
University of South Florida University of South Florida

Scholar Commons Scholar Commons

Graduate Theses and Dissertations Graduate School

March 2021

Efficient Hardware Constructions for Error Detection of Post-Efficient Hardware Constructions for Error Detection of Post-

Quantum Cryptographic Schemes Quantum Cryptographic Schemes

Alvaro Cintas Canto
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Scholar Commons Citation Scholar Commons Citation
Cintas Canto, Alvaro, "Efficient Hardware Constructions for Error Detection of Post-Quantum
Cryptographic Schemes" (2021). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/8750

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has
been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar
Commons. For more information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/etd
https://scholarcommons.usf.edu/grad
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F8750&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.usf.edu%2Fetd%2F8750&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F8750&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Efficient Hardware Constructions for Error Detection of Post-Quantum

Cryptographic Schemes

by

Alvaro Cintas-Canto

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Mehran Mozaffari Kermani, Ph.D.
Sriram Chellappan, Ph.D.
Srinivas Katkoori, Ph.D.

Nasir Ghani, Ph.D.
Reza Azarderakhsh, Ph.D.

Date of Approval:
March 16, 2021

Keywords: Fault Detection, Field-Programmable Gate Array, Finite Field
Arithmetic, Post-Quantum Cryptography, Side-Channel Attacks

Copyright © 2021, Alvaro Cintas-Canto

Dedication

For my kind parents, Alfonso and Maria Eugenia;

My awesome siblings, Alfonso and Miriam;

And my best love, Kenzie

Acknowledgments

First and foremost, I would like to thank my supervisor Dr. Mehran Mozaffari-Kermani

for his priceless support, advice, and the knowledge shared with me during my graduate

years. You are the true definition of an amazing mentor. You have not only helped me to

become a Doctor, but you have helped me to grow as a person, to not give up, and to think

outside of the box. I want to thank the Department of Computer Science for their valuable

assistance during my years at USF. Also, I would like to thank Dr. Reza Azarderakhsh, Dr.

Sriram Chellappan, Dr. Srinivas Katkoori, and Dr. Nasir Ghani for their amazing support.

Lastly, I would also like to thank my love Kenzie and my family for their unconditional

love and support. Dad, I know how proud you would be. You always wanted me to be a

Doctor and I wish you could still be here to see me becoming one. Thanks to you, to mom,

and to my brother and sister for always being next to me, even in the distance.

Table of Contents

List of Tables . iii

List of Figures . v

Abstract . vi

Chapter 1: Introduction . 1
1.1 Overview of Cryptography . 1
1.2 Post-Quantum Cryptography . 2
1.3 Fault Diagnosis . 3
1.4 Objectives . 4
1.5 Dissertation Outline . 5

Chapter 2: Reliable Architectures for Composite-Field-Oriented Constructions of
McEliece Post-Quantum Cryptography on FPGA . 7

2.1 McEliece Cryptosystem . 7
2.2 Proposed Fault Detection Schemes . 9

2.2.1 Goppa Division . 10
2.2.2 Goppa Addition and Goppa Multiplication 10
2.2.3 Goppa Inversion . 15
2.2.4 Goppa Square Root . 17
2.2.5 GGCD, Goppa Inversion, and GCDIPD 17
2.2.6 Goppa Polynomial Evaluation (GPE) 19

2.3 Error Coverage and FPGA Implementations 19

Chapter 3: Efficient and Low-Power Hardware Constructions for Error Detection
of Key Generation in McEliece Cryptosystem . 22

3.1 Key Generator in the McEliece Cryptosystem 22
3.2 Proposed Fault Detection Schemes . 24

3.2.1 Normal and Interleaved Signatures 28
3.2.2 CRC Signatures . 33

3.3 Error Coverage and FPGA Implementations 40

Chapter 4: CRC-Oriented Error Detection Schemes Assessed on FPGA for the
Niederreiter Key Generator . 44

4.1 Niederreiter Cryptosystem . 44
4.2 Proposed Fault Detection Schemes . 46

4.2.1 GF (2m) Addition and GF (2m) Multiplication 48

i

4.2.2 GF (2m) Inversion . 53
4.3 Error Coverage and FPGA Implementations 59

Chapter 5: Reliable CRC-Based Error Detection Constructions for Finite Field
Multipliers with Applications in Cryptography . 62

5.1 Finite Field Multipliers in Luov’s Cryptosystem 62
5.2 Proposed Fault Detection Schemes . 64
5.3 Error Coverage and FPGA Implementations 69

Chapter 6: CRC-Oriented Error Detection Schemes for Fast Inversions in GF (2m)
Normal Basis . 71

6.1 Finite Field Inversions . 71
6.2 Proposed Fault Detection Schemes . 73
6.3 Error Coverage and FPGA Implementations 80

Chapter 7: Conclusion . 83

References . 85

Appendix A: Copyright Permissions . 99

ii

List of Tables

Table 1 McEliece operations and corresponding processes. 9

Table 2 Overheads of the proposed error detection schemes based of normal
signatures (NS), two-part signatures (2PS), and three-part signatures
(3PS) for the GPE unit. 20

Table 3 Normal and interleaved signatures for the α and α2 modules. 33

Table 4 Different CRC signatures for the α and α2 modules. 40

Table 5 Steps to perform the inverse of A ε GF (213) using addition chain. 41

Table 6 Implementation results on Xilinx FPGA family Kintex-7 for device
xc7k70tfbv676-1. 42

Table 7 Security parameters used to derive the different fault detection schemes
proposed. 47

Table 8 Predicted interleaved parities for different m’s in the α module. 50

Table 9 Different CRC signatures for α module when m=11 and m=12. 51

Table 10 Different CRC signatures for α module when m=13 and m=14. 52

Table 11 Predicted parities for the different m’s in the α2 module. 55

Table 12 Different CRC signatures for α2 module when m=11 and m=12. 56

Table 13 Different CRC signatures for α2 module when m=13 and m=14. 57

Table 14 Overheads of the proposed error detection schemes for the Horner Unit
using m=14 on Xilinx FPGA family Spartan-7 and also Xilinx FPGA
family Artix-7. 61

Table 15 Overheads of the proposed error detection schemes for the entire Key
Generator using the parameters m=13, t=119, and n=6,960 on Xilinx
Kintex UltraScale+ FPGA. 61

iii

Table 16 Overheads of the proposed error detection schemes for the finite field
multipliers used in the Luov algorithm during the polynomial gener-
ation on Xilinx FPGA family Kintex Ultrascale+ for device xcku5p-
ffvd900-1-i. 70

Table 17 Steps to perform the inverse of A ε GF (27) using addition chains. 74

Table 18 F values of type-4 GNB in GF (27). 76

Table 19 αB2−i
predicted CRC-3 signatures. 78

Table 20 Overheads of the proposed error detection schemes for finite field in-
version using ITA and elements in GF (27) with normal basis. 81

Table 21 Comparisons for different GF (2m) inversions using ITA. 82

iv

List of Figures

Figure 2.1 Goppa multiplication unit with the proposed scheme. 14

Figure 2.2 Goppa greatest common division, Goppa inversion, and Goppa poly-
nomial decomposition with the error detection scheme. 18

Figure 3.1 The derived architecture for α2 module, where ai’s and fi’s represent
the inputs and xi’s represent the outputs. 30

Figure 3.2 The proposed error detection of “H-generator” for MECS with the
error detection blocks for normal and interleaved signatures. 34

Figure 3.3 The proposed CRC-2 error detection scheme for the α module. 36

Figure 4.1 The proposed error detection of the α and α2 modules using CRC
signatures (CRC-3 and CRC-4). 59

Figure 5.1 Finite field multiplier with the proposed error detection schemes
based on CRC. 65

Figure 5.2 The proposed error detection constructions for α module. 68

Figure 6.1 αB multiplication with the proposed error detection scheme based
on CRC signatures. 80

Figure A.1 Copyright permissions for IEEE journals. 99

v

Abstract

Quantum computers are presumed to be able to break nearly all public-key encryption

algorithms used today. The National Institute of Standards and Technology (NIST) started

the process of soliciting and standardizing one or more quantum computer resistant public-

key cryptographic algorithms in late 2017. It is estimated that the current and last phase

of the standardization process will last till 2022-2024. Among those candidates, code-based

and multivariate-based cryptography are a promising solution for thwarting attacks based

on quantum computers. Nevertheless, although code-based and multivariate-based cryp-

tography, e.g., McEliece, Niederreiter, and Luov cryptosystems, have good error correction

capabilities, research has shown their hardware architectures are vulnerable to faults due to

the complexity and large footprint of the finite field arithmetic architectures used in those

architectures. In this dissertation, error detection schemes on various post-quantum cryp-

tosystems that use finite fields are derived, proving the high efficiency and error coverage of

such schemes, and the acceptable overhead needed to implement them in deeply-embedded

architectures. Moreover, general error detection schemes are derived for finite field arithmetic

with polynomial and normal basis, applicable to any classical or post-quantum cryptographic

algorithms that use finite field block in their designs.

vi

Chapter 1: Introduction

1.1 Overview of Cryptography

In the IoT-connected world, cryptography plays a crucial role when transmitting sensitive

information from one device to another in the presence of third parties. The main idea behind

cryptography is to encrypt sensitive information through a mathematical algorithm in a way

that only a specific key can decrypt and unveil the original data, providing confidentiality,

data integrity, authentication, and non-repudiation. Cryptography has existed for many

years and many different cryptographic algorithms have been studied, each one with its own

advantages and drawbacks. There are two main classes of cryptography: Symmetric-key

cryptography and asymmetric-key cryptography.

Symmetric-key cryptography uses the same key for both encryption and decryption. This

type of cryptography is traditionally much faster than asymmetric-key cryptography and it

is use to transmit data in bulk. However, it requires both the sender and the recipient to have

the secret key and it does not provide data integrity and authentication. The concept of data

integrity is to ensure full confidence that the data sent to the recipient is the actual valid data

from the sender and has not been tampered with or manipulated, while authenticity means

that the recipient can establish that the data is originated from a trusted entity. Currently,

the Advanced Encryption Standard (AES) [1] is the symmetric-key cryptographic algorithm

chosen by NIST to protect sensitive information. NIST started the development of the

AES in 1997 since the Data Encryption Standard (DES) [2] was becoming vulnerable to

brute-force attacks.

Asymmetric-key cryptography uses a pair of keys, i.e., public key and private key, in-

stead of just a secret key, tackling the problem of data integrity and authentication that

1

symmetric-key cryptography has. Public keys are published in the public domain (e.g.,

Internet), while the private key is unique and infeasible to obtain from the encryption or

decryption operations or from the public key. Some public key algorithms provide digital

signatures (e.g., Digital Signature Algorithm [3]), some provide key distribution and secrecy

(e.g., Diffie–Hellman key exchange [4]), and there are others that provide both (e.g., RSA

[5]). Asymmetric encryption is slower than good symmetric encryption, which is inconve-

nient for many applications. The elliptic curve cryptography (ECC) was a pioneer for public

key cryptography till the announcement by NSA and NIST to transition to post-quantum

algorithms. As a result, today’s cryptographic systems use both symmetric and asymmetric

encryption techniques (e.g., TLS, Secure Shell).

1.2 Post-Quantum Cryptography

The prospects of emergence of low-power and low-energy quantum computers have brought

the need for developing public-key cryptosystems secure against attacks potentially enabled

by these computers. For instance, the quantum Shor’s algorithm allows breaking traditional

asymmetric-key cryptosystems by solving integer-factorization problems in polynomial time

[6]. The NIST started the process of soliciting and standardizing one or more quantum

computer resistant public-key cryptographic algorithms in late 2017 [7]. Several solutions

have been proposed for this post-quantum era, called post-quantum cryptography (PQC).

There are five popular PQC algorithm classes: Code-based, hash-based, isogeny-based,

lattice-based, and multivariate-based cryptosystems. Code-based cryptography, such as the

McEliece [8] and Niederreiter cryptosystems [9], differs from others by that its security relies

on the hardness of decoding in a linear error correcting code. Hash-based cryptography

creates signature algorithms based on the security of a selected cryptographic hash function

[10], [11]. The security of isogeny-based cryptography is based on the hard problem to

find an isogeny between two given supersingular elliptic curves [12], [13], [14]. Lattice-based

cryptography is capable of creating a public-key cryptosystem based on lattices [15],[16], [17].

2

Lastly, multivariate-based cryptography is founded on asymmetric cryptography primitives

using multivariate polynomials over a finite field [18], [19]. Many traditional and post-

quantum cryptographic algorithms, e.g., ECC, AES, McEliece, and Luov, use finite field

operations in their schemes. Among the different finite field operations, multiplication and

inversion are the most studied due to their complexity.

1.3 Fault Diagnosis

Finite field arithmetic, especially finite field multiplications and inversions, are very com-

plex and require large area footprint. Therefore, it is a complex task to implement such

operations resilient to natural and malicious faults [20], [21]. Side-channel attacks are a

type of attack that relies on knowledge obtained from the execution of a computer system

rather than flaws in the system’s cryptographic algorithm. Among the different side-channel

attacks, the most known are cache attacks, where the third party monitors the cache ac-

cesses that the sender/receiver makes in a shared physical system; power-monitoring attacks,

where the third party monitors the differences in power consumption during the systems’

computation; timing attacks, where the third party measures the time needed for a spe-

cific computation; and electromagnetic attacks, where the third party analyzes the leaked

electromagnetic radiation to obtain the secret key or the plaintext.

These type of side-channel attacks are passive, or in other words, the attacker mainly

observes the different leakages or aspects of a system to discover the key or the sensitive data.

Differential fault analysis (DPA), on the other hand, are active, meaning that the attacker

induces faults, tampering the system, to compare the faulty outputs with the original outputs

and reveal information. Depending on the duration of such faults (as a result from the

physical stress applied), there are three types of faults: Transient faults, permanent faults,

and destructive faults.

Transient faults are the most common ones and they only last one or a few clock cycles,

the system will retry the same operation and the fault will have disappeared. Permanent

3

faults last longer than transient faults, the system will have to be reset or the value where

the fault injection took place will have to be overwritten for the device to output the correct

values. Lastly, destructive faults are those which destroy a physical structure of the device,

causing a specific variable or bit to be fixed in all the device runs. The main difference

between transient faults, permanent faults, and destructive faults is that the latter one is

not reversible. Transient faults are also known as soft faults and can be classified into

parametric or logical depending on the effect of the fault. Parametric faults affect voltage,

current, or speed, while logical faults affect the Boolean function through the circuit.

