
Supplementary Note 1.  Comparison of UViG recovery from viral  and microbial size fraction

metagenomes.

The  broad  range  of  datasets  from  which  UViGs  can  be  extracted  (Fig.  2)  reflects  both  the

pervasiveness of viruses and their critical importance in multiple fields, such as evolutionary biology,

microbial  ecology,  and  infectious  diseases.  Some  of  these  techniques  are  better  suited  towards

addressing specific biological questions but from the virus discovery standpoint, these approaches are

mostly  complementary.  To highlight  the  differences  and complementarity  between  approaches,  we

compared the number of large UViGs (here virus contigs ≥ 10kb) assembled from virus-targeted and

microbial  cell-targeted  metagenomes  from  the  same  samples  obtained  through  the  Tara Oceans

expedition1,2,  after  we  subsampled  them  to  the  same  number  of  reads  (Supplementary  Fig.  1).

Metagenomes targeting the nominal virus fraction yielded, on average, 20 times more UViGs than their

microbe-targeted  counterparts.  However,  at  the  current  sequencing  depth,  UViGs  derived  from

microbial metagenomes were not subsets of the UViGs identified in the viral metagenomes, with an

average  74%  of  the  UViGs  unique  to  the  microbial  fraction  (range:  34–98%).  This  comparison

illustrates  how  integrating  virus  sequences  from  samples  across  different  size  fractions  and/or

processed with different techniques is highly valuable for exploring the virus genome sequence space3.
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Supplementary Note 2. UViG quality category assignment for the Global Ocean Virome dataset

Sequences from the Global Ocean Virome dataset were analyzed to illustrate how UViGs can be

assigned to the different quality categories. Of note, the methods and approaches used here are meant

as an example but not as a step-by-step guide to be strictly followed, especially since most of these

approaches are continuously improving and new tools are frequently developed. The Global Ocean

Virome  dataset  already  included  15,222  non-redundant  “populations”  (i.e.  vOTUs)  defined  from

24,353 virus contigs, which had been annotated, classified, and for which hosts were predicted4. These

data were used to assign quality tiers, i.e. genome fragments, high-quality draft genomes, and finished

genomes, to the representative UViG of each vOTU.

All these UViGs were initially selected because their total length was ≥ 10kb, however they can

represent varying degrees of completeness (if estimated), and it is thus important to assess and report

completeness  as  much  as  possible  so  that  follow-up  analyses  can  use  their  own  threshold

(Supplementary  Table  6).  Two  different  analyses  can  be  conducted  to  identify  high-quality  draft

genomes:  (i)  identification  of  putative  complete  genomes  assembled  as  circular  contigs  or  linear

contigs  with inverted terminal  repeats,  and (ii)  affiliation of  these UViGs to family or genus-rank

groups  from  which  expected  genome  size  can  be  derived.  For  the  former,  the  circular  contigs

representing putative complete genomes were already identified in the dataset, and the same list was

used here4. For the latter, UViGs were previously classified in genus-rank clusters (viral clusters or VC)

that were used to derive an expected genome size. The average length of all complete and predicted

complete genomes from a genus-rank cluster was taken when the relative standard deviation of these

genome lengths was ≤ 15%4. For clusters for which genome lengths displayed a standard deviation >

15%, we considered that no reliable expected genome size could be derived. We also used marker

genes from the Viral Orthologous Groups database (http://vogdb.org/, v83, HMMER3 with score ≥ 50)

to complete these UViGs affiliations. UViGs were considered as affiliated when at least 2 marker genes

affiliations  were  consistent.  An expected  genome size  was derived for  all  marker-gene  affiliations

available at the genus rank. UViGs which total length was estimated to represent ≥ 90% of the expected

genome size  were  classified  as  high-quality  drafts,  in  addition  to  the  ones  predicted  as  complete.

Overall,  517  UViGs  were  high-quality  draft  genomes,  and  14,705  were  genome  fragments

(Supplementary Table 6).

