, we implemented Forman-Ricci curvature, Haantjes-Ricci
curvature, and clustering coefficient curvature sampling on Email-Eu data set. Also, we compared
the performance of the three curvature methods by performing data clustering on both sample sets
and original data set. The evaluation of the performance was done by measuring the clustering

conductance. Experimental results showed us that Haantjes-Ricci and Clustering Coefficient
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curvature sample selection can provide better sample quality than Forman-Ricci curvature sample
selection methodology.

Both Kronecker double cover methodology and curvature methodology can maintain the
graph properties and topology types and reduce the sample set sizes as well. After sample selection,

the data quality of the sample sets remains.
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Chapter 6: Entity Detection on Social Graph
6.1 Introduction

Web-scale knowledge bases build world knowledge online for question answering, recom-
mendations, and personal agents. The generally used applications include Wikipedia, Google
Knowledge Vault, Freebase, etc.

However, these knowledge bases are far from complete and are still growing. Named En-
tity Recognition (NER), is one of the important sub-tasks in information retrieval, also called Au-
tomatic Content Extraction (ACE), and has a big impact on the quality of the Natural Language
Processing (NLP). With ACE, new entities can be constantly extracted and added to the knowledge
bases for the purpose of indexing, searching, categorization, etc.

However, the entity representation is a challenge in natural language processing because
of long-range dependencies, multiple interacting features, synonyms, etc. This issue motivates us
to look at conditional probabilities of possible label sequences given observation sequencies. The
conditional probability of the label sequences depends not only on the order of the word sequences
but also the pre-defined arbitrary features. The context of the words can be used to uniquely define
the semantic meanings of the words. The domain knowledge can be embedded in arbitrary features
which can flexibly represent the characteristics of the observations at different levels of granularity.

The two techniques: (1) the context of words and (2) the domain knowledge, together can
effectively improve the accuracy in labelling sequences. This idea has been implemented in ma-
chine learning based NER. Existing NER techniques can be based on rules, dictionaries, and ma-

chine learning.
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Rule-based NER uses, other than part-of-speech (POS) tags, simple dependencies [76],
grammatical features [204] and contextual features [101] to build rules for entity labelling. Rule-
based NER systems can barely cover all the domain knowledge, be hard to expand and have the
risk of overfitting.

Dictionary-based NER can be used to recognize both names and unique concepts. However,
domain terms often have many variants which makes it difficult to have a complete dictionary so
that fuzzy dictionary matching [46] [267] [239] appears to be a better approach when dictionary
lookup is needed. In [46], protein functions were extracted from literature by identifying morpho-
logical, syntactic, and semantic variations. In [267], both bio-entity dictionary and abbreviation
definition algorithm were developed to identify bio-entity names. Dictionary-based NER has two
problems [239]: one is that short names can have a high probability to be predicted wrong, the
other is variants of terms cannot be included in dictionaries. The first one was solved through entity
classification. The second one was solved through string searching algorithm. However, both rule-
based NER and dictionary-based NER are weak in adopting to new terminology.

Machine learning based NER, especially Conditional Random Fields (CRF) model, are
generally used because they allow arbitrary features and use conditional probability instead of term
frequency to estimate the labels of the entities. In [115], bi-directional CRF models were trained
to tag gene names and gene product mentions in scientific text. The symmetric nature of the CRF
was discussed and additional backward parsing makes CRF bi-directional. In [181], a semi-super-
vised integration of completely different classifiers for bio-name recognition was proposed to
cover knowledge in unlabeled data. These technical advantages can ensure machine learning based
NER is expandable to new terminology, flexible to different domain knowledge, and capable to

long-distance dependencies.
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The extraction of domain specific entities has been discussed in several fields, such as
multi-language translation, clinical data analysis, pharmaceutical data analysis, customer profile
analysis, online news analysis, etc. However, for different entities, the challenges in information
extraction can be different. For this research, we focused on the product descriptions analysis in
beverage industry and defined solutions to extract packaging information from product descrip-
tions.

In the beverage industry, packaging information can be found in invoices and be used to
verify transactions, retrieve sales performance, and evaluate market performance of a product.
Although product descriptions are short but not composed of full sentences with proper grammar,
they are written in a natural manner by salespeople and follow personal writing habits. Packing
information provides detailed information about the quantities and units of the package, such as
the number of packs, the number of cases, liquid volume, return or no return bottles, etc. The
information needs to be extracted from the free text and to be put into structured tables for future
query purposes. However, each year, billions of invoices can be created so that automatically
extracting packaging information from invoices would become a big challenge. In this research,
we defined the rich feature set for packaging information extraction by using (Conditional Random
Fields) CRF.

6.2 Related Work

Statistical hidden state sequence model includes HMM (Hidden Markov Model) [147][95],
CMMs (Conditional Markov Model) [75], CRF (Conditional Random Fields) model [141], are
prominent recent approaches to information extraction tasks. These models are Markov-like
models, and all encode the Markov properties: decisions about the state at a particular position in

the sequence can depend only on a small local window. The mean idea is that: consider we have a
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hidden state sequence model which defines a probability distribution over state sequences
conditioned on any given input. With such a model M we should be able to compute the conditional
probability P of any state sequence S given some observed input sequence O.

Although Conditional Random Field model encompasses HMM-like models, the class of
conditional random fields is much more expressive, because it allows arbitrary dependencies on
the observation sequence. A conditional model specifies the probabilities of possible label
sequences given an observation sequence. Furthermore, the conditional probability of the label
sequence can depend on arbitrary, non-independent features of the observation sequence without
forcing the model to account for the distribution of those dependencies. Conditional Random
Fields (CRF) offer several advantages over Hidden Markov Models (HMM), including the ability
to relax strong independence assumptions made in those models and avoiding the label bias
problem. These advantages are derived from computing the conditional probability of an
observation sequence.

Named Entity Recognition (NER) and Relation Extraction (RE) can be done in two stages
[231]. NER was performed by combining a Bi-directional Long Short-Term Memory (Bi-LSTM)
and a Conditional Random Fields (CRF) model. RE was implemented by a Convolutional Neural
Network (CNN). Other than word embeddings, no domain specific knowledge was required to
train the system so that it can be expanded to support different languages and clinical applications.

Rich features have strong impact on Named Entity Recognition (NER). In [1], rich features
were defined in feature-based models (e.g. CRF) to build text mining systems for drug name
recognition, Drug-Drug Interaction (DDI) extraction and DDI classification. The features can be
based on bio-format, token, linguistic, binary, and semantic features. In [170], the feature sets were

defined by Unicode tokenized, English tokenized, Part of Speech (POS) tags, Gazetteers, etc.
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In health care industry, Named Entity Recognition (NER) can be applied and improved for
different applications. In medical and biological documents, new proper nouns can be made
frequently. PROPER [76] was proposed to extract material names, especially unknown words by
using surface clue on the character strings. In [267], both CRF model and edit distance were used
to extract bio-entities. CRF model was used with eight pre-defined features, such as surface word
features, orthographic features, prefix/suffix features, word shape features, compound features,
part of speech features, keyword features, and boundary word features. Edit distance algorithm
was used to calculate the minimum number of operations on individual characters required to
transform one string of symbols into another, so that the similarity of two strings can be measured.
In [239], two issues in dictionary-based approach were solved for bio-entity recognition: one is
false recognition caused by short terms which can be solved through string searching, the other is
low recall due to spelling variations which can be solved by expanding dictionary with a
probabilistic variant generator. In [204], one challenge in gene symbols and names recognition was
that these names and symbols do not appear to follow construction rules. A program was used to
distinguish the words of different natures, lexical, morphological, and semantic in sentences.

Deep learning can also be applied to Named Entity Recognition (NER). In [242], LSTM-
CRF was used to recognize drug names and clinical concepts. The feature sets include
morphological features, semantic features, and the clusters of the embeddings. In [231], drug-drug
interactions from texts were detected by Bi-LSTM+CRF and relation extraction was done by CNN.
6.3 Definitions

The probability of label sequence y given observation sequence x can be written as the

product of the appropriate elements of the n+1 matrices for that pair of sequences:

P(y | x,A) = Z(x)" [T i=1"" Mi(yi-1, yi| x) (6.1)

115



where Z(x)!is a normalization factor and each {Mi(x)|i=1, ..., n+1} is a |y * y | matrix with
elements of the form

Mi(y yil x) = exp(¥i & fi(y, v, X, 1)). (6.2)
where each fi(y, y, x, i) is either a state function sj(y , y, X, 1) or a transition function ti(y , y, X, i ).

Maximum likelihood training determines parameter A values such that the logarithm of

likelihood is maximized. For a CREF, the log-likelihood is given by
L) = X k[log(Z(x) ) + (XA (', v, x) 1. (6.3)
Differentiating the log-likelihood with respect to parameter A;j gives
0 LY O\ = Epcv.x [Fi(Y, X)] - Xk Epovis™, ) [Fi(Y, xM)]. (6.4)
where p’ is the empirical distribution of training data and Ep [.] denotes expectation with respect
to distribution p. Note that setting this derivative to zero yields the maximum entropy model
constraint: the expectation of each feature with respect to the model distribution is equal to the
expected value under the empirical distribution of the training data.