To determine if the fault injections are being performed in a system, fault detection

schemes are applied. There are many works on fault detection analysis [22], [23], [24], [25],

[26], [27], and [28]. The different fault detection techniques can be classified into: Concur-

rent error detection, Off-Line Detection, and Roving Fault Detection. In this dissertation,

concurrent error detection schemes are studied. Concurrent error detection adds additional

logic to the system to detect faults. By performing a set of derivations, the system will be

compare the actual output with the predicted output and if the error flag is high, a mismatch

has been found among the two outputs (fault detected). Redundancy is a type of concur-

rent error detection which is used in hardware implementations to achieve error control and

reliability. These redundancy schemes can be divided into: Hardware, time, hybrid, and

information redundancy. Hardware redundancy duplicates the function and compares both

outputs, time redundancy computes the function twice and compares both results, hybrid

redundancy performs the inverse of one part of the function, or the inverse of the whole func-

tion and compares it, and information redundancy adds some check bits along the function

and validates it when the result is obtained.

1.4 Objectives

Through this dissertation, different error detection schemes based on normal, interleaved,

two-part, three-part, and CRC signatures are proposed. The choice of the utilized signatures

4

can be tailored based on the reliability requirements and the overhead to be tolerated. In

other words, for applications such as game consoles in which performance is critical (and

power consumption is not because these are plugged in), one can increase the size of the

signatures. However, for deeply-embedded systems such as implantable and wearable medical

devices, smaller signatures are preferred. The main contributions of this dissertation are

summarized as follows:

• Error detection schemes based on normal, interleaved, two-part, three-part, and CRC

signatures for different finite field arithmetic operation blocks, which include addition, sub-

traction, multiplication, squaring, and inversion (both Fermat’s little theorem (FLT) and the

Itoh-Tsujii algorithm (ITA)) used in code-based and multivariate-based cryptosystems are

proposed. Additionally, such schemes are applied to the code-based McEliece and Niederre-

iter cryptosystems and the multivariate-based Luov cryptosystem.

• New formulations for the error detection schemes performing software implementations

are derived for the sake of verification. Such derivations cover a wide range of applications

and security levels. Nevertheless, the presented schemes are not confined to these case

studies.

• The error coverage of the proposed error detection schemes is analyzed by embedding

the error detection schemes into the original constructions. The implementations are per-

formed using different Xilinx field-programmable gate array (FPGA) families to confirm that

the schemes are overhead-aware and that they provide high error coverage.

1.5 Dissertation Outline

In this dissertation, error detection for different cryptosystems are presented through the

following chapters:

• Chapter 2: This chapter presents countermeasures against side-channel attacks for the

implementation of different composite field arithmetic units used in the McEliece cryptosys-

tem.

5

• Chapter 3: In this chapter, error detection schemes are applied to the key generation

of the McEliece cryptosystem.

• Chapter 4: Error detection schemes for the different blocks of the key generator in the

Niederreiter cryptosystem, e.g., GF (2m) multiplication, squaring, inversion, and addition,

are proposed in this chapter.

• Chapter 5: This chapter introduces efficient hardware architectures for the Luov cryp-

tographic algorithm.

• Chapter 6: Through this chapter, CRC signatures are derived for both FLT and ITA

algorithms, used to perform finite field inversion over GF (2m) with normal basis field element

representation.

• Chapter 7: This chapter concludes the dissertation by summarizing the different error

detection schemes that have been implemented on the various cryptosystems.

6

Chapter 2: Reliable Architectures for Composite-Field-Oriented

Constructions of McEliece Post-Quantum Cryptography on FPGA

2.1 McEliece Cryptosystem

1The McEliece cryptosystem is successfully advanced to the third and last round of

the post-quantum cryptography standardization competition in 2020. Since the McEliece

cryptosystem uses public-key encryption, it can serve in a wide variety of applications such as

digital signatures, authentication protocols, exchange of a secret key over an insecure channel,

or even digital cash systems such as Bitcoin. Even though there are different alternatives to

Goppa codes such as LDPC and MDPC codes, Reed-Solomon codes, or convolutional codes,

they are not as secure as the binary Goppa codes [30]. Since the key size of the McEliece

scheme is very large, other slight variations of binary Goppa codes such as quasi-cyclic and

quasi-dyadic codes had also been explored [31], [32]. These alternate codes allow a smaller

key size, but they are more sensitive to fault injection attacks [33]. Having the architectures

of [34] as example, the McEliece cryptosystem uses Goppa codes in its different arithmetic

units. The McEliece cryptosystem is based on linear error-correcting codes; however, it is

vulnerable to fault injection attacks as it has been previously indicated [35].

Side-channel attacks such as differential power analysis (DPA) for the McEliece cryp-

tosystems have been studied in a number of previous works, e.g., [36] and [37]. In [36], the

authors present a successful DPA of a state-of-the-art McEliece implementation based on

quasi-cyclic MDPC codes. Authors in [37] successfully demonstrate side-channel attacks of

the McEliece cryptosystem implemented on constrained devices. Approaches on countering

fault attacks such as [38], [39], [40], [41], [42], and [43] have been the center of research

1This chapter was published in the IEEE Transactions on Computer-Aided Design Integr. Circuits Syst.
[29] ©2020 IEEE.

7

attention for cryptography. In this chapter, error detection schemes are derived for different

Goppa arithmetic units that the McEliece cryptosystem uses, e.g., evaluation, multiplication,

squaring, division, square root, inversion, and greatest common division. These error detec-

tion schemes are based on signatures providing high error coverage. The term signature here

refers to appended bits used for error detection through error detecting codes and not the

typical signatures commonly used for proof of authenticity in cryptography. Additionally,

the overhead of the proposed schemes is calculated by implementing the arithmetic units

used in the McEliece cryptosystem on FPGA.

The McEliece cryptosystem includes three operations: Key generation, which generates

a pair of keys (public key and private key) needed to keep the message secret; encryption,

which creates the ciphertext using the public key; and decryption, which allows to obtain the

original message using the private key. The key generation in the McEliece cryptosystem uses

the dimension of the code subspace m, the maximum number of errors that can be corrected

t, the code length n, and code rank k. In this work, the security parameters used are m=13,

t=128, and n=8,192 (k can be calculated by performing k = n − mt), which are one of

the possible security parameters submitted to NIST in late 2017 [8]. However, the proposed

approaches are oblivious of the sizes of these three parameters. The McEliece cryptosystem

produces the pair of keys by first constructing a basic finite field GF (2m). Since m=13, this

field contains 8,192 elements, i.e., α0, α1,..., α8191, where each element is a vector of 13 bits.

Next, a random monic irreducible polynomial g(x) = xt+gt−1x
t−1+ ...+g1x+g0, with degree

t is also generated, called Goppa polynomial. This monic irreducible polynomial conforms

part of the private key, and all its coefficients are elements of the basic finite field. After

producing the Goppa polynomial, a control matrix H is constructed by multiplying three

auxiliary matrices based on the private key, denoted as X, Y, and Z. The control matrix is

permutated by using a random permutation matrix called P. Then, it is expanded into a

binary form H2 over GF (2), converted into the systematic form G̃, and transposed into G

to obtain its public key.

8

Table 1: McEliece operations and corresponding processes.

Operation Process

Goppa Division Key Generation, Decryption

Goppa Multiplication/Addition
Key Generation, Encryption,

Decryption
Goppa Squaring Key Generation

Goppa Square Root Decryption
Goppa GDC, Goppa Inversion

Key Generation, Decryption
and Goppa Polynomial Decomposition

Goppa Polynomial Evaluation Key Generation, Decryption

To get the ciphertext z, a random n-bit error vector e is created. The error vector e

has to contain a total of t bits having the value 1. Then, z is calculated by performing

z = pG⊕ e, where p refers to plaintext. The decryption process is fairly more complex than

the encryption process. First, an error locator polynomial σ(x) is created, which will reveal

all errors of the elements αi. Then, the error vector is reconstructed and gone through the

CCA2 -safe ciphertext to obtain the CCA2 -safe plaintext. Lastly, if the CCA2 -safe padding

data is valid after the CCA2 -related padding is removed, the plaintext is correct and ready to

be returned; if not, an error is given. Since this chapter focuses mainly on the key generation,

readers interested in other aspects of the McEliece cryptosystem can refer to [34].

2.2 Proposed Fault Detection Schemes

The McEliece cryptosystem is based on three different Galois fields: The Goppa field

GF ((2m)t) used by the Goppa polynomial (i.e., GF ((213)128) in this chapter); GF (213), which

is the field polynomial (we use p(x) = x13 + x4 + x3 + x + 1 as described by [8]); and the

binary field GF(2). The McEliece cryptosystem uses (based on the underlying composite

fields) different Goppa field arithmetic units to perform a number of its operations, e.g.,

evaluation, multiplication, squaring, division, square root, inversion, and greatest common

division. These Goppa field operations work on polynomials of degree t-1 with coefficients

from GF (2m). In Table 1, the McEliece operations and corresponding processes are shown.

9

2.2.1 Goppa Division

Polynomial division is required to find the greatest common divisor. It follows the long

division method by first, inverting the highest coefficient of the polynomial divisor. This

inverted coefficient is then multiplied by the highest-degree coefficient of the dividend to

obtain the quotient. Next, the quotient coefficient is multiplied by all the coefficients of the

polynomial divisor and the product is finally subtracted from the dividend polynomial using

modulo-2 addition. Since each coefficient is in GF (213), signatures for inversion, multiplica-

tion, and XORing in the field GF (213) are needed. Authors in [44] perform error detection

over binary extension fields by adding parities which can only detect an odd number of

faults and therefore, to obtain higher error coverage, two other signatures are derived in this

chapter. The first alternative, called two-part signature, divides the 13 bits into two blocks

(from bit 0 to bit 6, and from bit 7 to bit 12), and the other alternative, called three-part

signature, divides the bits into three blocks (from bit 0 to bit 4, from bit 5 to bit 9, and from

bit 10 to bit 12).

2.2.2 Goppa Addition and Goppa Multiplication

Goppa addition and Goppa multiplication need a total of t GF (2m) additions and t

GF (2m) multiplications, respectively. As it is shown in [44], the multiplication of any two

elements A and B of GF (2m) can be represented as

A ·B mod p(x) =
m−1∑
i=0

bi · ((Aαi) mod p(x)) =
m−1∑
i=0

bi ·X(i),

where the set of αi’s is the polynomial basis of element A, the set of bi’s is the B coefficients,

p(x) is the field polynomial, X(i) = α·X(i−1) mod p(x), and X(0) = A. To perform polynomial

basis multiplications over binary extension fields, α, sum, and pass-thru modules are used.

The pass-thru module multiplies a GF (2m) element by a GF(2) element, the α module

multiplies an element of GF (2m) by α and it reduces the result modulo p(x), and the sum

10

module adds two elements in GF (2m) using m two-input XOR gates. The latter one is used

for addition of polynomials in GF (213).

In the sum module, the parity bits of the inputs A and B, and the predicted parities of

the output P are divided into two or three blocks, depending on if two-part signature or

three-part signature is used. If two-part signature is used, the parity bits of A and B are

divided into pA1 and pA2, and pB1 and pB2, respectively. The addition of elements A and B

in GF (2m) produce the predicted parities

p̂P1 = pA1 + pB1

and

p̂P2 = pA2 + pB2.

On the other hand, if three-part signature is used, the parity bits of A are divided into pA1,

pA2, and pA3, and pB1, pB2, and pB3, obtaining the predicted parities

p̂P1 = pA1 + pB1,

p̂P2 = pA2 + pB2,

and

p̂P3 = pA3 + pB3.

In the pass-thru module, the parity bits of the input A and the predicted parities of the

output P are also divided into two or three blocks. If two-part signature is used, the parity

bits of A are multiplied by an element b of GF(2) to obtain the predicted parities

p̂P1 = b · pA1

11

and

p̂P2 = b · pA2.

On the other hand, if three-part signature is used, the predicted parities of output P are

p̂P1 = b · pA1,

p̂P2 = b · pA2,

and

p̂P3 = b · pA3.

Next, for the α module, Theorems 2.1 and 2.2 are derived for two-part signature and three-

part signature, respectively.

Theorem 2.1 Let pA1 =
∑m−1

2
i=0 ai be the first parity for bits of A, and pA2 =

∑m−1
i=m−1

2
+1
ai

be the last parity for bits of A, where m is assumed to be odd, used for the dimension of the

code subspace, and fi ∈ GF (2)fori = 0, 1, . . . ,m − 1. Then, the predicted parities p̂X1 and

p̂X2, are

p̂X1 = am−1 +

m−1
2∑
i=1

(ai−1 + am−1 · fi)

and

p̂X2 =
m−1∑

i=m−1
2

+1

(ai−1 + am−1 · fi).

For m=13, to the following concise formulations are obtained:

p̂X1 = pA1 + a6

and

p̂X2 = pA2 + a6 + a12.

12

Proof. Using the below formulations to calculate the X coordinates [44],

xi =


ai−1 + am−1 · fi 1 ≤ i ≤ m− 1,

am−1 i = 0,

the predicted parity p̂X can be split as

p̂X = am−1 +

m−1
2∑
i=1

(ai−1 + am−1 · fi) +
m−1∑

i=m−1
2

+1

(ai−1 + am−1 · fi) = p̂X1 + p̂X2.

Since p(x) = x13 + x4 + x3 + x + 1, one obtains f13 = f4 = f3 = f1 = f0 = 1, achieving the

concise formulations. This completes the proof.

Theorem 2.2 Let pA1 =
∑bm−1

3
c

i=0 ai be the first parity for bits of A, pA2 =
∑2(bm−1

3
c)+1

i=bm−1
3
c+1

ai be

the second parity for bits of A, and pA3 =
∑m−1

i=2(bm−1
3
c+1)

ai be the last parity for bits of A.

Then, the predicted parities of output X, referred to as p̂X1, p̂X2, and p̂X3), are

p̂X1 = am−1 +

bm−1
3
c∑

i=1

(ai−1 + am−1 · fi),

p̂X2 =

2(bm−1
3
c)+1∑

i=bm−1
3
c+1

(ai−1 + am−1 · fi),

and

p̂X3 =
m−1∑

i=2(bm−1
3
c+1)

(ai−1 + am−1 · fi).