Finally,  three  high-quality  draft  UViGs  were  selected  for  manual  review  and  annotation,  and

transition to “finished genome” status. The selected UViGs were ones represented by a single contig

predicted to represent a complete genome, affiliated to some of the most abundant VCs lacking an

isolate reference, and when possible detected across multiple samples and with a host prediction. For

these UViGs, namely GOV_bin_630 (VC_3), GOV_bin_2604 (VC_8), and GOV_bin_556 (VC_17),

the contigs were manually reviewed and annotated to (i)  ensure that  these contigs did not  include

multiple  copies  of  single  copy  of  marker  genes,  (ii)  improve  affiliation  through  a  comparison  of
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predicted proteins to updated databases, namely PDB5 CDD6, PFAM7, and SCOpe8, using the HHPred

web server9, and (iii) classify the affiliated genes in relevant functional categories based on ViralZone

DB10.  Eventually,  the  final  dataset  was  composed  of  3  finished  genomes,  514  high-quality  draft

genomes, and 14,705 genome fragments.

Nature Biotechnology: doi:10.1038/nbt.4306



Supplementary  Note  3.  Evaluation  of  potential  “universal  cutoffs”  for  viral  operational

taxonomic units (vOTUs)

Because  species-rank  groupings  represent  the  primary  data  for  many  downstream  ecological,

evolutionary, and functional studies, viral operational taxonomic units (vOTUs), have been routinely

defined and used in the literature. To date, most published studies used a combination of minimum

average nucleotide identity (ANI) and minimum percentage of shared genes or minimum alignment

fraction (AF), with cutoffs varying from 90 to 95% ANI, and from 20% to 100% AF (e.g.  1,11–13).

Criteria  for  defining  species  can  inform cutoffs  for  defining  uncultivated  viral  genomes  (UViGs)

vOTU, however defining cutoffs requires a first classification of these UViGs in a group for which

species  criteria  are  available  (Supplementary  Table  3).  To  process  datasets  for  which  no  such

classification is available, “universal” cutoffs should be established. We recognize that the methods and

thresholds used for defining vOTUs will be highly debated, similar to debates on microbial OTUs (e.g.
14),  and  no  universal  standard  can  be  proclaimed  a  priori,  yet  comparative  analysis  of  currently

available isolate virus genomes can suggest possible cutoffs.

Pairwise comparisons of nucleotide sequences  were computed for all  virus genomes from NCBI

RefSeq  (v81,  n=9,158),  and  ANI  and  AF  (relative  to  the  shorter  genome)  were  calculated  using

MUMMER15.  We then looked at  the distribution  of  ANI and AF specifically  across  genome pairs

involving closely related genomes (ANI ≥ 60%, Supplementary Figure 3). From these, three groups of

genome pairs can be distinguished. In the first group (Group 1 in Supplementary Figs. 3–4), genomes

are (nearly) identical over (nearly) the complete genome length (90–100% ANI, 85–100% AF). In the

second group (Group 2 in Supplementary Figs. 3–4), genomes have comparably high identity (90-

100% ANI),  but  with  a  smaller  alignment  fraction (70–85% AF),  highlighting differences  in  gene

content and thus putative phenomic features. This type of evolutionary mode involving a high gene flux

and more unique genes than would be expected based on the sequence similarity of shared genes was

recently described as primarily associated with temperate phages16. Finally, in the third group (Group 3

in Supplementary Figs. 3–4), genomes display a lower level of similarity (80–90% ANI) over (nearly)

the complete genome length (90–100% AF), suggesting that although these viruses are more divergent

than the ones in Group 1, they still harbor a similar gene repertoire. 

To obtain vOTUs gathering distinct lineages with more genetic exchange within members of the

group  than  with  other  groups,  cutoffs  of  ≥  95%  ANI  over  ≥  85%  AF  could  be  applied.  These

demarcations would keep together genomes from Group 1 and Group 3, while keeping separated the

ones from Group 2 (high gene flux, Supplementary Fig. 3A). Notably, based on the sequences available

in  the  IMG/VR database  (v2,  January  2017),  which  consists  of  a  much larger  dataset  (> 250,000

sequences) but covers mostly dsDNA and few if any ssDNA or RNA viruses, the vast majority of the

genome pairs would be in the Group 1 (high ANI and high AF, see Supplementary Figure 3B). The

proposed cutoffs would thus lead to vOTUs consistent with the published literature.
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Supplementary Note 4. Distribution and abundance of UViGs.