To identify the maximum-likelihood of parameter values, it must be possible to efficiently
compute the expectation of each feature function with respect to the CRF model distribution for
every observation sequence x* in the training data, given by

Epvix®, x) [Fi(Y, xM)] (6.5)
=Y p(Yir=y’, Yi=yx®, 1) Fi(Y, x¥)
= X"y p(Yir =y, Yi= yx®, M) fi(y", y, x¥)

We use a dynamic programming method to calculate p(Yi-i =y’, Yi = yx®, ). Defining

forward and backward vectors a i(x) and Bi(x) respectively by the base cases:
ao(yx) = 1 if y = start; 0 otherwise (6.6)

Bn+1(y[x) = 1 if y = stop; 0 otherwise (6.7)
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and the recurrence relations
ai(x) = A -1(X)TMi(x) (6.8)
Bi(x) = Mi+1 (x) Ai+1(X) (6.9)

The probability of Yi and Yi.1 taking on labels y’ and y given observation sequence x(k)

may be written as
p(Yir =y, Yi=ylx®, 1) = ai1(y’x) Mi(y”,yx) Bi(y[x) / Z(x) (6.10)

Another attractive property is the convexity of the loss function; indeed, CRFs share all the
convexity properties of general maximum entropy models. From the HMM and for each of the
trials trained, the most probable state sequence was calculated using the Viterbi algorithm.

6.4 Semantic Graph Smoothing
In a segment, the labels Yi of the input text Xi are the vertices. The transaction between

the adjacent labels, Yi-1 and Yj, is the edge, Ei.
Y
X

Figure 6.1. Chain-structured CRF Model for Sequences

2 Yi+1

]

i—1

o}

i—1 1 Xi+l
As shown in Figure 6.1, and Figure 6.2, in our problem, Xij (i =1, ..., n and j=1, ..., n) is
the set of texts, also called the observation sequence. Yij (i =1, ..., n and j=1, ..., n) is the set of

labels, also called the label sequence which is the unknown/hidden state variables. For this

application, it includes non-boundaries, and boundaries of the objects.
In a CREF, given the observation sequence X in the graph, the distribution of each discrete

random variable Y can be computed under the context. In input sequences, under the layout that Y

117



is defined as "labels" and X as observations, efficient algorithms can be applied to optimize model
training and conditional distributions learning to inference and determine the probability of

individual labels and the most likely label sequences.
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Figure 6.2. Computation of Local Probability of the Label for a Given Observation

A label sequence consists of several labels for the features. Each feature can be labeled as
different symbols with different probabilities. We select the maximum probability of the feature as
the feature probability. The combination of all the feature probabilities in a sequence is the
probability of the given label sequence. The most probable label sequence was calculated using
the Viterbi algorithm [247] to find the maximum probability of the feature sequence.

In CRF model, we can define artificial features based on context. Many papers [170], [56].
[1], discussed how to define features. There are several different kinds of features, such as, global
features, local features, derived features, domain knowledge, etc. If the common patterns are

defined correctly, CRF models continuously promote features and suppress non-features and
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eventually converge. But, if the common features are defined incorrectly so that CRF cannot
systematically promote some data points and depress some data points, the model will never
converge. In order to identify text segments, we consider gradients as the significant feature.
Because, when there is a feature sequence in the texts, the gradients of their corresponding values
are similar so that these gradients go to the same directions.

CRF models can be considered as Markov random fields models. The initial transition
probability of each word is the same. During each iteration, the state function can average out the
differences among neighbors, and the transition functions update the featured texts. Apparently,
state functions make the local texts similar to each other. This operation is especially useful when
some words are changed because of noise or system errors. When the significance of each word is
computed not only with the value of the word itself but also the values of the adjacent neighbors,
system errors and arbitrary noise can be averaged out. Feature functions are defined with the
features we select so that they can consistently increase the significance of features and suppress
the significance of non-features. As an undirected graphical model, the size of the local graph can
be arbitrary, and the computation is based on the local graph we defined.

Given observations, the probability of label sequences can be computed with 6.11,

F(Y,X) = exp(X;; 4t Vie1, Vi X) + T s, x))  (6.11)
in which t;(y;_, y;, x) is the feature function, sy (;, x) is the state function, 4; and y;, need to be
estimated with the training data. The reason CRF model is useful is because the feature function
can be customized and can be combined with domain knowledge easily. In entity segment

detection, we use gradients as features to define feature functions. For example,

b(x,0) if 9x(i-1),y(1) = Gx(i)y (i) OT
Ixy-1) = Jxy@» O (g 19y
Ix(i-1),y(i-1) = Ix@),y(@)

0 otherwise

t] (yi—l' Yis x) =
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( 1if 'WORD'IN LOCATION
or ACTIVITY
b(x,i) = { or PERSON (6.13)
k 0 otherwise
in which, g,y 1s the value of the gradient at (xi, yi).

The weakness of most of the entity segment detection methodologies is that, to determine
the gradient similarity, a threshold must be selected in the first place and there is no way to
quantitatively compute it. With CRF, the probability of each point is determined by not only the
value of the data point but also its neighbors, which makes the algorithm false tolerant. Some
words may not be picked as features, but, if those words are between two entities, there is a high
probability that they can be defined as part of the entities. In other words, the decision on each data
point is made based on not only the value of the data point, but also, its adjacent neighbors. Also,
local probabilities can be adjusted globally through repeated training.

6.5 Feature Sets

In package descriptions, there are several challenges in packaging information extraction:
ambiguous meanings of the words, inconsistent coding style and partial units. Ambiguous
meanings of the words can happen to either numbers or the units. For example, digital numbers
can be divided into several categories, such as units, vintages, proofs, dates, time, invoice series
number, sales IDs, and company names, in which only units need to be extracted as packaging
information. Acronyms can be divided into several categories, such as units, and brand names in
which only units need to be extracted. Coding styles can be either: (1) quantity followed by units
or (2) units followed by quantity, such as (1) “WHITE CLAW 2 VARIETY 12 P CAN”, (2)

“WHITE CLW 2 VRTY P 12 CAN”. Partial units can occur as only quantities are in product

descriptions but no units, such as “DOS EQUIS AMBER 2/12 LONG NECK”.
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The meanings of units are based on the context, especially previous words and next words.
For example, in “WHITE CLAW 2 VARIETY 12 P CAN”, P means pack. But, in “14 HANDS P
GRIGIO 750 ML”, P means Pinot. P can be the short-hand of proof or the short-hand of pack in
which we want to segment it if it is pack instead of proof, O can be the short-hand of OZ or the
short-hand of proof in which we want to segment it if it is OZ instead of proof, LT can be the short-
hand of Liter or the short-hand of Miller Lite in which we want to segment it if it is Liter instead
of Miller Lite. Words can be synonyms. For example, quart can be written as QUART|QT|QRT|QTS,
and gallon can be written as GA|GL|GAL|GALS|GALLON.

When there is a possibility that certain words may have multiple meanings, we need to
create arbitrary rules to determine whether words are related to packaging, so that we can label
packaging information based on the neighboring words in sentences. In packaging information
extraction, we can define arbitrary rules based on coding formats, lexical formats, and part of
speech tagging.

The feature sets can focus on semantic features of the words. In [170], the feature sets were
defined by Unicode tokenizer, English tokenizer, POS tagger, Gazetteers, and also Gazetteer for
degraded texts. For tokenized Unicode, the text can be split into simple tokens, such as numbers,
punctuations, and words of different types, which distinguish words in upper case and lower case.

2

For English tokenizer, we need to construct abbreviations into one token, such as “ ’30s ”,
“‘Cause ”, “’s 7, “’d”, “ ‘117, “ ve”, and do stemming to words in order to reduce the number
of variations. For Part Of Speech (POS) tagger, we do part of speech tagging for words after the
English text is processed. POS taggers are both domain-dependent and language-dependent. The

tags are Penn TreeBank style and were defined in [56]. The taggers use default lexicon and ruleset

but can be manually modified if necessary. For gazetteers, gazetteer lists are in plain text format
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and contain a set of names, such as city names, organization names, days of the week, etc. An
additional index file is used to manage the lists. The index can be built into a finite state machine
for term matching. For gazetteer for degraded texts, the alternative version of gazetteer lists is not
case sensitive so that, if the parameter of the default gazetteer can be ambiguous because of the
case insensitive, those words can be placed into specific lists.

In [1], the feature sets were defined by token, linguistic and semantic features. Token
features include the original word and the lemma of the current word, and one token before and
after the current word and their lemmas. Linguistic features include POS tags of the current word
and its proceeding and following words; the length of the current, previous, and next words; and
the suffix and prefix of the current word. Binary features can be defined as: (1) the current word
is a number, (2) the current word has a decimal number, (3) the current is a unit, and (4) the current
word is a symbol. Semantic features can be defined as a list of stop words, a list of abbreviations,
a list of domain specific terms and a list of units of measurement. Semantic features can be utilized
in binary functions to show the presence/absence of the word and in feature functions to indicate
the name of the terms.

In beverage industry, packaging information has frequently used patterns. In packaging
segments, we summarized all the patterns used frequently, such as “4/6/12 oz” which means 4
packs, 6 bottles per pack, and 12 oz per bottle, “750 ml”, etc. Other than quantity and units,
separators are also frequently used, such as “/” and “-”. For the purpose of semantic analysis, part
of speech tags plays an important role in identifying meaningful words. In other words, the feature
sets include the list of units, quantities, number formats (such as “decimal”, “digital”, etc.),
separators, and POS tags. The window we define include the previous, current, and next words.