For the case study of m=13, the following concise formulations are obtained:

p̂X1 = pA1 + a4,

p̂X2 = pA2 + a4 + a9,

13

Pi

Pi

Pi

LS
R

Ri-1
Ri

GF(213)
Multi

GF(213)
Multi

GF(213)
Multi

r127 = 0

r127 = 1

r127 > 1

A

g

bi

bi,49

ri,0/ri,127.g0

g

ri,127*g

a0/g0

a0/g0

a1/g1

a1/g1

a127/g127

a127/g127

bi/ri,127

bi/ri,127

bi/ri,127

bi/ri,127

bi/ri,127

bi/ri,127

Error_Flag

Figure 2.1: Goppa multiplication unit with the proposed scheme.

and

p̂X3 = pA3 + a9 + a12.

Proof. The predicted parity p̂X can be split as

p̂X = am−1 +
∑bm−1

3
c

i=1 (ai−1 + am−1 · fi) +
∑2(bm−1

3
c)+1

i=bm−1
3
c+1

(ai−1 + am−1 · fi)+∑m−1
i=2(bm−1

3
c+1)

(ai−1 + am−1 · fi) = p̂X1 + p̂X2 + p̂X3.

This completes the proof.

Fig. 2.1 illustrates the architecture of the Goppa multiplication unit with the proposed

fault detection schemes. It follows a shift-and-add approach with a chain of 127 GF (213)

multiplications, and therefore, a total of 127 signatures are needed. These signatures are

shown as Pi for i=0,1,...,127, and they can be implemented as normal, two-part, or three-

part signatures (depicted by dark-grey, shaded blocks). ai, bi, and gi’s are coefficients of

the field GF (213). Ri is the intermediate result of the 127 multiplications, expressed as

14

Ri =
∑127

j=0 ri,jx
j, where ri,j = biaj mod p(x). The multiplication in Fig. 2.1 is essentially a

schoolbook multiplication. First, ai is multiplied with bi, obtaining Ri. If i 6= 0, Ri is shifted

13 bits using the left shift register (shown as LSR in Fig. 2.1). Then, Ri is reduced depending

on the value of ri,127: If ri,127 = 0, there is no reduction; if ri,127 = 1, Ri is XOR-ed with g ;

and if ri,127 > 1, Ri is XOR-ed with ri,127 · g. Lastly, the reduced result is XOR-ed with the

previous result Ri−1. If a faulty output is detected in any of the 127 GF (213) multiplication

modules, Error Flag is asserted.

2.2.3 Goppa Inversion

To perform Goppa inversion, t GF (2m) inversions are needed. The polynomial variant

of Fermat’s Little Theorem (FLT) is used. FLT achieves higher performance, allowing to

calculate the inverse GF (213) using 12 squarings and 12 multiplications. Next, Theorem 2.3

and Theorem 2.4 are derived for signatures of squaring.

Theorem 2.3 Let pA1 =
∑m−1

2
i=0 ai be the first parity for bits of A, and pA2 =

∑m−1
i=m−1

2
+1
ai

be the last parity for bits of A. Then, the predicted parities of output ν (instead of X to avoid

confusion), referred to as p̂ν1 and p̂ν2, are

p̂ν1 = am−1 · fm−1 + am−2 + am−1 + (am−1 · fm−1 + am−2) · f1+∑m−1
2

i=2 (am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2)

and

p̂ν2 =
m−1∑

i=m−1
2

+1

(am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2).

For the case study of m=13, the following concise formulations are obtained:

p̂ν1 = pA1 + a5 + a6

15

and

p̂ν2 = pA2 + a5 + a6 + a11 + a12.

Proof. The predicted parity p̂ν can be split as

p̂ν = am−1 · fm−1 + am−2 + am−1 + (am−1 · fm−1 + am−2) · f1+∑m−1
2

i=2 (am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2)+∑m−1
i=m−1

2
+1

(am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2)

= p̂ν1 + p̂ν2.

This completes the proof.

Theorem 2.4 Let pA1 =
∑bm−1

3
c

i=0 ai be the first parity for bits of A, pA2 =
∑2(bm−1

3
c)+1

i=bm−1
3
c+1

ai be

the second parity for bits of A, and pA3 =
∑m−1

i=2(bm−1
3
c+1)

ai be the last parity for bits of A.

Then, the predicted parities of output ν, referred to as p̂ν1, p̂ν2, and p̂ν3, are

p̂ν1 = am−1 · fm−1 + am−2 + am−1 + (am−1 · fm−1 + am−2) · f1+∑bm−1
3
c

i=2 (am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2),

p̂ν2 =

2(bm−1
3
c)+1∑

i=bm−1
3
c+1

(am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2),

and

p̂ν3 =
m−1∑

i=2(bm−1
3
c+1)

(am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2).

For the case study of m=13, the following concise formulations are obtained:

p̂ν1 = pA1 + a3 + a4 + a12,

p̂ν2 = pA2 + a8 + a9 + a12,

16

and

p̂ν3 = pA3 + a11 + a12.

Proof.The predicted parity p̂ν can be split as

p̂ν = am−1 · fm−1 + am−2 + am−1 + (am−1 · fm−1 + am−2) · f1+∑bm−1
3
c

i=2 (am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2)+∑2(bm−1
3
c)+1

i=bm−1
3
c+1

(am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2)+∑m−1
i=2(bm−1

3
c+1)

(am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2)

= p̂ν1 + p̂ν2 + p̂ν3.

This completes the proof.

2.2.4 Goppa Square Root

Square root is needed in the decryption process. It is a rather time-consuming task

because first, it multiplies the input polynomial by a matrix Q−1 (a polynomial of order

t and with coefficients of GF (2m) where its rows are formed by the square of a monomial

modulo the Goppa polynomial), and then, it does the square root of each coefficient GF (2m)

obtained. In total, 16,384 finite field multiplications and 128 square roots are needed for the

case study of m=13. Since all the elements are in the field GF (213), 12 GF (213) squarings

are needed to perform the square root of each element.

2.2.5 GGCD, Goppa Inversion, and GCDIPD

Goppa Polynomial Decomposition (GCDIPD) unit performs three different operations

in the Goppa field GF ((2m)t). It finds the Goppa greatest common divisor (GGCD) of

two polynomials of order t, it inverts the syndrome, and it does polynomial decomposition.

To perform such operations, Goppa division, Goppa multiplication, and GF (213) inversion

are needed. The architecture of the proposed fault detection constructions for this unit is

shown in Fig. 2.2, where r stands for remainder, q stands for quotient, α is the intermediate

17

Goppa

Division

P_DIV

P_INV

GF(213)
Inv.

Goppa
Mult.

P_MULT

t1

t2

b

g

b

a

Error_Flag

r

r

q

gcd(g,b) b-1 β

α

Out

Figure 2.2: Goppa greatest common division, Goppa inversion, and Goppa polynomial de-
composition with the error detection scheme.

remainder, and β = (b(x) mod a(x))−1 = t(x). Goppa division and Goppa multiplication

have their own signatures inside their blocks denoted as P DIV and P MULT, respectively,

while the signatures for inversion block are separated in Fig. 2.2, since it performs GF (213)

inversion, instead of Goppa inversion. First, the polynomials t1(x) and t2(x) are set to 1 and

0, respectively. While b(x) 6= 0 : g(x) is divided over b(x) to obtain q(x); g(x) is mod with

b(x) to obtain r(x); t(x) is obtained by performing t2(x)− q(x)t1(x); and lastly, g(x), b(x),

t2(x), and t1(x) are set to b(x), r(x), t1(x), and t(x), respectively. If the degree of r(x) is

less than 25 and the mode is Patterson (which reconstructs the error vector needed in the

process of decryption), α(x) and β(x) are set to r(x) and t(x), respectively. If the mode is

gcd, gcd(g(x), b(x)) is returned. Moreover, if the mode is inverse, r−1(x) is multiplied with

t1(x) to obtain b−1(x). The Error Flag becomes high for faults in any of the polynomial

operations.

18

2.2.6 Goppa Polynomial Evaluation (GPE)

Goppa Polynomial Evaluation (GPE) unit is utilized in the key generation and decryption

processes. Adopting the Horner scheme, it only needs to use a GF (213) multiplier because it

allows removing high-degree polynomial multiplications, e.g., the element f1 + f2α2 + f3α
2
2

is written as f1 + (f2 + f3α2)α2.

2.3 Error Coverage and FPGA Implementations

Since the GPE unit uses less signatures than most of the other units, an analysis is

perform to show the efficiency of the proposed error detection schemes even for the smallest

units of the McEliece cryptosystem. The GPE unit uses the Horner scheme over the Goppa

polynomial, which has order t and coefficients of GF (2m). To perform the Goppa polynomial

evaluation, a total of 128 GF (213) finite field multiplications and 128 GF (213) finite field

additions are required. Each finite field multiplication and addition requires α, sum, and

pass-thru modules. More precisely, a total of 12 α, 12 sum, and 13 pass-thru modules are

needed for each finite field multiplication, and a total of 12 sum modules are required for

each finite field addition. Moreover, the total number of signatures needed in the GPE unit

is 128mult. · (12α+12sum+13pass−thru)+128add. · (12sum) or a total of close to 6 ·103 signatures

for the normal signature scheme. The percentage of error detection is calculated by applying

the formula 100·(1−(1
2
)#sign)%, where #sign is as the total number of signatures. Therefore,

the percentage error coverage by this unit is approximately 100 · (1 − (1
2
)6·10

3
)%, which is

close to 100%. In the two-part signature scheme, for every module, there are two error flags

instead of one (as it is with normal signatures). Moreover, two-part signature scheme uses

2error−flags ·(128mult. ·(12α+12sum+13pass−thru)+128add. ·(12sum)) or a total of close to 1.2·104

signatures, which makes an error percentage of approximately 100 · (1− (1
2
)1.2·10

4
)%. Lastly,

in the three-part signature scheme, for every module, there are three error flags needing

3error−flags · (128mult. · (12α + 12sum + 13pass−thru) + 128add. · (12sum)) or a total of close to

1.8 · 104 signatures with error coverage of 100 · (1− (1
2
)1.8·10

4
)%.

19

Table 2: Overheads of the proposed error detection schemes based of normal signatures (NS),
two-part signatures (2PS), and three-part signatures (3PS) for the GPE unit.

Architecture
Area (occupied

Delay (ns)
Power (mW)

slices) @50 MHz

GPE (Kintex-7) 1370 4.205 0.205
GPE-NS. (Kintex-7) 1447 (5.62%) 4.494 (6.87%) 0.213 (3.90%)
GPE-2PS (Kintex-7) 1484 (8.32%) 4.415 (4.99%) 0.213 (3.90%)
GPE-3PS (Kintex-7) 1487 (8.54%) 4.402 (4.68%) 0.213 (3.90%)

GPE (Spartan-7) 1339 5.386 0.219
GPE-NS (Spartan-7) 1470 (9.78%) 5.461 (1.39%) 0.225 (2.74%)
GPE-2PS (Spartan-7) 1491 (11.35%) 5.431 (0.84%) 0.225 (2.74%)
GPE-3PS (Spartan-7) 1467 (9.57%) 5.440 (1.00%) 0.225 (2.74%)

Error detection schemes are implemented on two different Xilinx FPGA families. The

target platform does not necessarily affect the results because the chosen FPGAs belong to

the same series (Xilinx series 7), being very similar from a technological point of view. The

design entry is Verilog. The proposed error schemes are added to the GPE unit. In Table 2,

the overheads in terms of area (occupied slices), delay, and power (at the frequency of 50

MHz) of the different signatures on the GPE unit are presented. The overheads obtained

are very acceptable, especially since the error detection coverage is close to 100%. There

are several hardware implementations of the McEliece cryptosystem, e.g., [45] and [46]. The

authors in [45] produce a hardware/software implementation which is able to decipher 8,192

bit-length in 47.39 ms. In [46], the authors propose a new variant of McEliece cryptosystem

and its encryption-decryption co-processor based on the generalized non-binary Orthogonal

Latin Square Code (OLSC). The error detection schemes proposed in this work are suitable

for any cryptosystem that uses any of the mentioned Goppa modules such as the works in [45]

and [46]. There has not been any prior work done on this type of error detection methods for

the McEliece cryptosystem to the best of the author’s knowledge. For qualitative comparison

to verify that the overheads incurred are acceptable, let us go over some case studies. The

work in [47] presented signature-based fault diagnosis for cryptographic block ciphers LED

and HIGHT, obtaining a combined area and delay overhead of 21.9% and 31.9% for LED

20

and HIGHT, respectively. Additionally, the authors in [38] propose efficient error detection

architectures of hash-counter-hash tweakable enciphering schemes, obtaining a combined

area and throughput overhead of less than 13.5%. The proposed schemes in this chapter

have combined area and delay overheads of less than 12% (worst-case scenario). Such prior

works on classical cryptography verify that the proposed error detection architectures obtain

acceptable overhead.

21

Chapter 3: Efficient and Low-Power Hardware Constructions for Error

Detection of Key Generation in McEliece Cryptosystem

3.1 Key Generator in the McEliece Cryptosystem

Most of the runtime in the McEliece cryptosystem is spent performing operations in finite

fields for the key generation. Finite field arithmetic operations include addition, subtraction,

multiplication, squaring, and inversion, among which the computation of inversion is the

most time-consuming one. To perform inversion over GF (2m), many solutions have been

proposed to increase the performance of such operation for polynomial basis field element

representation. FLT and ITA are among the main approaches to compute finite field inversion

over GF (2m). The latter approach was first intended to be applied over binary extension

fields with normal basis [48]; however, in more recent studies, it has been shown that it

can be used for other field element representations [49], [50]. These approaches extensively

use multiplication and squaring, requiring thousands of gates. Thus, these constructions are

vulnerable to faults and it is a complex task to implement such architectures resilient to

natural and malicious faults. Not only do these structures need low overhead but the error

coverage needs to be acceptable. Deteriorated performance can lead to catastrophic results

for sensitive applications; accordingly, research has focused on ways to eliminate errors and

achieve greater reliability with reasonable overhead [39], [40], [43], [51], [52], [53], [54], [55].

This chapter focuses on providing countermeasures oblivious to the source of the faults.

Mounting attacks (or having natural defects) in such finite field arithmetic blocks is one

among other possibilities to cause erroneous outputs which is considered in this chapter.

Protecting such blocks in the key generator is highly important, especially when the private

22

key is re-computed from a seed before each decryption operation, so the attacker cannot

target the generation of the same private key repeatedly.