Abundance estimates of a vOTU across datasets provide valuable information on the distribution and

potential  ecological  niche  of  the  virus.  The relative  abundance  and distribution  of  a  virus  can  be

estimated through short-read metagenome mapping. However, thresholds must be applied to (i) the

nucleotide identity between the read and UViG sequence, and (ii) the percentage of the representative

UViG sequence covered by metagenome reads. Both parameters are critical  to avoid false-positive

detection17–19.  Alternatively,  pseudo-alignment  and  abundance  estimation  through  expectation-

maximization as implemented e.g. in FastViromeExplorer20 can be used instead of coverage estimation

through read mapping, with similar cutoffs applied on the coverage along the genome and total number

of mapped reads.

The specific thresholds for nucleotide identity and coverage of the reference genome can be adjusted

depending on the scientific objectives of a given study. For instance, increasing the coverage threshold

from 10% to 75% led to a lower rate of incorrect detection (false discovery rate decreased from 8% to

0%) but at the cost of a lower sensitivity (decreased from 88% to 82%, based on simulated datasets

from ref.  18). Thus, when reporting read mapping-based distributions and/or relative abundances, it is

important to report the nucleotide identity and coverage thresholds, and provide an estimate of false-

positive and false-negative rates for the combined thresholds, either computed  de novo or extracted

from the literature, e.g. from refs 18,19. Finally, two important caveats should be considered when using

read mapping to estimate virus distribution and relative abundance: (i) some amplification methods

produce non-quantitative datasets, in which coverage can not be interpreted as relative abundance (Box

#1), and (ii) there are currently no guidelines for integrating coverage data from different size fractions.
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Supplementary Figures (legends)

Supplementary Figure 1. Comparison of UViG recovery from microbial (“M”) and viral (“V”)

metagenomes originating from the same Tara Oceans samples. Top panel represents the number of

distinct  virus  contigs  ≥ 10kb identified  in  each dataset,  and the bottom panel  depicts  the  ratio  of

“shared” (i.e. detected in both viral and microbial fraction of the sample) and “unique” (detected only

in one fraction) contigs in each fraction. Datasets were originally analyzed in ref.  1,2. SRF: surface,

DCM: deep chlorophyll maximum.

Supplementary Figure 2. Genome length variation for different types of viruses and different

taxonomic ranks. Genome length of virus genomes from NCBI RefSeq were compared at different

taxonomic ranks and are presented separately for four main types of viruses (dsDNA, ssDNA, RNA

and  reverse-transcribing,  viroids  and  satellites).  Genome  length  variation  was  calculated  as  a

coefficient of variation at the genus rank, i.e. standard deviation of genome length in the genus divided

by average genome length in the genus (for genera with > 1 genomes). Underlying data are available in

Supplementary Table 5. Boxplots lower and upper hinges correspond to the first and third quartiles (the

25th and 75th percentiles), while whisker extend from the nearest hinge to the smallest/largest value no

further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the

first and third quartiles). dsDNA: double-stranded DNA; ssDNA: single-stranded DNA.

Supplementary Figure 3. Pairwise Average Nucleotide Identity (ANI) and Alignment Fraction

(AF) for NCBI Viral RefSeq genomes (A) and IMG/VR (B). Only genome pairs with ANI >60% and

AF >20% were considered. ANI and AF were binned in 1% intervals, and are represented here as a

heatmap (i.e. cell coloring represents the number of pairwise comparisons at the corresponding ANI

and AF intervals). On the top right corner (i.e. AF and ANI close to 100%), three main groups of

genome pairs are delineated with black dashed circles, and the proposed standard cutoff is highlighted

in dark red. Note that for this clustering, the cutoff was applied as follows: pairs of genomes with ≥

85% AF were first  selected,  and whole genome (wg) ANI was then calculated by multiplying the

observed  ANI  by  the  observed  AF.  This  wgANI  was  then  compared  to  the  corresponding  whole

genome ANI cutoff (i.e. 95% ANI * 85% AF = 80.75% wgANI). This allows for hits with ≤ 95% ANI

but ≥ 85 % AF to be considered as well, i.e. a pair of genomes with 90% ANI on 100% AF would be

considered as “passing” the cutoff. Examples of genome comparisons for each group are presented in

Supplementary Figure 4 (from NCBI Viral RefSeq).