Feature functions directly return words instead of binary values. However, one drawback of the
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feature functions is that, for the beginning and the end of the sentences, there is no previous words
or next words, that cause the words at the beginning and the end of the sentences short of enough
features to tune the probability. We also add the beginning, and the end of the sentences features
to feature sets to help adjust the probability of the words at the beginning and end of the sentences.
6.6 Experiments

In preprocessing, we built a tokenizer to scan and normalize the entire data set. Pre-
formatting processes in the tokenizer split text into uniformed tokens. Upper case and lower case
are not distinguished, and all text is converted into upper case. Special characters are filtered out.
Special patterns can be uniquely formatted into predefined patterns. For example, 1/2,1/2, 1-2, 1
-2,1X2 and 1 X 2, can be converted into 1 /2. The combination of quantities and units are split
into quantities and units. For example, 12A and A12 can be split into 12 A and A 12. The
combination of units can be split into separated units. For example, Z/NR (in which Z means OZ
for ounces, and NR means NO RETURN) can be converted into Z / NR. For abbreviations, we use
a collection of abbreviations to build an abbreviation dictionary and search the dictionary to
convert abbreviations to standardized units.

For tagger, we use a modified version of Natural Language Toolkit (NLTK) tagger, that
produces part-of-speech (POS) tags for words and symbols. The tags used are Penn Treebank style.
However, some tags need to be modified based on the domain knowledge. For example, 4 in
beverage industry is the name of the unit - pack so that its POS tag is NN which means a noun,
instead of DT which means a determiner, such as a, the, etc.

Packaging information can be extracted automatically through Natural Language
Processing (NLP), especially by using Conditional Random Fields (CRF) model. CRF is a local

algorithm that does not use the constraints found in the Hidden Markov Model (HMM), that makes
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it possible to use local information to make predictions. CRF can efficiently segment, and label
sequences based on sentence context and the adjacent words within the sentence, similarly to how

people naturally read and write. In Figure 6.3 is entity extraction process.

Text Feature Entity
CRF

Pre-processing Extraction Post-processing

Figure 6.3. Entity Extraction Process

In our problem, X is the set of words, also called the observation sequences, and Y is the
set of labels, also called the label sequence-the unknown/hidden state variables. In text, each label
yi is a vertex. The transaction between the adjacent labels, yi-1 and yi, is the edge ei. For example,
X can be “Patron Silver TEQ 80 Proof 12 Pack 750 ml”, and Y can be “O O PACK PACK O PACK
PACK PACK PACK”. For this application, it includes ‘O’ (background symbol), and ‘PACK’
(packing features).

In the CRF model, we can define artificial features based on context. Many papers discuss
how to define features. There are several different kinds of features, such as global, local, Part Of
Speech (POS) tags, bigram, acronyms, word shape, previous word, next word, and current word
features.

For packaging information, we want to promote units, quantity, and the segments of the
quantity and units. The arbitrary features we defined are based on the properties of current words
and the properties of previous and next words. In other words, we use words and relationships
between words to define arbitrary features. Some units can be spelled in several different ways

that can cause synonym issues. Those words are not included in the arbitrary feature set. However,

124



during training, the probability of those words can be promoted by their adjacent neighbors. We

list selected features in Table 6.1.

Table 6.1. Usage of Features in Feature Windows in Packaging Information Extraction

Features Usage
Current Previous Next
Units Yes Subset Subset
Separators Yes Yes Yes
Decimals Yes No No
Numbers Yes No No
POS (Part Of Speech) tags Yes Yes Yes
POS tags (first two letters) Yes No No
BOS (Beginning Of Sentence) Yes No No
EOS (End Of Sentence) Yes No No

In a CRF, given the observation sequence X, each discrete random variable Y can be
conditionally computed under the context. In principle, because CRF is a Markov-like model so
that the layout of the graph can be arbitrary; however, for text mining, the vertex yi are constructed
to form a chain with an edge between vertex yi-1 and vertex yi. Given yi as "label" for each
observation xi in the input sequence, we need to compute (1) the conditional distributions between
yi and its neighbors based on feature functions (2) the probability of a yi given xi, and (3) the

maximum probability of the label sequence Y given X.
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A label sequence consists of several labels for the features. Each feature can be labeled as
different symbols with different probabilities. We select the maximum probability of the feature as
the feature probability. The combination of all the feature’s probabilities in a sequence is the
probability of the given label sequence. The most possible sequence was calculated using the
Viterbi algorithm [247], that can be used to find the maximum probability of the feature sequence.
The weakness of this method is that adding feature sets makes the total data set size many times
larger than the original data set. However, because CRF is a local algorithm, only local windows
need to be loaded into memory so that the space cost for each computation is limited.

When we trained the CRF models, the feature set consisted of previous words, next words,
current words, and word format. We used the CRF model to calculate the weights of all the features.
For testing, we used the sum of all the features as the probability of the current word. If the current
word is mislabeled in training, suppose the weight of the current word is 0, but the weights of the
previous word, next word, and word type features may not be 0. In this way, even though some
words are not trained, we can use CRF model to label them with a high probability.

We  use alcohol  product  descriptions from  both  manual input
(PRODUCT_PAYMENT DATA) and master catalog input (PMASTER). Each set has 272 million
records. However, PRODUCT PAYMENT DATA has more random information in it because it
is real-world data. PMASTER data is manually cleaned and usually follows the same format: the
number of packs/number of bottles per pack/volume per bottle, container information, package
information. In terms of feature engineering, it is easier to promote features in PMASTER data. In
terms of training samples, since PRODUCT PAYMENT DATA has more random descriptions, it

requires a larger sample set to cover all the variants.
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As previously mentioned, since the output results will be used to verify invoices, we require

the results have a high accuracy so that the results can play the role of trusted evidence. In order

to meet this requirement, we divide the data into three subsets based on randomness of the input:

1. There is no quantity information in it.

2. There is one number or “PACK/CASE/VOLUME” pattern in the description that is also

followed by units with no ambiguous shorthand.

3. The remaining data will have both multiple quantities and multiple units in it. Quantities

and units are loosely coupled. Some units may be spelled in different ways and some of the

shorthand may have multiple meanings. Some numbers don’t need to be extracted because

they are either part of the product names or unrelated information.

Figure 6.4. Top 30 Features for PACK Class (Packing Information) and O Class (Others)

y=0 top features y=PACK top features
Weight? Feature Weight? Feature
+1.703  word.isUnit(): +2.297  +1word.isdigit():72
+1.588 word.isUnit():A +1.976  word.isSEP()/
+1.388 word.isUnit():IN +1.902 word.isDecimal():1.5
+1.137  word.isdigit():80 +1.830 word.isDecimal():1.75
+1.053 word.isdigit():35 +1.341  word.isdigit():750
+0.894 word.isdigit():40 +1.184  word.isUnit():COUNT
+0.751  +1word.isdigit():750 +1.047  -1word.isUnit():IN
+0.675 word.isUnit(:N +1.006 postag[:2]:CD
+0.651 -1word.isdigit():1 +1.006 postag:CD
+0.349 +1word.isUnit(): +1.005 word.isdigit():24
+0.316  postag[:2]:NN +0.889  word.isdigit():6
+0.295 word.isDecimal(): +0.822 word.isUnit():0Z
+0.275 +1word.isUnit():PET +0.733  +1word.isUnit():ML
+0.240 +1:postag:NN +0.533  word.isUnit():PACK
+0.234 +1word.isSEP(): +0.528 -1word.isdigit():80
+0.231 +1word.isdigit():6 +0.522 -1word.isDecimal():
+0.217  +1:postag:CD +0.498 word.isdigit():1000
+0.217  +1:postag[:2]:CD +0.476  word.isUnit():BOTTLE
+0.209 +1word.isdigit():4 +0.445 word.isUnit():PET
+0.181 -1word.isDecimal():1.5 +0.393  word.isdigit():12
+0.162  +1word.isdigit():12 +0.369  +1word.isSEP():/
+0.160 -1word.isDecimal():1.75 | +0.358 +1word.isUnit():COUNT
+0.130  +1:postag[:2]:JJ +0.353  -1word.isUnit():0Z
+0.130  +1:postag:JJ +0.327 +1word.isUnit(:0Z
+0.129  -1word.isUnit(:NO +0.321  +1word.isSEP():-
+0.117  +1word.isdigit():2 +0.321  +1:postag[:2]:
+0.102  +1word.isUnit(:BOX +0.321  +1:postag::
+0.096 postag:NNP +0.292  word.isdigit():1
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In Figure 6.4, we can see the top features for packing class, such as PACK, OZ, COUNT,
BOTTLE, and some frequently used quantities for packing. In top features for background, we can
see non-units, such as NN, N, A, IN, and proof related quantities. These weights of the features
can efficiently promote the significance of the packing information and suppress the background
information.

We build CRF models for both level 2 and level 3 and test them separately. The testing
process is defined as the following:

1. Step 1. We use a CRF model to make predictions on level 2 data and level 3 packing data.

2. Step 2. We use regular expression to count, for each record, how many numbers are in the
original description and how many numbers are extracted. If there is a difference between
the two counts, we manually verify the record to make sure the quantity and the units are
extracted correctly.

When all the quantities are extracted from the descriptions in both level 2 and level 3 data,
the units are correspondingly extracted correctly.

The quantities that do not get extracted from the level 2 data descriptions are related to
proofs and vintages. In 10,000 records, 1/10,000 is extracted incorrectly. The misclassified results
from descriptions are because they have only one or two numbers, or do not have units, or are too
short. For level 1 data, there are various reasons as to why we receive incorrect results. Some
numbers can be directly excluded from descriptions, such as alcohol proofs, vintages, and most of
the numbers in brand names. When the numbers are frequently used in both packaging information
and background information, those numbers can have higher probability to be labeled as “PACK”.

The frequency of this happening is 1/10,000.
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The model was both trained and evaluated on 150,000 samples with measurements, such
as precision, recall and F1-score. The overall cross-validation accuracy is 0.999931669 and other

measurements can also reach 0.9999 for both “PACK” class and “O” class, as listed in Table 6.2.