In this dissertation, the first work on error detection based on normal, interleaved, and

CRC signatures for the key generation of code-based cryptosystems is proposed. Error de-

tection and correction is crucial in the key generation, especially for remote systems, e.g.,

satellites, where fault-free key generation is needed for the reliability of the overall system.

Key generation has the highest area complexity and its hardware implementation is thus the

most involved within McEliece. The proposed approach is applicable to the control matrix H

generation in key generation and error detection schemes are also added for other remaining

parts of the key generation block to account for the entire block, with a special focus on the

inversion block. Nevertheless, the underlying blocks which perform operations in finite field

are utilized not only in this architecture but are used in other cryptographic implementa-

tions. Therefore, the derivations here can be extended to be used beyond key generation in

McEliece. In classical cryptography, there has been previous work on countering fault attacks

[38], [43], [54], [55], [56], [57], [58]. Although the approach is derived in this chapter for the

matrix generation in the encryption of McEliece and implemented the result on FPGA, the

proposed approach is applicable to the other important variants of code-based cryptography,

e.g., Niederreiter public key cryptography, and is also oblivious of the platform, expecting

similar results on application-specific integrated circuit (ASIC) hardware platform. Previous

research work [59] implements and analyzes each block of the key encryption independently

to prove that the key generation process is the most expensive operation in the Niederreiter

cryptosystem. The main contributions in this chapter are summarized as follows:

• Derivation of closed formulations for normal, interleaved, and CRC signatures for the

different finite field arithmetic operation blocks, which include addition, subtraction, multi-

plication, squaring, and inversion, of the McEliece public-key cryptosystem. Moreover, error

detection schemes for other remaining parts of the key generation to account for the entire

block are proposed.

23

• To maximize the probability of error detection, the proposed error detection approaches

are used in different blocks of key generation since it is, in general, formed by multiplication

and inversion.

• Analysis of the error coverage by the proposed error detection schemes. The encryption

matrix generator within McEliece cryptosystem is implemented with signatures through the

proposed approaches on FPGA to benchmark the overhead of proposed schemes.

The key generation in MECS (an implementation of the McEliece cryptoprocessor per-

formed in [34]) uses the parameters m, t, and n previously mentioned, and dimension k.

MECS generates a pair of keys: a private key, produced by a generator matrix, and a public

key, which uses a control matrix. First, the key generator randomly creates a monic irre-

ducible polynomial in the form f(α) = αt + ft−1α
t−1 + ... + f1α + f0, with degree t, called

Goppa polynomial. To construct the Goppa polynomial, the coefficients of a basic finite field

GF (2m) are used. Taking m=13 as an example based on the 2017 NIST submission recom-

mendations, the basic finite field contains 8,192 elements, i.e., α0, α1, ..., α8,191, where each

element is a vector of 13 bits. The Goppa polynomial of the field GF (2m) is kept secret since

it is the private key. Based on this private key and three auxiliary matrices denoted as X,

Y, and Z, the control matrix H is generated. Next, to obtain the public key, a permutation

transformation using a random matrix P is performed. This produces a lengthy public key

H̃ which is reduced by first, transforming H̃ into its binary form H2 over GF(2) and next,

into the systematic form G̃ using the matrices Πmt and R. Lastly, G̃ is transposed into G to

obtain its public key which is denoted as RT .

3.2 Proposed Fault Detection Schemes

The fault model in this chapter considers both transient faults and permanent internal

faults (and the proposed schemes are oblivious of these). Based on the used fault model,

stuck-at faults (both stuck-at zero and stuck-at one), adjacent (for interleaved case), and

single/multiple stuck-at faults are considered. This is similar to the notion of predictor

24

in coding theory. In such constructions, for instance in cyclic redundancy check, generator

polynomials are used to derive added redundancy for predicting the signatures and comparing

with the actual ones. Fault analysis attacks are those which intend to recover the private key

by comparing the correct output with the faulty one. The proposed detection architectures

are especially important against fault injection when the private key is recomputed from

a seed before each decryption operation, allowing the attacker to target the generation of

the same private key repeatedly. There are different fault models depending on the type

of attack, e.g., the number of bits affected, how the faults are injected, the location of the

faults, and the fault duration. Therefore, specific countermeasures are needed to make the

McEliece cryptosystem secure against such attacks. Fault analysis attack implementation

exhibits (i) fault injection at physical level (timing, power, heating, light, electromagnetic

field), (ii) fault manifestation at circuit level (logic cells, memory cells), (iii) fault propagation

at micro-architecture level, and finally (iv) fault observation and exploitation at software and

firmware level.

Key generation has the highest area complexity and its hardware implementation is thus

the most involved within McEliece. The most complex and time-consuming sub-block of the

key generator architecture is the “H-generator”. The “H-generator” produces the control

matrix H needed to obtain the public key of the MECS cryptosystem. This part of the

cryptosystem is vulnerable to faults whose aims are to cause algorithm malfunction. In

presenting the respective error detection approaches, the typical compromise between error

detection capabilities of signatures and the overhead to be tolerated are taken into account.

As seen before, the control matrix H is obtained by multiplying the auxiliary matrices

X, Y, and Z. The auxiliary matrix X comes from the “G-generator” which uses a field

polynomial p(x) of degree m (utilized to derive and construct the different parities). For this

architecture, the field polynomial used is p(x) = x13 +x4 +x3 +x+ 1; however, the proposed

approaches are oblivious of the field size. The auxiliary matrix Y is created inside the “H-

generator” by generating the 8,192 elements of the GF (2m) where αi, i ∈ {0, 1, . . . , 8, 191},

25

needing to calculate all the powers from 0 to 127 (we note that three fields within the

composite fields of complex Goppa codes, i.e., GF ((213)128), GF (213), and GF(2), are used

for example in the NIST submission recommendation). Next, Z is constructed by performing

the inversion of f(αi). The first multiplication that takes place is XY. This multiplication

can leverage Horner schemes, increasing the efficiency by performing easier and less time-

consuming multiplications, e.g., the element f1 +f2α2 +f3α
2
2 is written as f1 +(f2 +f3α2)α2.

To perform (XY)Z, αi is multiplied by the correct element available from XY to obtain

f(αi), e.g., to calculate f(α0), the element f1 + f2α2 + f3α
2
0 is multiplied by α0, and so on.

Then, f(αi) is inverted by using GF (2m) inverse.

The multiplicative inverse of an element A 6= 0 in the field GF (2m) is defined as the

process of finding the unique element A−1 εGF (2m) such that A · A−1 = 1. To find the

multiplicative inverse of an element A, both FLT and ITA schemes are studied in this work.

FLT specifies that the inverse of an element A can be derived as follows

A2m−1 ≡ 1 mod p(x)

A2m−2 · A ≡ 1 mod p(x)

A2m−2 · A · A−1 ≡ A−1 mod p(x)

A2m−2 ≡ A−1 mod p(x).

For hardware implementations, this theorem leads to a total of 2m− 2 finite field multiplica-

tions, and it may require additional memory to store the precomputed values. Approaches to

reduce the complexity of finite field inversions have been studied, e.g., square-and-multiply

algorithm [60], Kaliski inversion [61], and ITA algorithm.

The latter method, introduced by Itoh and Tsujii [48], yields dramatic reductions in the

number of multiplications needed in the exponentiation by an efficient use of addition chains.

The inverse can be rewritten as

A−1 = [βm−1(A)]2,

26

where βk(A) = A2k−1 ε GF (2m) and k ε N . In the work of [50], a recursive sequence is

used with an addition chain for m-1 to compute βm−1(A). To calculate an addition chain

C = {c1, c2, . . . , ct} with a field polynomial p(x) of m degree, c1 = 1 and ct = m− 1. If ci is

even, ci−1 = ci/2 and if ci is odd, ci−1 = ci − 1.

Implementing the control matrix H is a costly and complex task. Since all the blocks

of the “H-generator” are constructed through finite field multiplications and inversions over

finite fields GF (2m), normal, interleaved, and CRC signatures are used for these two underly-

ing finite field operations. The first contribution is to develop interleaved and CRC signatures

for GF (2m) addition and multiplication, and normal, interleaved, and CRC signatures for

squaring in GF (2m). The latter three are used for inversion, after the square-and-multiply

scheme (or, for instance, ITMIA scheme) is applied.

Signatures used throughout this chapter refer to a footprint of the output of a block

used for error detection. Signature derivation allows to monitor and detect if there is an

error in the output C of the multiplication of the inputs A and B, where A, B, and C

are in GF (2m). In this chapter, three different schemes for fault detection are proposed:

Normal signatures, interleaved signatures, and CRC signatures. The first two are based on

parity prediction, while the latter one is based on cyclic error-correcting codes. For CRC,

a generator polynomial g(α) is required to implement CRC, which becomes the divisor in a

long division of polynomials. The message becomes as the dividend, the quotient is discarded

and the result is generated by the remainder. A fixed number of check bits are appended to

the data and these check bits are checked when the output is obtained to detect any errors

[62].

To perform polynomial basis multiplications over binary extension fields, the hardware

architecture is divided into three different modules. These modules are called α, sum, and

pass-thru modules. The α module multiplies an element of GF (2m) by α and it reduces

the result modulo F (α). The sum module adds two elements in GF (2m) using m two-input

XOR gates. Finally, the pass-thru module multiplies a GF (2m) element by a GF(2) element.

27

The merit of the proposed work in this chapter is that it is practical for embedded systems

because of its acceptable overhead and high error coverage. Encrypting a test message with

a fresh public key and then decrypting it using the private key to compare it with the

original message would add high performance overhead which might not be acceptable for

constrained usage models.

3.2.1 Normal and Interleaved Signatures

Normal signatures for the α module can be found in [44]. The motivation to this first

derivation is to make sure adjacent faults are also detected. For interleaved parity in the

α module, assuming that A and X are the input and output, respectively, the following

theorem is derived. Without losing generality, let us assume m is odd in this theorem (using

minor tweaks, it can be adopted for even m).

Theorem 3.1 Let pAe =
∑m−1

2
i=0 a2i be the even parity for bits of A, and pAo =

∑m−1
2

i=1 a2i−1

be the odd parity for bits of A, where m is assumed to be odd and is used for the dimension

of the code subspace, and also fi ∈ GF (2) for i = 0, 1, . . . ,m − 1. Then, the even and odd

predicted parities of X, referred to as p̂Xe and p̂Xo, respectively, are

p̂Xe = am−1 +
∑m−1

2
i=1 (a2i−1 + am−1 · f2i)

and

p̂Xo =
∑m−1

2
i=1 (a(2i−1)−1 + am−1 · f2i−1).

For the case study of m=13, the following concise formulations are obtained: p̂Xe = pAo and

p̂Xo = pAe + a12.

28

Proof. Using the below formulations to calculate the X coordinates,

xi =


ai−1 + am−1 · fi 1 ≤ i ≤ m− 1,

am−1 i = 0,

the predicted parity p̂X can be split as

p̂X = am−1 +
∑m−1

i=1 (ai−1 + am−1 · fi) = am−1 +
∑m−1

2
i=1 (a2i−1 + am−1 · f2i)+∑m−1

2
i=1 (a(2i−1)−1 + am−1 · f2i−1) = p̂Xe + p̂Xo.

Since the field polynomial used in this architecture is p(x) = x13+x4+x3+x+1, one obtains

f13 = f4 = f3 = f1 = f0 = 1. Then, p̂Xe = a12 + a1 + a3 + a12 + a5 + a7 + a9 + a11 = pAo and

p̂Xo = a0 + a12 + a2 + a12 + a4 + a6 + a8 + a10 = pAe + a12. This completes the proof.

In the sum module, the even and odd predicted parities of output D, which is the result

of the addition of elements A and B in GF (2m), are referred to as p̂De and p̂Do, respectively,

and are derived as p̂De = pAe + pBe and p̂Do = pAo + pBo.

Lastly, in the pass-thru module, the parity bits of A are also divided into pAe and pAo,

which are multiplied by an element b of GF(2), resulting in the output G. Then, the even

and odd predicted parities of G, referred to as p̂Ge and p̂Go, respectively, are p̂Ge = b · pAe

and p̂Go = b · pAo.

Since for the multiplicative inversion in finite field squaring is used, an architecture which

only uses two modules is utilized, i.e., the α2 and the sum modules. In α2 module, an element

A is multiplied by α2 to achieve:

A(α) · α2 = am−1 · αm+1 + am−2 · αm + ...+ a0 · α2,

where

αm+1 = fm−1 · αm + fm−2 · αm−1 + ...+ f0 · α mod p(x)

29

a0

f1

a1

f2

f3

a2

fm-1

am-2

am-1

x0

x1

x2

x3

xm-1

Figure 3.1: The derived architecture for α2 module, where ai’s and fi’s represent the inputs
and xi’s represent the outputs.

and

αm = fm−1 · αm−1 + fm−2 · αm−2 + ...+ f0 mod p(x),

considering the utilized field polynomial. Therefore, the X coordinates can be written as

xi =


am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2 2 ≤ i ≤ m− 1,

am−1 + (am−1 · fm−1 + am−2) · f1 i = 1,

am−1 · fm−1 + am−2 i = 0.

In Fig. 3.1, the architecture for the α2 module is shown, where a0−am−1 are the coefficients

of input A, f0 − fm−1 stand for the coefficients of the field polynomial p(x), and α0 − αm−1

are the coefficients of output X. Fig. 3.1 shows the formulations derived for α2 module. Two

30

theorems are proposed below for deriving the normal and interleaved signatures of the α2

module.

Theorem 3.2 Let pA =
∑m−1

i=0 ai be the parity for bits of A, where m is used for the dimen-

sion of the code subspace, and also fi ∈ GF (2) for i = 0, 1, . . . ,m − 1. Then, the predicted

parity of X is

p̂X = am−1 · fm−1 + am−2 + am−1 + (am−1 · fm−1 + am−2) · f1+∑m−1
i=2 (am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2).

For the case study of m=13, the following concise formulation is obtained: p̂X = pA+a11+a12.

Proof. The field polynomial used in this architecture is p(x) = x13+x4+x3+x+1. Therefore,

f13 = f4 = f3 = f1 = f0 = 1. Then, one obtains

p̂X = a11 + a12 + a11 + a12 + a0 + a11 + a1 + a12 + a11 + a2 + a12 + a3+

a4 + a5 + a6 + a7 + a8 + a9 + a10 = pA + a11 + a12.

This completes the proof.