Supplementary Figure 4. Examples of pairwise genome comparisons from the three groups of

genome pairs  highlighted  on  Supplementary  Figure  3. For  each  example,  nucleotide  similarity
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(blastn) and amino acid similarity (tblastx) are displayed, alongside the ANI, AF, and wgANI (i.e. ANI

over the whole length of the shorter genome).

Supplementary Figure 5. Estimation of whole genome (wg) ANI from fragmented genomes. To

evaluate the impact of genome fragmentation on wgANI estimation,  pairs  of genomes from NCBI

RefSeq with wgANI ≥ 70% and ≥ 20kb were selected, random fragments were generated (from 1 to

45kb) from one of the two genomes, and then compared to the other complete genome. The resulting

wgANI between  the  fragment  and  complete  genome was  then  compared  with  the  original  values

estimated from the two complete genomes (y-axis). Boxplots lower and upper hinges correspond to the

first and third quartiles (the 25th and 75th percentiles), while whisker extend from the nearest hinge to

the smallest/largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile

range, or distance between the first and third quartiles).
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Supplementary Tables (legends)

Supplementary  Table  1.  List  of  mandatory  and  optional  metadata  for  UViGs.  Mandatory

metadata are highlighted in blue. The status of metadata indicates if identical or similar information is

included in the MIMAG / MISAG standards, with virus-specific metadata highlighted in orange, and

metadata adapted for UViGs in purple. If one of the mandatory metadata is missing, the value should

be set as “Not applicable” for metadata that cannot be evaluated, or “Missing – Not collected” for the

ones that could be assessed but for which the result is not currently available. MIMAG: metagenome-

assembled genome; MISAG: minimum information about a single amplified genome. ANI: Average

Nucleotide Identity. AF: Alignment Fraction.

Supplementary Table 2. List of metadata from previous standards relevant for UViGs21. The last

3 columns include information about whether an item is mandatory (M), conditional mandatory (C),

optional (X), environment-dependent (E) or not applicable (-) in the MIMAG, MISAG, and MIUViG

checklists.  Items  for  which  the  MIUViG  requirement  differed  from  MIMAG  and  MISAG

requirements are highlighted in yellow.

Supplementary Table 3. Comparison between UViGs categories and the quality categories proposed

for small DNA/RNA virus whole-genome sequencing for epidemiology and surveillance by Ladner et

al. 22.

Supplementary Table 4. List and characteristics of tools used to identify virus sequences in mixed

datasets, published or updated since 201223–31.

Supplementary Table 5. Variation in genome length for virus families and genera with 2 or more

genomes, from NCBI RefSeq v83.

Supplementary Table 6. List of potential marker genes for virus orders, families, or genera, based on

the VOGdb v83 (http://vogdb.org/).

Supplementary Table 7. List of UViGs from the GOV dataset4 considered as high-quality drafts or

finished  genomes.  Example  of  UViGs  classified  as  genome  fragments  with  varying  size  and

completeness estimations are also included at  the bottom of the table.  For genome fragments for

which no complete genome is available, the expected genome size is displayed as greater than the size

of  the  largest  contig  in  the  cluster  (e.g.  “>  20,000bp”),  and  no  estimated  completeness  can  be

provided for these contigs.
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Supplementary Table 8. List of databases providing collections of HMM profiles for virus protein

families32–35. This topic has been recently reviewed in Reyes et al. 36.

Supplementary Table 9. Current species demarcation criteria from ICTV 9th and 10th reports.

Supplementary Table 10. Approaches available for in silico host prediction18,37–42.
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