Table 6.2. Performance of CRF on 150,000 Samples.

Precision Recall F1-score
O 0.99998932 | 0.99993059 | 0.99995996
PACK 0.99996233 | 0.9999942 | 0.99997827
macro avg 0.99997583 | 0.9999624 | 0.99996911
weighted avg | 0.99997183 | 0.99997183 | 0.99997183

We also compared the performance of our model with a deep learning model, called bi-
directional Long Short-Term Memory (Bi-LSTM). We trained and evaluated Bi-LSTM on
character levels with 150,000 samples. In Figure 6.5, after 50 iterations, the accuracy on testing
set was 0.99, and on validation set was 0.98.

The CRF model with arbitrary features was more accurate than Bi-LSTM model. However,
in experimental results, CRF model might fail at the beginning of the sentences and the end of the
sentences, but Bi-LSTM might fail randomly anywhere in the sentences. In other words, the results
of the CRF model were more meaningful and formed complete sentences, but Bi-LSTM can
randomly break sentences. In terms of machine learning, the results of the CRF model were better
than Bi-LSTM because the weaknesses of the model are more trackable and can be fixed in post-

processing.
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Figure 6.5. Performance of Bi-LSTM Model

6.7 Conclusion

We defined a feature extraction methodology for the CRF model to extract quantity and
units from alcohol product descriptions. Based on the characteristics of the data set, such as short
sentences, various formats, and many unlabeled features, we decided to use CRF to segment text
sequences and to label units and quantities in the text sequences. Quantity and unit features can be
divided into several categories, such as strong, ambiguous, and unrelated features. We design
feature extraction functions to promote quantity- and unit- related features and use those features
to identify ambiguous features based on the context. In experiments, in order to make it possible
to verify each one of the results, we partition the data into three levels of subsets. For each subset,
we focus on specific incorrect results and determine ways to solve them.

By using the feature extraction function defined for the CRF model, whenever quantities

are extracted correctly, in the same records, the units can also be extracted correctly. The quantities
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extracted incorrectly are most likely because there is no unit in the description. In other words, the
description is too short to provide enough strong features to promote the quantities, or most likely,
the quantity is rarely used in other descriptions. This problem can be solved by adding more
training samples, and especially by adding incorrectly labeled data into the sample set. After more
samples are added to the training set, all quantities and units appear equally frequent, and the bias
issue can be fixed.

We conducted experiments to test the performance of the CRF model with the arbitrary
features we defined. We also compared the model with Bi-LSTM deep learning model. The
experimental results showed that the CRF model performed better than Bi-LSTM. Also, in practice,
the weakness of the CRF model can be fixed in post-processing, but the weakness of Bi-LSTM

model was not trackable and cannot be fixed easily.
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Chapter 7: Classification on Social Network
7.1 Introduction

Natural language is the most common ways to present information in different fields, in
different perspectives and in different circumstances so that text becomes a rich source of
information. However, with the development of information technology, the amount of
documentation becomes impossible for human to handle. We need to take advantage of computers
to help automatically understand documentation, group documentation into different categories,
topics, and subjects until the total amount of information is capable for human to handle.

Text mining can be applied to question answering, spam detection, semantic analysis, news
categorization, intent classification, to name a few. For different applications, text data can come
from different sources, such as web pages, emails, chats, social media, tickets, product descriptions,
invoices, insurance claims, user reviews and so on. Due to the unstructured nature, it is challenging
and time-consuming to extract information, especially context-dependent terms from texts.

However, there are lots of open issues and challenges in text mining. For example,
multilingual text documentation requires text refining algorithms to process the multiple languages
and language-independent intermediate data. Also, personalized autonomous mining gives rise to
new applications, such as user profiling, natural language query interpretation, and intelligent
personal assistants. Another challenge is that the integration of domain knowledge could play an
important role in text mining. Domain knowledge can help speed up text processing and increase
the precision of the results. Domain-specific knowledge extraction requires semantic analysis to

extract the association between the objects or concepts in the documentation.
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Typical text classification uses machine learning technology to perform Natural Language
Processing (NLP) and to assign labels or tags to textual units, such as terms, sentences, paragraphs,
documents, and queries. Normally, machine learning-based methodology does classification in two
steps: one is to select interesting features, the other is to feed features into classifiers to make
predictions. Different from traditional machine learning, deep learning trains word embeddings as
the starting point of the classification. This efficiently solves the issues in feature engineering and
makes it possible to apply machine learning for many applications.

In terms of data modeling, text classification can be divided into two categories: one is
based on maximum likelihood, the other is based on minimum energy. For maximum likelihood-
based methodology, we have Naive Bayes, Support Vector Machines (SVM), etc. For energy-based
methodology, we have Hidden Markov Model (HMM), Conditional Random Fields model (CRF),
etc. The difference between the two categories is not only in the technical details but also in how
many language patterns can be modeled. Normally, maximum likelihood-based methodologies
consider words are independent tokens and use Bag of Words (BoW) to build sample sets.
Minimum energy-based methodologies can not only fit models with individual words but also the
associations between words, which make it possible to conduct semantic analysis. Deep learning
is a separate architecture which trains word embeddings and the classification layer is the last layer
in the architecture.

Deep Learning architecture is built upon neural networks. Neural approaches have the
advantage of overcoming the limitations of feature engineering. Word embeddings convert input
texts into an importance vector in which some words have higher significance, and some words
have lower significance. In this way, the words with higher significance can contribute more to

classification process and the words with lower significance can contribute less to classification
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process. It is optional to reduce the number of dimensions but, when the word embeddings are
built, feature engineering is done.

Embedding models have a long history. The earliest embedding model is Latent Semantic
Analysis (LSA) [64]. LSA is based on dimension reduction. The dimensions with larger
Eigenvalues are considered more significant and can be kept. The dimensions with smaller
Eigenvalues are considered less significant and can be removed. The neural network model was
proposed in [28] and was based on a feed-forward neural network.

However, the early embedding models underperform classical models so that they were not
generally used. In 2013, Google proposed word2vec [176][161] models that were trained on
billions of words and can be applied to many NLP tasks. In 2017, a contextual embedding model
based on a 3-layer bidirectional Long Short-Term Memory (LSTM) was trained on 1 billion words,
that performs better than word2vec because it can capture the context and perform semantic
analysis. The same year, Google developed Bidirectional Encoder Representation Transformer
(BERT). BERT consists of 340 parameters, was trained on 3.3 billion words, and is the current
state-of-the-art embedding model. The trend of using pre-trained larger models continues to be
popular.

Although these large deep learning models show impressive performance on various NLP
tasks, there are some challenges in data modeling. For example, it is hard to convert deep learning
models into relational models. Linguistics as the domain knowledge in natural languages cannot
be modeled in deep learning. For example, in entity resolution, we need to extract meaningful
phrases from the text. The meanings of the words are defined by adjacent words and can be
changed in different contexts. Some researchers argue that deep learning models do not really

understand languages and are not robust enough for mission-critical domains.
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Attention mechanism is a big breakthrough in deep learning. It becomes an increasingly
popular concept and a useful tool in developing deep learning models for Natural Language
Processing (NLP). Because it builds a shortcut of the context for input texts and promotes
correlated words in one sentence. The importance vector in the attention layer can be updated
through Markov-like updates and can be customized easily in classification. The prediction can be
made by estimating how strongly the word is correlated with or attends to other words.

We propose a Featured Transformer Methodology (FTM) based on attention mechanism.
It can efficiently add domain knowledge to deep learning architecture. The attention mechanism
performs Markov-like updates. When the model converts, the associations between domain
features and word embeddings can be extracted.

The remainder of the chapter is structured as follows: section 2 presents related work,
section 3 introduces related definitions, section 4 explains the proposed methodology, section 5
evaluates the performance through experiments, and section 6 presents conclusions.

7.2 Related Work
7.2.1 Feed-Forward Networks (FFN)

Word representation can be considered as a multiple dimensional problem which requires
high computation power. Originally, it can be solved by using Naive Bayesian Logarithm of Word
count ratios as feature values for SVM to train a sentiment analysis model [254]. However, this
methodology has been improved by deep learning by using FFN because of the high dimensional
nature of the neural networks.

To compute the continuous vector representation of words, two models were proposed in
[176] and were evaluated with word similarity task: one is bag of words model, the other is skip

n-gram model. The idea is that we removed hidden layer for both of the two models and also
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defined the range for similar words for skip n-gram model. All these changes can efficiently
decrease the computation complexity.

A global log-bilinear regression model was proposed in [176] that combines the advantages
of the two major model families in the literature: global matrix factorization and local context
window methods. The model produces a vector space with meaningful substructure of 75%
accuracy on a recent word analogy task, word similarity task, and entity recognition task.

Deep averaging neural network [166] added more averaging layers and applied dropout to
improve performance.

Product quantization [126] was used to compress word embeddings and to reduce the size
of the classification models. This method can lower the memory usage to two orders of magnitude
and outperforms others by a good margin in memory usage and accuracy.

In [143], paragraph vector representation of the documents was learned to be fixed length
feature representations from variable length pieces of texts, such as sentences, paragraphs, and
documents. This way of constructing word vectors overcomes the weaknesses of Bag of Words
(BoW) for not ignoring orders between words. It can achieve a new state-of-the-art performance
on several text classification and sentiment analysis tasks.