Theorem 3.3 Let pAe =
∑m−1

2
i=0 a2i be the even parity for bits of A, and pAo =

∑m−1
2

i=1 a2i−1 be

the odd parity for bits of A, where m is odd and used for the dimension of the code subspace,

and also fi in GF(2) for i = 0, 1, . . . ,m− 1. Then, the even and odd predicted parities of X,

referred to as p̂Xe and p̂Xo, respectively, are

p̂Xe = am−1 · fm−1 + am−2 +
∑m−1

2
i=1 (am−1

·f2i−1 + (am−1 · fm−1 + am−2) · f2i + a2i−2)

and

p̂Xo = am−1 + (am−1 · fm−1 + am−2) · f1

+
∑m−3

2
i=1 (am−1 · f2i + (am−1 · fm−1 + am−2)

·f2i+1 + a2i−1).

31

For the case study of m=13, the following concise formulations are obtained: p̂Xe = pAe+a12

and p̂Xo = pAo + a11.

Proof. The predicted parity p̂X can be split as

p̂X = am−1 · fm−1 + am−2 + am−1 + (am−1 · fm−1 + am−2) · f1+∑m−1
i=1 (am−1 · f2i−1 + (am−1 · fm−1 + am−2) · f2i + a2i−2) = p̂Xe + p̂Xo.

Since the field polynomial used in this architecture is p(x) = x13+x4+x3+x+1, one obtains

f13 = f4 = f3 = f1 = f0 = 1. Then,

p̂Xe = a11 + a12 + a0 + a12 + a11 + a2 + a4 + a6 + a8 + a10 = pAe + a12

and

p̂Xo = a12 + a11 + a11 + a1 + a12 + a3 + a5 + a7 + a9 = pAo + a11.

This completes the proof.

In Table 3, a summary of the different normal and interleaved signatures for the α

and α2 modules is shown. Additionally, Fig. 3.2 illustrates the architecture of the “H-

generator” with the proposed error detection schemes. This architecture allows to perform

the multiplication of matrices X, Y, and Z to obtain the control matrix H. This “H-generator”

can use both normal and interleaved signatures denoted as P1 − P4 in Fig. 3.2. P2 and

P4 blocks are signatures for finite field multiplication operations, as derived in Theorem

3.1. P1 is also for finite field multiplications, after the Horner schemes are applied. P3

block performs normal and interleaved parities for finite field multiplications and squarings,

derived through Theorem 3.1 for the finite field multiplications, and through Theorem 3.2

and Theorem 3.3 for normal and interleaved signatures of finite field squarings, respectively.

Using the derived formulations, one obtains the eventual error indication flag denoted as

H GEN Error in Fig. 3.2, which is the union of four error indication flags through the four

signatures presented in this figure. Below the “H-generator” in Fig. 3.2, the architectures

32

Table 3: Normal and interleaved signatures for the α and α2 modules.

Module Case Study Normal Signatures Interleaved Signatures

α
General

p̂X = am−1 ·
∑m−1

i=1 fi+∑m−1
i=0 ai

p̂Xe = am−1 +
∑m−1

2
i=1 (a2i−1+

am−1 · f2i),
p̂Xo =

∑m−1
2

i=1 (a(2i−1)−1+
am−1 · f2i−1)

m=13 p̂X = pA + a12
p̂Xe = pAo,

p̂Xo = pAe + a12

α2 General

p̂X = am−1 · fm−1 + am−2+
+am−1 + (am−1 · fm−1+
am−2) · f1 +

∑m−1
i=2 (am−1·

fi−1 + (am−1 · fm−1 + am−2)·
fi + ai−2)

p̂Xe = am−1 · fm−1 + am−2+∑m−1
2

i=1 (am−1 · f2i−1 + (am−1·
fm−1 + am−2) · f2i + a2i−2),
p̂Xo = am−1 + (am−1 · fm−1
+am−2) · f1 +

∑m−3
2

i=1 (am−1·
f2i + (am−1 · fm−1 + am−2)

·f2i+1 + a2i−1)

m=13 p̂X = pA + a11 + a12
p̂Xe = pAe + a12,
p̂Xo = pAo + a11

for the α and α2 modules of the normal and interleaved signature blocks are derived as an

example. P1, P2, and P4 use only finite field multiplications, while P3 utilizes both finite

field multiplications and squarings.

3.2.2 CRC Signatures

The choice of the utilized CRCs can be tailored based on the reliability requirements

and the overhead to be tolerated. CRC signatures in the sum and pass-thru modules do not

require as much derivations as the ones needed for α and α2 modules. For the sum module,

the predicted CRC-1 signature p̂x is equal to the sum of the parity bits of the input elements

A and B in GF (2m), p̂X = pA + pB. Moreover, for the pass-thru module, p̂X = b · pA, where

b is an element in GF(2). For any CRC-X scheme, instead of summing all the parity bits

(which is done in CRC-1), it checks X bits at a time in the sum and pass-thru modules. In

the following, the NIST field GF (213) is used with CRC-2 and CRC-8 ; however, the proposed

33

G

Horner

GF(213)
Gen.

GF(213)
Inverse

P3

GF(213)
Mult(2)

P4
GF(213)
Mult(1)

P2

H
gi

x
x.y
x.y.z

αi

P1

H_GEN_Error

g(α)-1

P1 P2 P4= =
pA
a12

pX̑

pX̑epAo
pAe
a12

pX̑o

Normal Sign.
 (Mult.)

Interleaved Sign.
(Mult.)

P3

pA

a12
pX̑

pAe
a12

pX̑e

Normal Sign.
 (Squaring)

Interleaved Sign.
(Squaring)

a11

pAo
a11

pX̑o

α α α α α2

Figure 3.2: The proposed error detection of “H-generator” for MECS with the error detection
blocks for normal and interleaved signatures.

fault detection schemes are applicable to any field size and CRC signature. Additionally, the

field polynomial used is p(x) = x13 + x4 + x3 + x+ 1.

1. CRC for α Module: In the α module, the multiplication of any element in GF (213)

by x gives

A(x) · x = a12 · x13 + a11 · x12 + ...+ a1 · x2 + a0 · x,

where

x13 = f12x
12 + f11x

11 + ...+ f1x+ f0 mod p(x).

34

• For m=13 with CRC-2, the generator polynomial used is g0(x) = x2 + x + 1. To find

its signatures, g0(x) is used as follows,

x2 ≡ x+ 1 mod g0(x)

x3 ≡ 1 mod g0(x)

x4 ≡ xmod g0(x)

x5 ≡ x+ 1 mod g0(x)

x6 ≡ 1 mod g0(x)

x7 ≡ xmod g0(x)

x8 ≡ x+ 1 mod g0(x)

x9 ≡ 1 mod g0(x)

x10 ≡ xmod g0(x)

x11 ≡ x+ 1 mod g0(x)

x12 ≡ 1 mod g0(x).

The irreducible polynomial p(x) = x13 + x4 + x3 + x+ 1 is applied to obtain

A(x) · x ≡ a12x
4 + a12x

3 + a12x+ a12 + a11x
12 + a10x

11 + a9x
10 + a8x

9+

a7x
8 + a6x

7 + a5x
6 + a4x

5 + a3x
4 + a2x

3 + a1x
2 + a0xmod p(x).

Then, the generator polynomial g0(x) is applied to calculate the predicted CRC-2 for

GF (213) in the α module (PCRC213),

A(x) · x ≡ a11 + a10(x+ 1) + a9x+ a8 + a7(x+ 1) + a6x+ a5 + a4(x+ 1)+

a3x+ a2 + a1(x+ 1) + a0xmod g0(x),

or

PCRC213 = (a10 + a9 + a7 + a6 + a4 + a3 + a1 + a0)x+

(a11 + a10 + a8 + a7 + a5 + a4 + a2 + a1).

35

Predicted
CRC-2

Actual
CRC-2

A(x)

a10+a9+a7+a6+a4+a3+a1+a0

E1

E2

γ11+γ10+γ8+γ7+γ5+γ4+γ2+γ1

alpha
module

a11+a10+a8+a7+a5+a4+a2+a1

γ12+γ11+γ9+γ8+γ6+γ5+γ3+γ2+γ0

Figure 3.3: The proposed CRC-2 error detection scheme for the α module.

We rename the coefficients to calculate the actual CRC-2 for GF (213) in the α module

(ACRC213): a11 as γ12,..., a0 as γ1,

A(x) · x ≡ γ12x
12 + γ11x

11 + γ10x
10 + γ9x

9 + γ8x
8 + γ7x

7 + γ6x
6 + γ5x

5+

γ4x
4 + γ3x

3 + γ2x
2 + γ1x

1 + γ0 mod g0(x),

and the generator polynomial is applied as follows

A(x) · x ≡ γ12 + γ11(x+ 1) + γ10x+ γ9 + γ8(x+ 1) + γ7x+ γ6 + γ5(x+ 1)+

γ4x+ γ3 + γ2(x+ 1) + γ1x+ γ0 mod g0(x),

or

ACRC213 = (γ11 + γ10 + γ8 + γ7 + γ5 + γ4 + γ2 + γ1)x+

(γ12 + γ11 + γ9 + γ8 + γ6 + γ5 + γ3 + γ2 + γ0).

Fig. 3.3 illustrates how the error detection scheme based on CRC-2 works in the α module.

36

• For m=13 with CRC-8, the generator polynomial used is g1(x) = x8 + x2 + x+ 1. To

find its signatures, g1(x) is used as follows,

x8 ≡ x2 + x+ 1 mod g1(x)

x9 ≡ x3 + x2 + xmod g1(x)

x10 ≡ x4 + x3 + x2 mod g1(x)

x11 ≡ x5 + x4 + x3 mod g1(x)

x12 ≡ x6 + x5 + x4 mod g1(x).

The irreducible polynomial p(x) = x13 + x4 + x3 + x+ 1 is applied to obtain

A(x) · x ≡ a12x
4 + a12x

3 + a12x+ a12 + a11x
12 + a10x

11 + a9x
10 + a8x

9 + a7x
8+

a6x
7 + a5x

6 + a4x
5 + a3x

4 + a2x
3 + a1x

2 + a0xmod p(x).

Then, the generator polynomial g1(x) is applied to calculate the predicted CRC-8 for

GF (213) in the α module (PCRC813),

A(x) · x ≡ a12(x
4 + x3 + x+ 1) + a11(x

6 + x5 + x4) + a10(x
5 + x4 + x3)+

a9(x
4 + x3 + x2) + a8(x

3 + x2 + x) + a7(x
2 + x+ 1) + a6x

7 + a5x
6+

a4x
5 + a3x

4 + a2x
3 + a1x

2 + a0xmod g1(x),

or

PCRC813 = a6x
7 + (a11 + a5)x

6 + (a11 + a10 + a4)x
5 + (a12 + a11 + a10+

a9 + a3) · x4 + (a12 + a10 + a9 + a8 + a2)x
3 + (a9 + a8 + a7 + a1)x

2+

(a12 + a8 + a7 + a0)x+ (a12 + a7).

We rename the coefficients to calculate the actual CRC-8 for GF (213) in the α module

(ACRC813): a11 as γ12,..., a0 as γ1,

A(x) · x ≡ γ12x
12 + γ11x

11 + γ10x
10 + γ9x

9 + γ8x
8 + γ7x

7 + γ6x
6 + γ5x

5+

γ4x
4 + γ3x

3 + γ2x
2 + γ1x+ γ0 mod g1(x),

37

and the generator polynomial is applied as follows

A(x) · x ≡ γ12(x
6 + x5 + x4) + γ11(x

5 + x4 + x3) + γ10(x
4 + x3 + x2)+

γ9(x
3 + x2 + x) + γ8(x2 + x+ 1) + γ7x

7 + γ6x
6 + γ5x

5 + γ4x
4 + γ3x

3

+γ2x
2 + γ1x+ γ0 mod g1(x),

or

ACRC813 = γ7x
7 + (γ12 + γ6)x

6 + (γ12 + γ11 + γ5)x
5 + (γ12 + γ11 + γ10+

γ4)x
4 + (γ11 + γ10 + γ9 + γ3)x

3 + (γ10 + γ9 + γ8 + γ2)x
2 + (γ9 + γ8 + γ1)x

+(γ8 + γ0).

Next, for α2 module, the NIST field GF (213) is used with CRC-2 and CRC-8 ; however, the

proposed fault detection schemes are applicable to any field size and CRC signature.

2. CRC for α2 Module: In the α2 module, the multiplication of any element in GF (213)

by x gives

A(x) · x2 = a12 · x14 + a11 · x13 + ...+ a1 · x3 + a0 · x2,

where

x14 = f12x
13 + f11x

12 + ...+ f1x
2 + f0x mod p(x)

and

x13 = f12x
12 + f11x

11 + ...+ f1x+ f0 mod p(x).

• For m=13 with CRC-2, the irreducible polynomial p(x) = x13 + x4 + x3 + x + 1 is

applied to obtain

A(x) · x2 ≡ a12x
5 + a12x

4 + a12x
2 + a12x+ a11x

4a11x
3 + a11x+ a11+

a10x
12 + a9x

11 + a8x
10 + a7x

9 + a6x
8 + a5x

7 + a4x
6 + a3x

5 + a2x
4+

a1x
3 + a0x

2 mod p(x).

38

Then, the generator polynomial g0(x) is applied to calculate the predicted CRC-2 for

GF (213) in the α2 module (PCRC213),

A(x) · x2 ≡ a10 + a9(x+ 1) + a8x+ a7 + a6(x+ 1) + a5x+ a4+

a3(x+ 1) + a2x+ a1 + a0(x+ 1) mod g0(x),

or

PCRC213 = (a9 + a8 + a6 + a5 + a3 + a2 + a0)x+ (a10 + a9+

a7 + a6 + a4 + a3 + a1 + a0).

We rename the coefficients to calculate the actual CRC-2 for GF (213) in the α2 module

(ACRC213), obtaining the same formulations as for the α module.

• For m=13 with CRC-8, the irreducible polynomial p(x) = x13 + x4 + x3 + x + 1 is

applied to obtain

A(x) · x2 ≡ a12x
5 + a12x

4 + a12x
2 + a12x+ a11x

4a11x
3 + a11x+ a11+

a10x
12 + a9x

11 + a8x
10 + a7x

9 + a6x
8 + a5x

7 + a4x
6 + a3x

5 + a2x
4+

a1x
3 + a0x

2 mod p(x).