7.2.2 Recurrent Neural Networks (RNN)

RNN based models view text as a sequence of words and are intended to capture word
dependencies and text structures. RNN has issues in exploding and vanishing gradients when
learning long distance correlations, which can be addressed in LSTM by using memory cell to
preserve state over long periods of time. Other than the generally used linear chain structured
LSTM models, a tree structured LSTM model was proposed in [235] which outperforms the linear

chain structured LSTM models in semantic sentence similarity and sentiment classification.
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The difference between the standard LSTM units and the Tree-LSTM units is that gating
vectors and memory cell updates are dependent on the states of possibly many child units.
Additionally, instead of a single forget gate, each Tree-LSTM unit (indexed by j) contains one
forget gate fik for each child k, which allows the Tree-LSTM units to selectively incorporate
information from each child. For example, a Tree-LSTM model can learn to emphasize semantic
heads in a semantic relatedness task, or it can learn to preserve the representation of sentiment-
rich children for sentiment classification. The input word at each node depends on the tree structure
used for the network. In other words, each node in the tree takes the vector corresponding to the
head word as input.

The forget gate controls the extent to which the previous memory cell is forgotten, the input
gate controls how much each unit is updated, and the output gate controls the exposure of the
internal memory state. The hidden state vector in an LSTM unit is therefore a gated, partial view
of the state of the unit’s internal memory cell. Since the value of the gating variables vary for each
vector element, the model can learn to represent information over multiple time scales.

TopicRNN [60] model integrates the merits of RNNs and latent topic models: it captures
local dependencies using an RNN and global dependencies using latent topics. Unlike previous
work on contextual RNN language modeling, this model is learned end-to-end.

LSTM was extended from chain structure to tree structure in which each memory cell can
reflect the history memories of multiple child cells or multiple descendant cells in a recursive
process. It can provide a principled way of considering long-distance interaction over hierarchies.
It outperforms the state-of-the-art recursive model by replacing its composition layers with the S-
LSTM [277] memory blocks and overcoming gradient vanishing in long-distance dependency. S-

LSTM can be considered as a combination of recursive neural networks and recurrent neural
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networks. It wires memory blocks in a partial-order structures instead of in a full-order sequence
as in a chain-structured LSTM.

A machine reading simulator to render sequence-level networks can process text
incremental from left to right and perform shallow reasoning with memory and attention. The
reader extends LSTM architecture by replacing the memory cell with a memory network which
enables LSTM to reason about relation between tokens with a neural attention layer and then
perform non-Markov state updates. Long Short-Term Memory-Network (LSTMN) [45]
outperforms KN5, RNN and LSTM with less than 33, 21, and 7 in perplexity. In sentiment analysis,
LSTMN outperforms Recursive Auto Encoder (RAE) [224], Recursive Neural Tensor Network
(RNTN) [225], Dynamic Convolutional Neural Network (DCNN) [127], Deep Recursive Neural
Networks (DRNN) [189], Convolution Neural Networks-Multichannel (CNN-MC) [Kim, Y. et.al.
2014], Tubelets with Convolutional Neural Networks (T-CNN) [129], Paragraph Vector (PV) [143],
Constituency Tree-LSTM (CT-LSTM) [235], LSTM and 2-layer LSTM with accuracy 86.3% or
I-layer LSTMN and 87.0% for 2-layer LSTMN. In sentence inference, LSTMN deep fusion
outperforms Bag of Words (BoW), LSTM, match LSTM (mLSTM) [255], with 86.3% accuracy.

A general framework jointly trains a feature generator and a linear model in which the
feature generator consists of region embedding + pooling [159]. This framework can find an
efficient way to explore a more sophisticated region embedding method using LSTM. The results
show that embeddings of text regions representing complex concepts are more useful than
embeddings of single words in isolation.

A region embedding method [125] [157] using LSTM can embed text regions of variable
sizes, whereas the region size needs to be fixed in a CNN. Three RNN based architectures were

introduced to model text sequence with multi-task learning. The differences among them are the
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mechanisms of sharing information among the several tasks. Experimental results show that our
models can improve the performances of a group of related tasks by exploring common features.

RNN converts representation of texts into two-dimensional matrix [276]: the time step
dimension and the feature vector dimension. 2D pooling operation over the two dimensions may
sample more meaningful features for sequence modeling tasks.

By using Bi-LSTM, rich context of the whole sentence is leveraged to capture the
contextualized local information in each positional sentence representation. As shown in [251], by
matching with multiple positional sentence representations, it is flexible to aggregate different
important contextualized local information in a sentence to support the matching. Experiments on
different tasks such as question answering, and sentence completion demonstrate the superiority
of our model. The model for semantic matching with multiple positional sentence representations,
MV-LSTM, is defined as a sentence representation at one position. MV-LSTM can capture
important local information by introducing multiple positional sentence representations. By using
Bi-LSTM to generate each positional sentence representation, MV-LSTM has leveraged rich
context to determine the importance of the local information. MV-LSTM performs better than
ARC-I, CNTN, and LSTM-RNN. MV-LSTM obtains 11.1% improvement over LSTM-RNN and
5.6% relative improvement over MultiGranCNN. MV-LSTM works in three steps: (1) positional
sentence representation through Bi-LSTM, (2) interactions between two sentences with cosine
similarity measure, bilinear similarity measure and tensor layer similarity measure, and (3)
interaction aggregation through k-max pooling and multi-layer perception.

7.2.3 Attention Mechanism
In [16], neural machine translation has encoder-decoder structure. It encodes a source

sentence into a fixed-length vector from which a decoder can generate a translation. An automatic
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soft-search for parts of source sentences can solve the fixed-length vector issue and help improve
the translation performance.

In [92], neural Turing machine was proposed to with attentional processes through which
they can be coupled to external memory resources. The combined system allows it to be efficiently
trained with gradient descent.

In [246], conditional probability of an output sequence can be learned through a neural
architecture, named Pointer networks. Neural attention is different from the previous attention
attempts in that it uses attention as a point to select a member of input sequences as the output,
instead of aligning an encoder to a decoder through an importance vector. This methodology can
be used to solve the problem of variable size output dictionaries.

7.2.4 Combination of Domain Knowledge

Text classification can be improved through domain specific knowledge [66], [3], [199],
[78], in perspectives of tokenization [78], transfer learning [206], and domain specific features,
such as the combination of both questions and answers [78], and the sarcasm identification [66].
7.3 Definitions

Attention mechanism works through a vector of importance weights in comparison to
recurrent network architecture. Attention network architecture can discover connections with
longer distances by using the context vector to provide shortcut connections between inputs and
outputs. On the other hand, sequential models can remember a few states instead of the entire
context.

For example, given a word in a sentence as the input, we use the attention vector to estimate
how strongly it is related to or attends to other elements in the sentence/context and then take the

sum of their values weighted by the attention vector as the approximation of the output.
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The context vector consumes three pieces of information: encoder hidden states, decoder
hidden states and alignment between source and target. Given a source sequence X = [X1, X2, ...,

Xn] to generate the target sequence y = [y1, y2, ..., ym], an attention mechanism is defined.

The encoder is a recurrent network, for example, bidirectional Recurrent Neural Network

(RNN) with a forward hidden state Eand a backward one h_l The concatenation of the two can be
used to represent the encoder state so that we can have both the preceding and the following words
in the annotation of one word.
h = [AL,RT]T,i = 1,2, ..., n (7.1)
The decoder network has hidden state s; = f(s;_1, Y¢—1, ;) for the output word at position
t,t=1, 2, ..., m, where the context vector ct is a sum of hidden states of the input sequence,
weighted by alignment scores:

Ct = X1 agih; (7.2)

exp (score(s¢—1,hi))

YT _, exp (score (se-1.hy1))

a.; = align(y,, x;) = (7.3)

The alignment model assigns a score a;; to the pair of input at position i and output at
position t, (yt, Xi), based on how well they match. The set of {a:i} are weights defining how much
of each source hidden state should be considered for each input. In [16], the alignment score a;;
is parameterized by a feed-forward network with a single hidden layer and this network is jointly
trained with other parts of the model. The score function is therefore in the following form, given
that tanh is used as the non-linear activation function:

score(sy, h;) = vItanh (W, [s.; h;]) (7.4)
where both v, and Wa are weight matrices to be learned in the alignment model.
Attention mechanism can be divided into several categories: self-attention [45], global/soft

attention [263], and local/hard attention [165]. Self-attention can be used to relate different

141



positions of the same input sequence. The most popular self-attention architecture is LSTM.
Global/soft attention can align attention weights over all patches, which can be done by using a
window centered around the source position to compute a context vector after aligning position
for the current target word. Local/hard attention can align attention weights one patch of the input
at a time. The alignment of the attention weights is through alignment score functions, such as
content-based attention, additive, location-base, general, dot-product, scaled dot-product score
functions.

Transformer model [244] is built on self-attention mechanism. With a sequence
transduction architecture, it has an encoder-decoder structure which is aligned by attention
mechanism. Attention has three applications in transformer: attention layer for encoder, attention
layer for decoder, and encoder-decoder attention layer for alignment. In other words, transformer
follows neural sequence transduction architecture with both encoder and decoder which have
stacked self-attention and pointwise, fully connected layers.

Attention functions are also called alignment score functions which can be divided into
several categories according to the attention mechanism: content-based attention [92], additive
attention [16], location-based attention [ 164], general attention [164], dot-product attention [164],
and scaled dot-product attention [244]. Transformer in [244] uses scaled dot-product attention
score function.

Attention mechanism simulates hidden Markov-like updates in which each attention point
can be updated by all data points in previous layer. If the attention functions are selected properly,
when the model is converged, long distance dependencies can be obtained.