Then, the generator polynomial g1(x) is applied to calculate the predicted CRC-8 for

GF (213) in the α2 module (PCRC813),

A(x) · x2 ≡ a12(x
5 + x4 + x2 + x) + a11(x

4 + x3 + x+ 1) + a10(x
6 + x5+

x4) + a9(x
5 + x4 + x3) + a8(x

4 + x3 + x2) + a7(x
3 + x2 + x) + a6(x

2+

x+ 1) + a5x
7 + a4x

6 + a3x
5 + a2x

4 + a1x
3 + a0x

2 mod g1(x)

or

PCRC813 = a5x
7 + (a10 + a4)x

6 + (a12 + a10 + a9 + a3)x
5 + (a12+

a11 + a10 + a9 + a8 + a2)x
4 + (a11 + a9 + a8 + a7 + a1)x

3 + (a12+

a8 + a7 + a6 + a0)x
2 + (a12 + a11 + a7 + a6)x+ (a11 + a6).

39

Table 4: Different CRC signatures for the α and α2 modules.

Module CRC Predicted CRC signatures Actual CRC signatures

α

CRC-2

(a10 + a9 + a7 + a6 + a4+
a3 + a1 + a0)x+ (a11+
a10 + a8 + a7 + a5 + a4+

a2 + a1)

(γ11 + γ10 + γ8 + γ7 + γ5 + γ4+
γ2 + γ1)x+ (γ12 + γ11 + γ9+
γ8 + γ6 + γ5 + γ3 + γ2 + γ0)

CRC-8

a6x
7 + (a11 + a5)x

6+
(a11 + a10 + a4)x

5 + (a12+
a11 + a10 + a9 + a3) · x4+

(a12 + a10 + a9 + a8+
a2)x

3 + (a9 + a8 + a7+
a1)x

2 + (a12 + a8 + a7+
a0)x+ (a12 + a7)

γ7x
7 + (γ12 + γ6)x

6 + (γ12+
γ11 + γ5)x

5 + (γ12 + γ11+
γ10 + γ4)x

4 + (γ11 + γ10 + γ9+
γ3)x

3 + (γ10 + γ9 + γ8 + γ2)x
2+

(γ9 + γ8 + γ1)x+ (γ8 + γ0)

α2

CRC-2

(a9 + a8 + a6 + a5 + a3+
a2 + a0)x+ (a10 + a9+
a7 + a6 + a4 + a3 + a1+

a0)

(γ11 + γ10 + γ8 + γ7 + γ5 + γ4+
γ2 + γ1)x+ (γ12 + γ11 + γ9+
γ8 + γ6 + γ5 + γ3 + γ2 + γ0)

CRC-8

a5x
7 + (a10 + a4)x

6+
(a12 + a10 + a9 + a3)x

5+
(a12 + a11 + a10 + a9 + a8+
a2)x

4 + (a11 + a9 + a8+
a7 + a1)x

3 + (a12 + a8+
a7 + a6 + a0)x

2 + (a12+
a11 + a7 + a6)x+ (a11

+a6)

γ7x
7 + (γ12 + γ6)x

6 + (γ12 + γ11
+γ5)x

5 + (γ12 + γ11 + γ10 + γ4)x
4

+(γ11 + γ10 + γ9 + γ3)x
3 + (γ10

+γ9 + γ8 + γ2)x
2 + (γ9 + γ8+

γ1)x+ (γ8 + γ0)

We rename the coefficients to calculate the actual CRC-8 for GF (213) in the α2 module

(ACRC813), obtaining the same formulations as for the α module.

In Table 4, the different CRC signatures proposed in this work for the α and α2 modules

are shown.

3.3 Error Coverage and FPGA Implementations

As mentioned earlier, finite field multiplications use three different modules (α, sum, and

pass-thru modules), squarings use two modules (α2 and sum modules), and XOR operations

use only the sum module. Since m=13, for bit-parallel structures using normal signatures,

12 α, 12 sum, and 13 pass-thru modules are needed in each finite field multiplication; 12 α2,

40

Table 5: Steps to perform the inverse of A ε GF (213) using addition chain.

Step βVi(x) βVj+Uk
(x) Exponentiation

1 β1(x) - A

2 β2(x) β1+1(x) (β1)
21β1 = A22−1

3 β3(x) β2+1(x) (β2)
21β1 = A23−1

4 β6(x) β3+3(x) (β3)
23β3 = A26−1

4 β12(x) β6+6(x) (β6)
26β6 = A212−1

and 12 sum modules in finite field squaring; and 12 sum modules in finite field addition. For

normal signatures, the number of signatures used by each Pi, 1 ≤ i ≤ 4, block is calculated

as follows:

1. For deriving the matrix multiplication XY, a 128 × 128 matrix X is created. Then,

Horner implementation is applied to perform effective polynomial evaluations. For each

column of XY (which is a 128× 8, 192 matrix), 127 finite field multiplications and 127 XOR

operations are used. Therefore, for the Horner block, 8, 192 ·127 ·(12+12+13) signatures for

multiplications and 8, 192 · 127 · 12 signatures for XOR operations are needed, which makes

a total of more than 5 · 107 signatures.

2. For deriving Z, first, the Mult.(1) block in Fig. 3.2 performs 8,192 multiplications and

8,192 XOR operations. Therefore, 8, 192 · (12 + 12 + 13) signatures for multiplications, and

8, 192 · 127 · 12 signatures for XOR operations are needed, which makes a total of more than

107 signatures.

3. Next, for the inverse block, 8,192 inversions are needed. The addition chain C obtained

is C = {1, 2, 3, 6, 12}. The computational steps to calculate the inverse of A ε GF (213) using

such addition chain are illustrated in Table 5, where Vi are the integers in the addition chain,

Vj = Vi−1, and Uk = Vi − Vj. As it is shown in Table 5, 4 finite field multiplications and 12

finite field squaring are required. Each multiplication in GF (213) uses 12 sum modules, 12

α modules, and 13 pass-thru modules; on the other hand, each squaring in GF (213) uses 12

sum modules and 12 α2 modules. Therefore, the total number of operations and signatures

is 8, 192 · (4 · (12 + 12 + 13) + 12 · (12 + 12)) or close to 3.6 · 106.

41

Table 6: Implementation results on Xilinx FPGA family Kintex-7 for device xc7k70tfbv676-1.

Architecture
Area (occupied

Delay (ns)
Power (mW)

slices) @50 MHz

Horner block 2976 28.267 0.144
Horner Normal Sign. 3138 (5.44%) 28.541 (Neg.) 0.147 (Neg.)
Horner Inter. Sign. 3402 (14.31%) 29.410 (Neg.) 0.157 (9.03%)
Horner CRC-2 Sign. 3285 (10.38%) 28.850 (Neg.) 0.154 (6.94%)
Horner CRC-8 Sign. 3572 (20.03%) 29.803 (5.43%) 0.158 (9.72%)

Inversion block 783 28.820 0.101
Inversion Normal Sign. 976 (24.65%) 29.013 (Neg.) 0.108 (6.93%)
Inversion Inter. Sign. 1083 (38.31%) 28.995 (Neg.) 0.110 (8.91%)
Inversion CRC-2 Sign. 1121 (43.17%) 28.720 (Neg.) 0.112 (10.89%)
Inversion CRC-8 Sign. 1166 (48.91%) 31.124 (7.99%) 0.113 (11.88%)

4. Lastly, to obtain XYZ, a total of 8, 192 · 128 multiplications are performed. Therefore,

for the Mult.(2) block in Fig. 3.2, 8, 192 · 128 · (12 + 12 + 13) signatures for multiplications

are needed, which makes a total of approximately 3 · 107 signatures.

5. After generating the control matrix H, other operations are performed. The control

matrix is permutated by multiplying it with a random permutation matrix P. The signatures

can be integrated into the Ĥ generator since it performs close to 8.6 · 109 multiplications

(8, 192 · 8, 192 · 128) and also close to 8.6 · 109 additions (8, 192 · 8, 192 · 128) of 13 bit-vectors.

The key generation also uses the Gauss Systemizer block, which performs row permutation

and XOR addition of two rows. Permutation in this case can be accomplished by rewiring,

not modifying the signatures. Lastly, in the XOR addition of two rows, the signatures

described here are added, since it performs XOR addition between vectors of 13 bits.

To calculate the error coverage percentage of the proposed signatures, the following for-

mula 100 · (1 − (1
2
)#sign)% is used, where the number of signatures is denoted as #sign.

Therefore, the high error coverage percentage with the proposed normal signatures is ap-

proximately 100 · (1− (1
2
)10

8
)%, the error coverage percentage with the proposed interleaved

and CRC-2 signatures is 100 · (1 − (1
2
)2·10

8
)%, and the error coverage percentage with the

proposed CRC-8 signatures is 100·(1−(1
2
)8·10

8
)%. Furthermore, for local faults, one will only

42

take into account the signatures needed for one of the four blocks in the proposed scheme

depicted in Fig. 3.2. As an example, if the faults are confined to the inversion block, the

error coverage is 100 · (1− (1
2
)3.6·10

6
)% for normal signatures, 100 · (1− (1

2
)7.2·10

6
)% for inter-

leaved and CRC-2 signatures, and 100 · (1− (1
2
)2.9·10

7
)% for CRC-8 signatures. In Table 6,

the overhead of the error detection architectures in terms of area (occupied slices), delay,

and power (at the frequency of 50 MHz) for Horner and inversion blocks is presented. The

different architectures have been implemented on Xilinx FPGA family Kintex-7. However,

the target platform does not necessarily affect the results because of platform-obliviousness

of the schemes. As shown in Table 6, when larger signatures are applied to the original

architectures, with higher error coverage, they end up having higher overhead in terms of

area and power. In terms of delay, the overheads difference is minimal and it varies ac-

cording to the gates used in each architecture. Additionally, it can be seen that the bigger

the entire architecture is, the less overhead is obtained. The inversion block performs less

operations than the Horner block, which makes the overall overheads larger. Interleaved and

CRC-2 signatures are very similar since both have the same number of error flags, while

CRC-8 is the most expensive error detection scheme. This is expected since CRC signatures

perform more operations ending up having higher error coverage, as seen in the assessments.

The proposed schemes in this chapter have combined area and delay overheads of less than

49% (worst-case scenario for the inversion block with CRC-8 signatures) and more than 5%

(best-case scenario for the Horner block with normal signatures). The choice of the utilized

signatures can be tailored based on the reliability requirements and the overhead to be toler-

ated. The overhead achieved is acceptable taking into account the very high error coverage

of close to 100%.

43

Chapter 4: CRC-Oriented Error Detection Schemes Assessed on FPGA for

the Niederreiter Key Generator

4.1 Niederreiter Cryptosystem

The Niederreiter cryptosystem is a variant of code-based cryptography, similar to the

McEliece cryptosystem. At first, the Niederreiter cryptosystem used Reed-Salomon codes,

but it has been proven that the Niederreiter cryptosystem is more secure using binary Goppa

codes than Reed-Salomon codes, since the latter can be broken [63]. Researchers have

developed other variants of the Niederreiter cryptosystem by using different codes other than

binary Goppa codes such as quasi-cyclic codes and quasi-dyadic codes. The aim has been

to lower the key size. While it is shown that other variants of the Niederreiter cryptosystem

do not show particular weaknesses [64], [65], [66], it has been shown that the Niederreiter

cryptosystem using binary Goppa codes is more secure against fault injection attacks than

its variants [67]. Moreover, the size of the parameters is a high determining factor in the

security of the cryptosystem. In this work, the chosen sizes for its binary field m are 11 ≤

m ≤ 14. This is one of the merits of this work, not getting confined to one field size. The

security parameters submitted to NIST in late 2017 [8] were for m=13. However, there exist

prominent other works with different security parameters based on security necessities and

system constraints [30], [59], [68], [69]. Therefore, the work in this chapter provides flexibility

and tunable security by covering such works as well.

There has been previous work on countering fault attacks and providing reliability for

PQC [40], [55], [70], and [71]. The authors in [40] and [55] perform fault detection for

stateless hash-based PQC signatures; in [70], the authors use error detection schemes of

number-theoretic transform; and the authors in [71] investigate several countermeasures

44

based on error detection checksum codes, and spatial/temporal redundancies for the NTRU

encryption algorithm. Even though Niederreiter is based on error-correcting codes, it has

been previously shown that it is vulnerable to fault injection attacks in the key generation

process [67]. Redundancy is used in hardware implementations to achieve error control and

reliability increase at the expense of area, delay, or product. These redundancy schemes

can be classified into four different categories: Hardware, time, hybrid, and information

redundancy. Hardware redundancy duplicates the function and compares both outputs,

highly increasing the overhead. Time redundancy computes the function twice and compares

both results, obtaining a significant delay overhead on the system. Hybrid redundancy

performs the inverse of one part of the function, or the inverse of the whole function, which

can suffer from more than 100% throughput. Lastly, information redundancy adds some

check bits along the function and it validates when the result is obtained, producing some

area overhead depending on the system implemented.

The Niederreiter cryptosystem consists of three operations: key generation, encryption,

and decryption. The work performed in this chapter focuses on the key generation, which

is the most expensive operation in the Niederreiter cryptosystem. In this process, a public

key needed for the encryption of the message and a private key needed to decrypt the

message are created. There are four important parameters, which can highly affect how

secure the cryptosystem is: m, which is the extension field dimension; t, which is the number

of correctable errors; the code length n; and the dimension k.

To create the private and public keys, n elements in GF (2m) are chosen randomly, i.e.,

α0, α1, ..., αn−1. Next, a monic irreducible polynomial in the form g(α) = αt + gt−1α
t−1 +

...+ g1α+ g0, with degree t is created. A parity check matrix H is then computed with the

following form:

45

H =



1
g(α0)

1
g(α1)

· · · 1
g(αn−1)

α0

g(α0)
α1

g(α1)
· · · αn−1

g(αn−1)

...
...

. . .
...

αt−1
0

g(α0)

αt−1
1

g(α1)
· · · αt−1

n−1

g(αn−1)


.

Computing H is a costly process since it performs addition, multiplication, and inversion

in GF (2m). In this chapter, the inversion is derived with squaring and multiplications by

employing the polynomial variant of FLT to obtain a better performance. To get the binary

parity check matrix, each element of the matrix H is replaced with a column of m bits.

Lastly, the key generator transforms the modified mt × n H matrix to its systematic form

[Πmt|K], and returns the public key K and the private key (g(x), (α0, α1, ..., αn−1)).

In the process of encryption, the sender encodes the message as an error vector e of

length n and weight at most t and computes the ciphertext by multiplying the public parity

matrix H. Such operation produces a specific syndrome which is sent to the receiver as the

ciphertext c. When the receiver obtains such ciphertext, the original plaintext is recovered

by using the private key (g(x), (α0, α1, ..., αn−1)). The decryption process takes polynomial

time by using an efficient syndrome decoding algorithm of the binary Goppa code. Since

this chapter focuses mainly on the key generation, readers interested in other aspects of the

Niederreiter cryptosystem can refer to [72].

4.2 Proposed Fault Detection Schemes

Fault analysis attacks are those which intend to recover the private key by comparing

the correct output with the faulty one. The proposed detection architectures are especially

important against fault injection when the private key is re-computed from a seed before

each decryption operation, allowing the attacker to target the generation of the same private

key repeatedly.

46

Table 7: Security parameters used to derive the different fault detection schemes proposed.

m t n k

11 40 2,048 1,608
12 67 3,408 2,604
13 119 6,960 5,413
14 15 16,384 16,174

In this chapter, different fault detection schemes based on normal and interleaved sig-

natures, CRC-3, and CRC-4 are proposed. These schemes aim to detect transient and

permanent internal faults on the key generator. In fault attacks (intentional, malicious fault

injections), preferably, single-bit faults using the stuck-at model are injected. By repeatedly

comparing the erroneous and error-free outputs, the last sub-key is derived, and eventually,

the secret key is compromised (noting the technological constraints, an attacker may not be

able to inject a single stuck-at fault; therefore, multiple bits might be flipped). The stuck-at

fault model (both single and multiple) is able to model both natural and malicious faults

and thus is utilized throughout this chapter to achieve this twofold goal of the proposed

schemes [73]. This is one of the reasons that adjacent stuck-at faults need to be considered

in fault models as well. Such fault models consider both malicious faults and also natural

faults based on stuck-at faults considered in this chapter. Normal parity detects 1-bit errors,

which is useful when 1-bit or an odd number of bits are affected. Interleaved parity is used

for 2-bit error detection, and it is proposed when faults are adjacent since it divides the pre-

dicted parities into an odd-term and an even-term part. Lastly, the CRCs proposed in this

chapter (CRC-3 and CRC-4) allow multiple error detections by detecting 3 -bit and 4 -bit

errors. To implement CRC, a generator polynomial gp(β) is required and a fixed number of

check bits are appended to the data to detect any errors [62]. In the error schemes proposed

in this chapter, the formulations for predicted CRC signatures are compared via XOR gates

with the actual CRC.

47

The main operations within the key generator of the Niederreiter cryptosystem are

GF (2m) addition, GF (2m) multiplication, and GF (2m) inversion. The proposed error detec-

tion architectures can be embedded in the original blocks of the key generator. The security

parameters used are shown in Table 7, where it can be seen how m varies from 12 to 14

bits, which appears in [69], [59], [30], and [68], respectively. Moreover, the set for m=13

corresponds to the Classic McEliece NIST submission [8].

4.2.1 GF (2m) Addition and GF (2m) Multiplication

To perform GF (2m) addition, the sum module described in [44] is used. GF (2m) multipli-

cation is done in three different modules: sum, α, and pass-thru modules. The sum module

adds two elements in GF (2m) using m two-input XOR gates; the α module multiplies an

element of GF (2m) by α and it reduces the result modulo F (α); and the pass-thru module

multiplies a GF (2m) element by a GF(2) element.

In multiplication using polynomial basis, the inputs A and B are elements of GF (2m) in

the form of

A =
m−1∑
i=0

aiα
i, ai ε {0, 1}

and

B =
m−1∑
i=0

biα
i, bi ε {0, 1},

where αi and bi are the coordinates of each input. The multiplication of these two elements

can be represented as:

A ·B = A ·
m−1∑
i=0

biα
i =

m−1∑
i=0

bi(Aα
i).

This, in turn, obtains the output C as follows:

C = A ·B mod F (α) =
m−1∑
i=0

biX
(i),

48

where

X(i) = α ·X(i−1) mod F (α), 1 ≤ i ≤ m− 1

X(0) = A.

1. Normal Signature: For the sum and pass-thru modules, the predicted parities of the

output p̂x are calculated with the same formulations for all m’s. For the sum module, p̂x is

equal to the sum of the parity bits of the input elements A and B in GF (2m), p̂X = pA+pB.

Moreover, for the pass-thru module, p̂X = b · pA, where b is an element in GF(2). Lastly, for

the α module, p̂X = pA + am−1.

2: Interleaved Signature: To find the predicted parities of the output X, the parity bits

of A and B are divided into even parity bits, p̂Ae and p̂Be, and odd parity bits, p̂Ao and p̂Bo.

For the sum module, p̂Xe = pAe + pBe and p̂Xo = pAo + pBo for all m’s. Furthermore, for the

pass-thru module, p̂Xe = b · pAe and p̂Xo = b · pAo for all m’s.

The multiplication of any element in GF (2m) by α gives

A(α) · α = am−1α
m + am−2α

m−1 + ...+ a0α.

In the α module, if m is odd then the parity bits of element A are divided into pAe =
∑m−1

2
i=0 a2i

and pAo =
∑m−1

2
i=1 a2i−1, obtaining:

p̂Xe = am−1 +
∑m−1

2
i=1 (a2i−1 + am−1 · f2i)

and

p̂Xo =
∑m−1

2
i=1 (a(2i−1)−1 + am−1 · f2i−1).

Moreover, if m is even then the parity bits of element A are divided into pAe =
∑m−2

2
i=0 a2i

and pAo =
∑m

2
i=1 a2i−1, obtaining:

p̂Xe = am−1 +
∑m−2

2
i=1 (a2i−1 + am−1 · f2i)

49

Table 8: Predicted interleaved parities for different m’s in the α module.

m Predicted Even Parity Predicted Odd Parity

11

pAo

pAe + a10
12 pAe + a11
13 pAe + a12
14 pAe + a13

and

p̂Xo =
∑m

2
i=1(a(2i−1)−1 + am−1 · f2i−1).

In Table 8, the predicted interleaved parities for the different m’s in the α module are

presented. The derivations and proofs of these are not presented for the sake of brevity.

3. Cyclic Redundancy Check: For the sum and pass-thru modules, it follows the same

approach as the parity checks. However, instead of 1-bit or 2-bit checks as shown previously

for the normal and interleaved signatures, respectively; it checks 3 bits and 4 bits at a time

for CRC-3 and CRC-4, respectively. For the α module, gp1(β) = β3 + β + 1 is used as

the generator polynomial for CRC-3, and gp2(β) = β4 + β + 1 is used as the generator

polynomial for CRC-4. To find the different signatures for each m, the fixed polynomials

gp1(β) and gp2(β) are used, respectively.

According to gp1(β):

β3 ≡ β + 1 mod gp1(β)

β4 ≡ β2 + β mod gp1(β)

β5 ≡ β3 + β2 ≡ β2 + β + 1 mod gp1(β)

...

β13 ≡ β3 + β2 + β ≡ β2 + 1 mod gp1(β).

According to gp2(β):

50

Table 9: Different CRC signatures for α module when m=11 and m=12.

m CRC Predicted CRC Signature Actual CRC Signatures

11

3
(a10 + a8 + a5 + a4 + a3 + a1)α

2

+(a9 + a7 + a4 + a3 + a2 + a0)α
+(a10 + a9 + a6 + a5 + a4 + a2)

(γ9 + γ6 + γ5 + γ4 + γ2)α
2

+(γ10 + γ8 + γ5 + γ4 + γ3
+γ1)α + (γ10 + γ7 + γ6

+γ5 + γ3 + γ0)

4

(a8 + a6 + a5 + a2)α
3 + (a10 + a9

+a7 + a5 + a4 + a1)α
2 + (a9 + a8

+a6 + a4 + a3 + a0)α + (a10 + a9
+a7 + a6 + a3)

(γ9 + γ7 + γ6 + γ3)α
3

+(γ10 + γ8 + γ6 + γ5 + γ2)
·α2 + (γ10 + γ9 + γ7 + γ5

+γ4 + γ1)α + (γ10 + γ8 + γ7
+γ4 + γ0)

12

3
(a10 + a8 + a5 + a4 + a3 + a1)α

2

+(a10 + a9 + a7 + a4 + a3 + a2
+a0)α + (a9 + a6 + a5 + a4 + a2)

(γ11 + γ9 + γ6 + γ5 + γ4
+γ2)α

2 + (γ11 + γ10 + γ8
+γ5 + γ4 + γ3 + γ1)α + (γ10

+γ7 + γ6 + γ5 + γ3 + γ0)

4

(a11 + a10 + a8 + a6 + a5 + a2)α
3

+(a11 + a10 + a9 + a7 + a5 + a4+
a1)α

2 + (a10 + a9 + a8 + a6 + a4
+a3 + a0)α + (a9 + a7 + a6 + a3)

(γ11 + γ9 + γ7 + γ6 + γ3)α
3

+(γ11 + γ10 + γ8 + γ6 + γ5
+γ2)α

2 + (γ11 + γ10 + γ9 + γ7
+γ5 + γ4 + γ1)α + (γ10 + γ8

+γ7 + γ4 + γ0)

β4 ≡ β + 1 mod gp2(β)

β5 ≡ β2 + β mod gp2(β)

β6 ≡ β3 + β2 mod gp2(β)

...

β13 ≡ β4 + β3 + β2 + β ≡ β3 + β2 + 1 mod gp2(β).

Applying these generator polynomials, the CRC-3 and CRC-4 signatures are obtained

for the different m’s as shown in Table 9 and Table 10. To clarify this process, the case for

m=11 is explained below.

If m=11,

A(α) · α = a10α
11 + a9α

10 + ...+ a1α
2 + a0α.

Then, applying the irreducible polynomial p(α) = α11 + α2 + 1, one obtains

51

Table 10: Different CRC signatures for α module when m=13 and m=14.

m CRC Predicted CRC Signature Actual CRC Signatures

13

3

(a12 + a11 + a10 + a8 + a5 + a4
+a3 + a1)α

2 + (a12 + a11 + a10
+a9 + a7 + a4 + a3 + a2 + a0)α
+(a11 + a9 + a6 + a5 + a4 + a2)

(γ12 + γ11 + γ9 + γ6 + γ5
+γ4 + γ2)α

2 + (γ12 + γ11
+γ10 + γ8 + γ5 + γ4 + γ3

+γ1)α + (γ12 + γ10 + γ7 + γ6
+γ5 + γ3 + γ0)

4

(a12 + a11 + a10 + a8 + a6 + a5
+a2)α

3 + (a11 + a10 + a9 + a7
+a5 + a4 + a1)α

2 + (a11 + a10
+a9 + a8 + a6 + a4 + a3 + a0)α

+(a11 + a9 + a7 + a6 + a3)

(γ12 + γ11 + γ9 + γ7 + γ6
+γ3)α

3 + (γ12 + γ11 + γ10
+γ8 + γ6 + γ5 + γ2)α

2 + (γ12
+γ11 + γ10 + γ9 + γ7 + γ5
+γ4 + γ1)α + (γ12 + γ10

+γ8 + γ7 + γ4 + γ0)

14

3

(a13 + a12 + a11 + a10 + a8 + a5
+a4 + a3 + a1)α

2 + (a11 + a10
+a9 + a7 + a4 + a3 + a2 + a0)α
+(a12 + a11 + a9 + a6 + a5 + a4

+a2)

(γ13 + γ12 + γ11 + γ9 + γ6
+γ5 + γ4 + γ2)α

2 + (γ12 + γ11
+γ10 + γ8 + γ5 + γ4 + γ3

+γ1)α + (γ13 + γ12 + γ10 + γ7
+γ6 + γ5 + γ3 + γ0)

4

(a13 + a12 + a11 + a10 + a8 + a6 + a5
+a2)α

3 + (a12 + a11 + a10 + a9 + a7
+a5 + a4 + a1)α

2 + (a13 + a11 + a10
+a9 + a8 + a6 + a4 + a3 + a0)α
+(a12 + a11 + a9 + a7 + a6 + a3)

(γ13 + γ12 + γ11 + γ9 + γ7
+γ6 + γ3)α

3 + (γ13 + γ12
+γ11 + γ10 + γ8 + γ6 + γ5

+γ2)α
2 + (γ12 + γ11 + γ10 + γ9

+γ7 + γ5 + γ4 + γ1)α + (γ13
+γ12 + γ10 + γ8 + γ7 + γ4 + γ0)

A(α) · α ≡ a10α
2 + a10 + a9α

10 + a8α
9

+a7α
8 + a6α

7 + a5α
6 + a4α

5 + a3α
4

+a2α
3 + a1α

2 + a0αmod p(α).

To calculate the predicted CRC-3 for m=11 in the α module (PCRC311), the generator

polynomial is applied as follows

A(α) · α ≡ a10α
2 + a10 + a9(α + 1) + a8α

2 + a7α

+a6 + a5(α
2 + 1) + a4(α

2 + α + 1) + a3(α
2 + α)

+a2(α + 1) + a1α
2 + a0αmod g1(α)

52

or

PCRC311 = (a10 + a8 + a5 + a4 + a3

+a1)α
2 + (a9 + a7 + a4 + a3 + a2 + a0)

·α + (a10 + a9 + a6 + a5 + a4 + a2).

Lastly, to calculate the actual CRC-3 for m=11 in the α module (ACRC311), the coef-

ficients are renamed: a9 as γ10,..., a10 + a1 as γ2,a0 as γ1, and a10 as γ0,

A(α) · α = γ10α
10 + γ9α

9 + γ8α
8 + γ7α

7 + γ6α
6

+γ5α
5 + γ4α

4 + γ3α
3 + γ2α

2 + γ1α
1 + γ0,

and the generator polynomial is applied as follows,

A(α) · α = γ10(α + 1) + γ9α
2 + γ8α

1 + γ7 + γ6(α
2

+1) + γ5(α
2 + α + 1) + γ4(α

2 + α) + γ3(α + 1)

+γ2α
2 + γ1α

1 + γ0 mod g1(α),

or

ACRC311 = (γ9 + γ6 + γ5 + γ4 + γ2)α
2

+(γ10 + γ8 + γ5 + γ4 + γ3 + γ1)α

+(γ10 + γ7 + γ6 + γ5 + γ3 + γ0).