Content-based attention was inspired by Neural Turing machine. As the first prototype of

modern computers, Turing machine can conduct all kinds of computations with a controller and
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an unlimited tape as memory. Content-based attention focuses on content addressing based on the
similarity between their current values and the values emitted by the controller. Content-based
addressing can be a broad definition than location base addressing. Because contents can contain
location information as well. A controller can take the values of variables and store them anywhere,
retrieve them later and perform computation. In [92], the similarity measure is cosine similarity.
The controller is central to the neural Turing architecture. The controller can be a feedforward
network, a recurrent network and even a LSTM. Content base attention aligns system input to the
controller output through similarity measure. In [92], the similarity measure is cosine similarity.
score(s, h;) = cosinel[s;, h;] (7.5)

Additive attention works by finding the maximum weighted sum of the output. This
mechanism simulates sequence to sequence prediction problems. A typical application of additive
attention is machine translation. Attention layer connects encoder layer and decoder layer on RNN
or LSTM network architecture, in which conditional distribution of the sentence pairs can be
learned and a corresponding translation for a given source sentence can be generated by searching
for the sentence that maximize the conditional probability. Machine translation network
architecture learns, aligns, and translates simultaneously. The attention alignment function is the

weighted sum of the output of the encoder.
score(s;, h;) = Z]T.’;l a;jh; (7.6)

exp(e;;)

a. S —
Y Zzﬁl exp(eix)

(7.7)

e;j = a(si—1, hy) (7.8)
Dot-product attention can also be used to simulate sequence to sequence prediction
problems in which long distance dependency can be preserved as well. A typical application of

dot-product attention is transformer network architecture. Transformer network architecture is
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built upon convolution networks instead of recurrent networks, which can allow for more
significant parallelization and efficiently reduce the total amount of computation. As shown below
in equation (7.9), the transformer in [244] used a scaled dot-product score function which is like

dot-product score function except a scaling factor.

T
S hl

Vn

score(s;, h;) = (7.9)

7.4 Methodology

Transformer simplifies the neural network architecture and reduces computation cost.
However, several open issues have not yet been solved, such as the combination of domain specific
patterns, the combination of high-level associations, and unlabeled terms. Featured Transformer
Methodology (FTM) can add arbitrary features to the network architecture can help solve feature
combination, high level association combination, and unlabeled terms issues.

Bidirectional Encoder Representations from Transformers (BERT) has transformer
network architecture. Attention layer plays the role of aligning encoder and decoder layers.
Encoder and decoder layers are built upon convolution networks instead of recurrent networks to
reduce computation costs. Attention layer can be updated through Markov-like process as shown
in Figure 7.1.

Connections between two sequences are presented in two-dimensional matrix in which
each dimension has a sequence of tokens. The more often the connections appear, the larger the
values are. Attention mechanism is a shortcut of Markov Chain in which attention layer has less
heads than the previous layer. As shown in Figure 7.2, in BERT network architecture, the
importance vector of attention layer can align encoder to decoder and highly affect the final
prediction. If we can properly adjust the importance vector, for example, to promote positive

patterns and suppress negative/random patterns, we can efficiently improve model performance.
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Figure 7.2. BERT Single Sentence Classification Network Architecture [59]
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7.4.1 Model Structure
We propose Featured Transformer Methodology (FTM) to improve the performance of
Transformer networks, especially on BERT network architecture. The idea is that we define
patterns according to the domain knowledge, add patterns as arbitrary features to the input layer
and use arbitrary features to promote the importance of corresponding terms on attention layer.
FTM works on four parts as shown below:

1. Input layer. We add domain specific patterns to the input so that these patterns can be used
to present the high-level features which are defined according to domain knowledge. After
adding these patterns to the input layer, they become part of the input. During model
training, these patterns can be used to improve model performance. During prediction
making, these patterns can contribute to the importance vector, especially for unlabeled
terms that depend on these domain specific patterns to maximize the importance of the
input sequences.

Features can be defined in many ways, such as linguistic features and semantic features.
For example, they can be linguistic features that include part of speech (POS) tags,
suffix/prefix of the words and other. They can also be semantic features, such as stop words,
a list of abbreviations, domain specific terms, and units of measurements.

The selection of the features depends on the characteristics of the data. Additional features
can efficiently fix the unlabeled data issue. However, too many additional features can
cover up the characteristics of the data which may cause overfitting problem.

2. BERT Encoder layer. As shown in Figure 7.3, encoder layer consists of transformer blocks
which include several layers. Each layer has two sub-layers with layer normalization:

multi-head self-attention layer, pointwise and fully connected feed-forward network layer.
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3. BERT Decoder layer. As shown in Figure 7.3, decoder has similar structure as the encoder.

In addition to the two sub-layers, decoder inserts an attention layer to align encoder output

to decoder.

4. Output layer. As shown in Figure 7.4, attention function maps a query and a set of key-

value pairs to output. The outputs are computed as a weighted sum of the values where the

weights are computed by compatibility function of the query with the corresponding keys.
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Figure 7.3. The Transformer Model Architecture. [244]
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7.4.2 Input Layer

Let x be a input sequence of k words, denoted as x1:k = X1, X2, ..., Xk. In BERT, an input
sequence can be either one sequence or a pair of sequences separated by a special token [SEP]. We
use one sequence input as an example to demonstrate how the arbitrary features are added.

In [270], auxiliary sentences are paired with the input to form sentence pairs so that the
original classification can be converted into sentence-pair classification. Since the auxiliary
sentences include higher level common features, the classification performance can be improved
after the conversion.

However, our idea is not to increase the accuracy of pattern matching but to increase the
importance of the feature dimensions so that we directly add arbitrary features to input sequences

to maximize the importance of the positive samples.
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We add unit entity feature ([UL]) and name entity feature ([NL]) after unit entities and
name entities. After training, as shown in Figure 7.5, since unit entities and name entities appear
very often, unit entities and name entities can draw large attention which can eventually promote
the importance of corresponding samples. Especially, when some entities are missing during
modeling training, in prediction process, since entity features of words have been trained and
obtained large attention, the model can still count on name entity features ([NL]) and unit entity

features ([UL]) to promote the importance of the input sequence.

WBC 85 xulL  (4.5-9.8) WBG ¢[NL]» &5» &by ([UL]IY (4.5981)
RBC 45 xuL  (0.5-5.0) RBC [NL] 45 «xuL [UL] (0.5-5.0

MCV 05 xmuL  (0.0-5.0) MCV [NL] 2.5 xuL [UL] (3.0-5.0,

tramadol Allergy Intermediate hives t@madol A€y Interiaedin.te h@es

codeine Allergy Mild NAUSEA (@ozine Al@rgy Milel NAUSFA

(a) Original Text (b) After Adding Features

Figure 7.5. Importance of Attention Mechanism for Input Sequences.

7.4.3 BERT Encoder

After entity features are added to input sequences, for positive samples which have entities,
entity features can gain large importance since they are common features and appear more often.
For example, as shown in Figure 7.5(b), feature [NL] and feature [UL] are highly related, token
WBC/RBC/MCYV and feature [NL] are also highly related, token x/uL and feature [UL] are highly

related.
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7.4.4 BERT Decoder

Entity features can be added to decoder input sequences as well. These features can pick
up the importance trained at encoder when attention layer aligns encoder to query sequences. When
query sequences have entities unlabeled during encoding, the importance of the query can depend
on entity features to get promoted. In other words, entity features can efficiently solve unlabeled
feature issues.

7.4.5 Output Layer

The output layer is a softmax classifier on top of the attention layer. When the importance
vector is tuned very well, the model can converge. During model training, the network architecture
can be tuned through back-propagation and each layer can be tuned through auto regression.

7.5 Experiments

In all healthcare environments, documentation follows the Health Level Seven (HL7)
Standard for electronic data exchange. For example, in the OBX segment, all the elements are
defined to facilitate meeting the laboratory reporting requirements. There are limited number of
fields in the OBX segment to support compliance. For unstructured lab project, we only use
information in the fifth column which is called OBX.5.

In the field OBX.5, from different data sources, formats of text contents are coded in
different ways. The formats can be related to section separations, paragraph separations, sentence
separations, the formats of lists, the formats of interpretations, etc. For the purpose of building a
sample set of OBX laboratory tests for machine learning, we need to convert different formats into
one so that the sample set can be automatically parsed.

In the following, we use several examples to demonstrate how we format sentences,

paragraphs, sections, lists, titles, and subtitles.
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1.

The number of columns: each document can have only one column.

In Hutchinson raw messages, some documents have one column, but some have two
columns separated by five or more spaces. We need to automatically read through the entire
document to separate each line into two parts by using four or more spaces as the line-
separator and then replace the line-separator with appropriate punctuation to convert the
message into Comma Separated Values (csv).

Sections need to be in separate lines.

In all sources, we can see a list of tests, notes, visits, etc. In the lists are separate items
which are independent from each other in contents but can be related to one topic. For the
lab test recognition task, we need to separate the list of tests into separate lines so that each
test can be processed as one sample. In some sources, other than a list of tests, some lists
can also have both similar contents and similar structures, such as a list of medication,
notes, etc. So, for lists, we use a separate line for each item.

For different sources, lists can be defined in different ways. For example, we can use
indents, capital letters, numbers, different symbols as bullet points. We give several
examples to show how the lists are defined.

Bullet points. Lists defined by bullet points can be structured well in raw messages. It may
have sub-lists and several paragraphs in each item. When we parse the lists, we need to
make sure each item and its contents are integrated together.

Numbers. When lists start with numbers, we also need to make sure each item and its
contents are integrated together.

Capital letters. All capital letters. In Pratt Regional Medical Center, each message starts

with the hospital header plus a list of contents which can be considered as separate sections.
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Each section starts with the section topic in all capital letters, as shown in the following. In

this example, there are two sections with the topics - ROS and IMPRESSION, respectively.

ROS:
I have reviewed all the other systems and they are negative.
IMPRESSION:
CARDIAC ARREST DUE TO OTHER UNDERLYING CONDITION - [146.8]
In Kingman Healthcare Center, we can see the list starts with all capital letters followed
by its contents with one space indent, as shown below,
FAMILY HISTORY
No significant family medical history.
ADDITIONAL NOTES

The nursing notes have been reviewed.

Figure 7.6. Example for Capital Letters as Headings

Reviewed Medications

Name: aspirin 81 mg tablet, delayed release Take 1 tablet(s) every day by oral route.
Date: 08/08/19 entered

Source: Aubry Boyce

Name: atorvastatin 80 mg tablet Take 1 tablet(s) every day by oral route for 90 days.
Date: 11/04/22 prescribed

Source: Georges C. Elhomsy, MD

Figure 7.7. Example for First Letter of Word Upper as Headings
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6. Text plus colon. This format is generally used in raw messages. Sometimes, the text can be
all capital letters followed by colons, sometimes, the text can be in lower case. However,
whenever we see text followed by colons, we know that is the start of the list. Several
examples are listed below.

As shown in figure 7.7, the first letter of word is upper case followed by colon. In
WICHITA Diabetes, the list starts with words, each followed by colons in which the first
letter of each word is uppercase, and the other letters are lowercase.

As shown in figure 7.8, multiple levels. In Salina Regional Health Center, we have several
levels of lists indicated by indents, as shown below. We convert multiple levels into one

level because the items are independent from each other.

Ist interpretation:
View: Portable
Interpretation/Wet Read by: Wet read ED physician

NL X-Ray Chest Findings: No infiltrate

Figure 7.8. Example for Multiple Level Headings

Active Orders: Active Orders

Peripheral IV NOW Care 10/14/20 22:34 Active

IV 4.8 units/hr

Figure 7.9. Example for Indents as Heading Indicators

7. Indents. Normally, indents and line spaces are used together to represent a list of items. For
example, in Salina Regional Health Center, a list is defined as shown below. In this list, we

can see sentence separators, such as comma, but, because there is a line space between two
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items, we can then consider these items form a list.

8. Date/Time
In Pratt Regional Medical Center, the lists can also start with a list of date/time. For
example, in the following example, “VITALS HISTORY:” is defined as a list starting with
date/time followed by test names, quantities and units. After parsing, the structure of the
contents and the structures of the tests are similar, which can be useful in parameter tuning

during model training, as shown in Figure 7.10.

VITALS HISTORY:
06/07/2022 17:33 Weight:63.6 kg(140 1b) Actual; Height:68 in(173 cm) BMI:21.25
06/07/2022 17:33 BP: 113/82 Arm (Automatic) MAP: 92.33 mmHG, Temp: 97.7 F
Axillary, HR: 114 , Cardiac Rhythm: ST, RR: 42, O2 Sat: 98% 15 L/min via ETT - Bagged,
Pain: 0/10 ( Number scale ) 17:40 BP: 121/83 Arm (Automatic) MAP: 95.67 mmHG, HR:
109 , Cardiac Rhythm: ST, RR: 36, O2 Sat: 100% via ETT - Ventilator
06/07/2022 17:45 GLASGOW COMA SCALE: E1VIMI1 = GCS 3

06/8/2022 3:51 AM

Figure 7.10. Example for Date Time as Headings

9. Fields need to be separated by four or more spaces
In laboratory tests, test results have a pre-defined structure which has several fields, such
as test names, quantities, units, references, flags, etc. This structure can be used to define
common patterns in data modeling to help extract lab sections. This structure normally
forms an embedded table with several columns separated by multiple spaces. When the test

results are not defined as embedded tables in the raw message, we need to re-arrange the
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test results to put them into this table structure so that each line can be one test, each column
is an attribute, columns are separated by multiple spaces (four or more spaces). An example

is given in Figure 7.11 to show before and after the structure is formed.

Before conversion,
Test

Result

Flag

Units

(Reference)

RBC

4.67

M/uL

(4.50 - 6.20)

After conversion,
Test Result Flag Units (Reference)

RBC 4.67 M/uL  (4.50 - 6.20)

Figure 7.11. Example for Line Spaces as Section Separators

10. Each sentence cannot be in two separate lines.
Sentences are the interpretations of the topic. For each topic, we put all the sentences under
each topic into one line so that they can be in the same sample. Several indicators can be

used to show us that some texts are interpretations, as shown in Figure 7.12.
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Before conversion:

FINDINGS: Median sternotomy. Borderline cardiomegaly. Increased vascular
prominence and bronchial wall thickening.

After conversion:

FINDINGS: Median sternotomy. Borderline cardiomegaly. Increased vascular

prominence and bronchial wall thickening.

Figure 7.12. Example for Connecting Sentences

Dashes after the topic. in Figure 7.13, in Salina Regional Health Center, we join the lines,

Before conversion:
Free Text MDM Notes -
Patient continues to have severe DKA without any improvement in pH on arrival

based on venous blood gas. Multiple attempts at peripheral IVs by staff, including
ultrasound guidance were unsuccessful.

After conversion:

Free Text MDM Notes - Patient continues to have severe DKA without any
improvement in pH on arrival based on venous blood gas. Multiple attempts at peripheral [Vs

by staff, including ultrasound guidance were unsuccessful.

Figure 7.13. Example for Dashes as Heading Indicators

11. Spaces at the beginning and the end of the sections need to be removed. After we code the
raw message with the format we defined, each line can be one sample. The useful

information for this project is the text so that we remove spaces before and after the text.
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Before conversion:
Patient continues to have severe DKA without any improvement in pH on arrival
based on venous blood gas.
After conversion:
Patient continues to have severe DKA without any improvement in pH on arrival based on

venous blood gas.

Figure 7.14. Example for Removing Spaces at the Beginning and End of the Sections

Other than the format for the document structure, special symbols also need to be cleaned
up in preprocessing.

System generated codes need to be removed, such as "X0D\\X0A\',"\R\\R\'.

Special symbols for HL7 format need to be replaced by spaces, such as '"*','~','&".

Special separators, such as '--',"*Breakpoint','"++++', need to be removed. If they are line
separators, replace those with line spaces. If they are word separators, replace those with spaces.

Special formats for HL7 need to be removed. For example, for
'20220612201600"YYYYMMDDHHMM!, only keep '20220612201600'.

For sample selection, since we want to extract all lab tests (which are about 522 tests) from
raw messages, we want to include as many lab tests as possible in the sample set. First, we built
lab test dictionary that has all the terms we can extract from the raw messages. Sample selection
stage can collect samples for each of the terms for model training. Each term needs between three
to five samples to properly define features related to the term. If a term has less than three samples,
the term cannot be accurately extracted by the trained model. If a term has more than five samples,

the sample set is over prepared.
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Term frequency can be used to represent how many samples each term has. Sample

frequency is defined as how many terms have a certain number of samples. Samples are collected

in two rounds. We combine the two rounds together for sample selection purposes. As shown below,

we use Figures 7.15 to 7.18 to present the distribution of term frequency and sample frequency.

Round 1 + Round 2 Sample Selection - Term Frequency Summary
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Figure 7.15. Term Frequency Pie Chart for Lab Test Extraction Project

158



Round 1 + Round 2 Sample Selection - Term Frequency Summary
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Figure 7.16. Term Frequency Line Chart for Lab Test Extraction Project

Round 1 + Round 2 Sample Selection - Sample Frequency Summary
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Figure 7.17. Sample Frequency Pie Chart for Lab Test Extraction Project
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Round 1 + Round 2 Sample Selection - Sample Frequency Summary
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Figure 7.18. Sample Frequency Line Chart for Lab Test Extraction Project

The model was tested with 2871 samples in which 788 samples were labeled as 'lab' and
2083 samples were labeled as 'doc'. As shown in the following table, the experimental results
showed that the performance measurements, such as precision, recall, and F1-score, indicated that
the model can be used to identify lab tests with 100% in all measurements. In comparison with the
Conditional Random Fields (CRF) model, Bi-directional Encoder Representation Transformer
(BERT), Naive Bayes Support Vector Machine (NBSVM), Logistic Regression (LOGREG),
FASTTEXT, Standard Gated Recurrent Units (STANDARD GRU), Bi-directional Gated
Recurrent Units (BiGRU), Featured Transformer Methodology (FTM) can perform much better
than CRF, BERT, NBSVM, LOGREG, FASTTEXT, STANDARD GRU, and BiGRU in all

measurements.
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Table 7.1. Performance of BERT-Featured on 2871 Samples

Precision Recall F1-score
0 1 1 1
LAB 1 1 1
Accuracy 1
Macro Avg 1 1 1
Weighted Avg 1 1 1
Table 7.2. Performance of CRF on 2871 Samples
Precision Recall Fl-score
O 0.927 0.989 0.957
LAB 0.959 0.764 0.85
Accuracy 0.933
Macro Avg 0.943 0.876 0.904
Weighted Avg 0.935 0.933 0.931
Table 7.3. Performance of BERT on 2871 Samples
Precision Recall F1-score
0 0.99 0.99 0.99
LAB 0.99 0.99 0.99
Accuracy 0.99
Macro Avg 0.99 0.99 0.99
Weighted Avg 0.99 0.99 0.99
Table 7.4. Performance of NBSVM on 2871 Samples
Precision Recall F1-score
O 0.92 0.98 0.95
LAB 0.99 0.97 0.98
Accuracy 0.97
Macro Avg 0.96 0.97 0.96
Weighted Avg 0.97 0.97 0.97
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Table 7.5. Performance of LOGREG on 2871 Samples

Precision Recall F1-score
) 0.92 0.96 0.94
LAB 0.98 0.97 0.97
Accuracy 0.96
Macro Avg 0.95 0.96 0.96
Weighted Avg 0.96 0.96 0.96
Table 7.6. Performance of FASTTEXT on 2871 Samples
Precision Recall Fl-score
O 0.97 0.97 0.97
LAB 0.99 0.99 0.99
Accuracy 0.98
Macro Avg 0.98 0.98 0.98
Weighted Avg 0.98 0.98 0.98

Table 7.7. Performance of STANDARD GRU on 2871 Samples

Precision Recall F1-score
) 0.97 0.94 0.95
LAB 0.98 0.99 0.98
Accuracy 0.997
Macro Avg 0.97 0.96 0.97
Weighted Avg 0.97 0.97 0.97
Table 7.8. Performance of Bi-GRU on 2871 Samples
Precision Recall F1-score
0) 0.98 0.98 0.98
LAB 0.99 0.99 0.99
Accuracy 0.99
Macro Avg 0.99 0.99 0.99
Weighted Avg 0.99 0.99 0.99

162



7.6 Conclusion

We proposed a way to improve Transformer architecture by adding arbitrary features to
input sequences. According to the Markov-like updates, we use arbitrary features to influence the
importance vector of the attention layers. This methodology can help combine domain knowledge
with the input sequences, efficiently promote the importance of the domain specific patterns, and
fix the unlabeled data issue. We reviewed state-of-the-art solutions in Transformer architecture,
present the association between Markov graph and attention mechanism, and introduced how to
implement the methodology in BERT architecture on different layers, such as input layer, encoder
and decoder layer, attention layer, and output layer. We compared the new methodology - Featured
Transformer with several most recent research, such as CRF which also uses arbitrary features for
classification, BERT, NBSVM, FASTTEXT, STANDARD GRU, and Bi-GRU. Experimental
results showed us that, according to several performance measurements, such as precision, recall,
Fl-score, accuracy, and micro average and weighted average precision, recall and F1-score.
Featured Transformer performs better than other methodologies in text classification. In future, we
want to add lexical and semantic features and evaluate how much arbitrary features can influence

data modeling.
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Chapter 8: Conclusion

With the development of social networks, human society can be presented in virtual world
through the Internet. A collection of work has been done during my Ph.D. studies with the goal of
building expressive structured models that not only model individual data points but also
connections between data points. The challenges we are facing are related to the size of data we
need to use, the performance and limitation of modern computing machines for this study, the
expressiveness of the models, and the potentials in improving state-of-the-art theories to solve new
issues.

In Chapter 2, we reviewed the related work in Graphic Processing Units (GPU), GPU
optimization, parallel computation and optimization, parallel join and query operation, graph
processing with GPU, graph store task scheduling and parallel planning, performance ratio, bin
packing algorithms, sampling, triangle computation, and community detection.

In Chapter 3, we defined symbols and explanations for the entire dissertation.

In Chapter 4, we discussed the upper bound and lower bound of the space cost. We used a
snapshot of the data stream as a case study to show the boundaries of the bin packing. We proved
that packing stream I into C bins is NP-Complete, the time complexity for bin packing is O(NlogN)
for sorted data, and O(N) for unsorted data. For comparison-based data structure, the time
complexity cannot be O(elogN). The upper bound and lower bound of the bin packing can be
O(logN) and (1+€)OPT(I) respectively. The upper bound and the lower bound of the multi-variable
bin packing are max(SIZE(I1),.., SIZE(Ix)), and max(OPT(I1), ..., OPT(Ix)), respectively. The

capacity of the largest bin Cmax and the smallest bin Cmin satisfy Cmax - Cmin < C in which aj - an <
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C and a1 > a»> ...> an. For a multiset A of positive integers with total sum S, the problem of
deciding whether there exists a subset of sum S/k is NP-Complete and the upper bound and lower
bound of the time complexity is OPT(I) and OPT(I)logOPT(I).

To shrink the data set size, in Chapter 5, we worked on how to shrink the data set size
through sampling technologies. Two methods were proposed to make this happen: one is based on
Kronecker graph double cover, the other is based on graph curvature. Kronecker graph double
cover theory and Curvature theory have been defined and proved in graph theories.

According to the symmetric structure of nodes and edges in graphs, Kronecker graph
double cover can recursively decompose and reconstruct graphs and retain graph topology
properties during these operations. To keep the connectedness during sampling processes, our
methodology chooses to merge similar vertices and edges instead of removing or rebuilding
vertices and edges. We theoretically explain the characteristics of the reconstructible graphs, how
to factorize, decompose and reconstruct graphs with the topology properties unchanged, how to
keep the connectedness during graph reconstruction, and how to conduct Kronecker double-cover
operation and obtain the graph product. We also theoretically prove that Kronecker graph has
limited graphons, Kronecker graph can be used to generate any binary graph with no self-loops
and multiple edges, Kronecker graph properties hold during projection, and the Homomorphism
density of Kronecker graphs. The sampling process can be through either top-down or bottom-up.
We applied data clustering on three ground truth data sets to prove that, after sampling, graph data
quality was improved.

Several curvature definitions, such as Forman curvature, Menger-Ricci curvature, and
Haantjes-Ricci curvature, were discussed and applied to graph sampling. Curvature theory was

defined in differential geometry in a network. Curvature describes how much the curve direction
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changed over a small distance. It demonstrated the evolution of the curves. In community detection,
we can use curvature to simulate the evolution of the community, in which the influence of the
community centers was based on the distance between the community and the observed vertices.
The community can be considered as the snapshot of a particular moment during the evolution of
the community. Different curvature formulas, such as Forman curvature, Menger-Ricci curvature,
and Haantjes-Ricci curvature, were the driving force of the changes. We used three ground truth
data sets to perform clustering and used results to evaluate the quality of the sample sets.
Experimental results showed us that the sample sets can keep the topology properties and have
better quality than the original data sets.

To conduct semantic entity analysis on social networks, we defined a feature extraction
methodology for CRF models. We discussed different ways to define feature sets that can help
extract domain specific patterns from texts. Conditional Random Fields models belonged to
Markov models by losing the constraints in independence of the states. Associations between input
sequences play important roles in data modeling. We summarized the ways to define feature sets,
such as lexical features and semantic features. We also summarized the ways to define feature
functions, such as binary functions and feature functions. We used packaging information
extraction project as a case study to demonstrate the strength and weaknesses in feature sets and
feature functions and discuss solutions to solve these issues. We compared the performance of our
methodology with Bi-directional Long Short-Term Memory (Bi-LSTM) algorithm. The
experimental results showed that, according to precision, recall, and F1-score, our methodology
performed better than Bi-LSTM. Other than these measurements, when we checked the quality of
the results, we can see that our methodology can ensure that the segments extracted from the input

sequences are complete. On the other hand, the segments extracted by Bi-LSTM can be cut into

166



disconnected pieces that cannot guarantee the completeness of the results and cannot be fixed
during post-processing. The improved CRF with domain specific feature sets can efficiently
extract domain specific segments from input sequences, and final results were meaningful and can
be further improved through post-processing by using domain specific knowledge.

To conduct semantic classification on social networks, we improved Transformer
architecture by adding arbitrary features to influence Markov-like updates on the importance
vector in attention mechanism. This methodology can efficiently solve the unlabeled feature issues,
combine domain knowledge with data models and promote the associations between featured
terms and featured patterns. To propose the new idea, we surveyed related network architectures,
such as Feed-Forward Network (FFN) architecture, Recurrent Neural Networks (RNN), attention
mechanism, and the existing ways to combine domain knowledge with the neural network
architecture. In terms of computation complexity, recurrent neural network architecture required
more computation, but are efficient at sequence analysis because conditional probability can be
computed through the encoder-decoder structure. Feedforward network architecture had low
computation costs but cannot be able to discover the associations between entities. Attention
mechanism can overcome the issue in feedforward network architecture by adding attention layer
to the feedforward network architecture. The state-of-the-art solutions to combine domain
knowledge with Transformer architecture were by converting single sequence analysis problems
into sequence comparison problems. The performance can be improved by having more inputs.
These solutions cannot influence the weights of the feature entities in the importance vector so that
they cannot quantitively improve the performance of the classification models. Our methodology
can add high level features to the input sequences and eventually influenced the results in the

importance vector so that the accuracy in prediction can be improved. Experimental results also
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showed that our methodology outperformed popular classification models, such as Conditional
Random Fields (CRF), Naive Bayesian Support Vector Machine (NBSVM), Standard Gated
Recurrent Units (Standard GRU), Bi-directional Gated Recurrent Units (Bi-GRU), and Logistic
regression.

In the future, we will continue to develop expressive models by combining domain
knowledge to either machine learning models or deep learning models. Machine learning models
can be more expressive by doing Markov-like updates. However, the definition of the feature set
can efficiently influence the results. The feature sets can be defined with both lexical and semantic
features. The big challenges are how to select those features and how many features we need to
better fine tune the parameters. For deep learning, attention mechanisms can convert auto-
regression updates into Markov-like updates and the importance vector can be considered as the
snapshot of the context. However, it is even more difficult to measure how much domain specific
knowledge can be added to the inputs and how to use domain specific patterns to fine tune the

importance vector, but not to make changes to the distribution of the original data.
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