4.2.2 GF (2m) Inversion

To perform GF (2m) inversion, the schemes on this chapter are based on FLT, which ap-

plies traditional exponentiation techniques to solve A−1 = A2m−2
, requiring m-2 multiplica-

tions and m-1 squarings. Another algorithm to perform GF (2m) inversion was introduced by

Itoh and Tsujii (ITA), which is based on the observation that 1+2+22+· · ·+2m−2 can be de-

composed as 1+2n+22n+· · ·+2(k−2)n as shown in [74], requiring blog2(m− 1)c+H2(m−1)−1

multiplications (where H2(m− 1) is the Hamming weight) and m-1 squarings. Next, an ex-

ample for both FLT and ITA for m=14 is done to clarify the differences.

53

• For ITA:

A−1 = A2m−2 = A214−2 = A2(1+2+···+212). Then, (1 + 2 + · · ·+ 212)

can be written as:

1 + 2 + · · ·+ 212 = 1 + 2× (1 + 2)×

(1 + 22)× (1 + 24 × (1 + 24)).

• For FLT:

A−1 = A2m−2 = A214−2 = A16382 = ((((((((((((A2

×A)2 × A)2 × A)2 × A)2 × A)2 × A)2 × A)2

×A)2 × A)2 × A)2 × A)2 × A)2.

Since both methods use multiplications and squarings in Galois fields, FLT and ITA can

be used with the proposed error detection approaches for finite field multiplication presented

in this chapter. The goal is not to compare such inversion methods but to emphasize that

the proposed schemes for the sub-blocks of these schemes can be generally used for both. In

other words, the above formulae for both schemes have multiplication as the main building

blocks, for which error detection are proposed.

Fault detection schemes for GF (2m) squaring are presented below. GF (2m) squaring

uses the sum module and an α2 module instead of the α module presented previously. In

the α2 module, an element A is multiplied by α2 to achieve:

A(α) · α2 = am−1α
m+1 + am−2α

m + ...+ a0α
2

.For normal and interleaved parities,

αm+1 = fm−1α
m + fm−2α

m−1 + ...+ f0α mod p(x)

54

Table 11: Predicted parities for the different m’s in the α2 module.

m Parity Type Predicted Parity

11
Normal pA + a10 + a9

Interleaved
pAe + a10 Even
pAo + a9 Odd

12
Normal pA + a11 + a10

Interleaved
pAe + a11 Even
pAo + a10 Odd

13
Normal pA + a12 + a11

Interleaved
pAe + a12 Even
pAo + a11 Odd

14
Normal pA + a13 + a12

Interleaved
pAe + a13 Even
pAo + a12 Odd

and

αm = fm−1α
m−1 + fm−2α

m−2 + ...+ f0 mod p(x).

1. Normal Signature: By following the previous equations, one can obtain the predicted

parity of X as

p̂X = am−1 · fm−1 + am−2 + am−1 + (am−1

·fm−1 + am−2) · f1 +
∑m−1

i=2 (am−1 · fi−1

+(am−1 · fm−1 + am−2) · fi + ai−2).

In Table 11, the predicted parities for the different m’s in the α2 module are presented.

2. Interleaved Signature: To obtain the predicted even and odd parities of X in the α2

module, the previous equations are used to obtain

p̂Xe = am−1 · fm−1 + am−2 +
∑m−1

2
i=1 (am−1

·f2i−1 + (am−1 · fm−1 + am−2) · f2i + a2i−2)

and

p̂Xo = am−1 + (am−1 · fm−1 + am−2) · f1 +
∑m−3

2
i=1 (am−1 · f2i

+(am−1 · fm−1 + am−2) · f2i+1 + a2i−1).

55

Table 12: Different CRC signatures for α2 module when m=11 and m=12.

m CRC Predicted CRC Signature

11

3
(a9 + a7 + a4 + a3 + a2 + a0)α

2

+(a8 + a6 + a3 + a2 + a1)α + (a10
+a9 + a8 + a5 + a4 + a3 + a1)

4

(a10 + a7 + a5 + a4 + a1)α
3 + (a9

+a8 + a6 + a4 + a3 + a0)α
2 + (a10

+a8 + a7 + a5 + a3 + a2)α + (a9
+a8 + a6 + a5 + a2)

12

3
(a9 + a7 + a4 + a3 + a2 + a0)α

2

+(a9 + a8 + a6 + a3 + a2 + a1)α
+(a8 + a5 + a4 + a3 + a1)

4

(a11 + a10 + a9 + a7 + a5 + a4
+a1)α

3 + (a10 + a9 + a8 + a6
+a4 + a3 + a0)α

2 + (a11 + a9
+a8 + a7 + a5 + a3 + a2)α
+(a11 + a8 + a6 + a5 + a2)

In Table 11, the predicted interleaved parities for the different m’s in the α2 module are

presented.

3. Cyclic Redundancy Check: The element A is multiplied by α2; therefore, the actual

and predicted CRCs for the different values of m differ. In Table 12 and Table 13, the

predicted CRC signatures for the α2 module are presented (the actual CRC signatures of

the α2 module are the same as the ones from the α module). To clarify this process, m=14

is used as an example to show how the predicted CRC-4 and actual CRC-4 are calculated.

First,

A(α) · α2 = a13α
15 + a12α

14 + ...+ a1α
3 + a0α

2.

Then, applying the irreducible polynomial p(α) = α14 + α8 + α6 + α + 1, one obtains

A(α) · α2 = a13α
9 + a13α

7 + a13α
2 + a13α + a12α

8a12α
6 + a12α + a12 + a11α

13 + a10α
12

+a9α
11 + a8α

10 + a7α
9 + a6α

8 + a5α
7 + a4α

6 + a3α
5 + a2α

4 + a1α
3 + a0α

2.

56

Table 13: Different CRC signatures for α2 module when m=13 and m=14.

m CRC Predicted CRC Signature

13

3

(a12 + a11 + a10 + a9 + a7 + a4
+a3 + a2 + a0)α

2 + (a12 + a11
+a10 + a9 + a8 + a6 + a3 + a2
+a1)α + (a12 + a10 + a8 + a5

+a4 + a3 + a1)

4

(a11 + a10 + a9 + a7 + a5 + a4
+a1)α

3 + (a10 + a9 + a8 + a6
+a4 + a3 + a0)α

2 + (a12 + a10
+a9 + a8 + a7 + a5 + a3 + a2)α
+(a12 + a10 + a8 + a6 + a5 + a2)

14

3

(a12 + a11 + a10 + a9 + a7 + a4
+a3 + a2 + a0)α

2 + (a13 + a10
+a9 + a8 + a6 + a3 + a2 + a1)α
+(a13 + a11 + a10 + a8 + a5 + a4

+a3 + a1)

4

(a12 + a11 + a10 + a9 + a7 + a5
+a4 + a1)α

3 + (a13 + a11 + a10
+a9 + a8 + a6 + a4 + a3 + a0)α

2

+(a13 + a12 + a10 + a9 + a8 + a7
+a5 + a3 + a2)α + (a13 + a11

+a10 + a8 + a6 + a5 + a2)

To calculate the predicted CRC-4 for m=14 in the α2 module (PCRC4142), the generator

polynomial is applied as follows:

A(α) · α2 = a13(α
3 + α) + a13(α

3 + α + 1) + a13α
2

+a13α + a12(α
2 + 1) + a12(α

3 + α2) + a12α + a12

+a11(α
3 + α2 + 1) + a10(α

3 + α2 + α + 1) + a9(α
3

+α2 + α) + a8(α
2 + α + 1) + a7(α

3 + α) + a6(α
2

+1) + a5(α
3 + α + 1) + a4(α

3 + α2) + a3(α
2 + α)

+a2(α + 1) + a1α
3 + a0α,

57

or

PCRC414 = (a12 + a11 + a10 + a9 + a7

+a5 + a4 + a1)α
3 + (a13 + a11 + a10 + a9 + a8

+a6 + a4 + a3 + a0)α
2 + (a13 + a12 + a10 + a9

+a8 + a7 + a5 + a3 + a2)α + (a13 + a11 + a10

+a8 + a6 + a5 + a2).

Lastly, to calculate the actual CRC-4 for m=14 in the α2 module (ACRC4142), the

coefficients are renamed: a12 as γ13,, a13 + a0 as γ1, and a13 as γ0,

A(α) · α2 = γ13α
13 + γ12α

12 + γ11α
11 + γ10α

10

+γ9α
9 + γ8α

8 + γ7α
7 + γ6α

6 + γ5α
5 + γ4α

4

+γ3α
3 + γ2α

2 + γ1α
1 + γ0,

and again, the generator polynomial is applied as follows:

A(α) · α2 = γ13(α
3 + α2 + 1) + γ12(α

3 + α2 + α + 1)

+γ11(α
3 + α2 + α) + γ10(α

2 + α + 1) + γ9(α
3 + α)

+γ8(α
2 + 1) + γ7(α

3 + α + 1) + γ6(α
3 + α2) + γ5(α

2

+α) + γ4(α + 1) + γ3α
3 + γ2α

2 + γ1α
1 + γ0

or

ACRC4142 = (γ12 + γ11 + γ10 + γ9 + γ7 + γ5

+γ4 + γ1)α
3 + (γ13 + γ11 + γ10 + γ9 + γ8 + γ6

+γ4 + γ3 + γ0)α
2 + (γ13 + γ12 + γ10 + γ9 + γ8

+γ7 + γ5 + γ3 + γ2)α + (γ13 + γ11 + γ10 + γ8

+γ6 + γ5 + γ2).

In Fig. 4.1, the proposed architecture with CRC-3 or CRC-4 signatures is presented.

As shown in Fig. 4.1, three or four error indication flags denoted as eα0, eα1, eα2, and eα3

are obtained to indicate if an error has been found using CRC-3 or CRC-4, respectively.

58

α/α(2)

Predicted
CRC
module

Actual
CRC
module

A(α) eα0

eα1

eα2

eα3

α/α(2) module

Figure 4.1: The proposed error detection of the α and α2 modules using CRC signatures
(CRC-3 and CRC-4).

This figure represents the α module as well as the α2 module. The XOR gates are used

to compare the outputs of the CRC modules. The output from the actual CRC module is

divided into 3 or 4 sub-outputs (CRC-3 or CRC-4, respectively) and they are compared

with the sub-outputs of the predicted CRC module.

4.3 Error Coverage and FPGA Implementations

To calculate the error coverage provided by the different error detection schemes presented

in this chapter, the total number of operations need to be taken into account. Computing

H is a costly process since it performs addition, multiplication, and inversion in GF (2m).

First, to obtain a polynomial g(α) for α ε (α0, α1, . . . , αn−1), n finite field multiplications

and n × t XOR operations are needed. Each finite field multiplication uses three different

modules. A total of m-1 α modules, m-1 sum modules, and m pass-thru modules are needed

to perform each finite field multiplication; and a total of m-1 sum modules are needed to

perform an XOR operation. Next, a total of n inversions are needed. Depending on the

value of m, a different number of squaring and multiplications will be needed to perform

each inversion. To perform a finite field square operation, m-1 α2 modules and m-1 sum

59

modules are needed. After that, the results are multiplied by n distinct elements in GF (2m),

needing an extra n× t finite field multiplications.

Each of the modules requires one, two, three, or four signatures depending on the choice

of normal parity, interleaved parity, CRC-3, or CRC-4, respectively. For each value of m,

the error coverage percentage is calculated as follows:

1. For m=11, a total of 2,048 finite field multiplications and 81,920 XOR operations

are needed to obtain a polynomial g(αi); each inverse calculation can be derived by 10

squaring and 9 multiplication operations for f(α), or a total of 20,480 squarings and 18,432

multiplications; and lastly, 81,920 finite field multiplications are needed to multiply the

previous outputs by n distinct elements in GF (2m). Therefore, a total of 2, 048 · (10 + 10 +

11) + 81, 920 · (10) + 20, 480 · (10) · (10) + 18, 432 · (9) · (10) + 81, 920 · (10 + 10 + 11) or close to

7.1× 106, 1.4× 107, 2.1× 107, or 2.8× 107 normal, interleaved, CRC-3, or CRC-4 signatures

are needed, respectively.

2. For m=12, a total of 3, 408 · (11 + 11 + 12) + 228, 336 · (11) + 37, 488 · (11) · (11) +

34, 080 · (10) · (11) + 228, 336 · (11 + 11 + 12) or close to 1.8 × 107, 3.7 × 107, 5.6 × 107, or

7.5× 107 normal, interleaved, CRC-3, or CRC-4 signatures are needed, respectively.

3. For m=13, a total of 6, 960 · (12 + 12 + 13) + 828, 240 · (12) + 83, 520 · (12) · (12) +

76, 560 ·(11) ·(12)+828, 240 ·(12+12+13) or close to 6×107, 1.2×108, 1.9×108, or 2.5×108

normal, interleaved, CRC-3, or CRC-4 signatures are needed, respectively.

4. For m=14, a total of 16, 384 · (13 + 13 + 14) + 245, 760 · (13) + 212, 992 · (13) · (13) +

196, 608 · (12) · (13) + 245, 760 · (13 + 13 + 14) or close to 8 × 107, 1.6 × 108, 2.4 × 108, or

3.2× 108 normal, interleaved, CRC-3, or CRC-4 signatures are needed, respectively.

The lowest percentage (representing the worst case scenario) of error coverage will be

obtained by applying normal parity with m=11, where the error coverage percentage is

100(1− (1
2
)7.1×10

6
)%. In Table 14, the overhead of the error detection architectures in terms

of area (occupied slices), delay, and power (at the frequency of 50 MHz) are presented for

the Horner block, where finite field multiplications and additions of a polynomial g(α) are

60

Table 14: Overheads of the proposed error detection schemes for the Horner Unit using
m=14 on Xilinx FPGA family Spartan-7 and also Xilinx FPGA family Artix-7.

Architecture
Area (occupied

Delay (ns)
Power (mW)

slices) @50 MHz
Horner (Spartan-7) 191 5.97 0.116

Horner-Parity (Spartan-7) 206 (7.85%) 5.629 (0.57%) 0.117 (0.86%)
Horner-CRC3 (Spartan-7) 235 (23.03%) 5.782 (3.31%) 0.121 (4.31%)
Horner-CRC4 (Spartan-7) 242 (26.70%) 5.725 (2.29%) 0.121 (4.31%)

Horner (Artix-7) 190 5.517 0.110
Horner-Parity (Artix-7) 200 (5.26%) 5.627 (1.99%) 0.111 (0.91%)
Horner-CRC3 (Artix-7) 233 (22.63%) 5.598 (1.47%) 0.116 (5.45%)
Horner-CRC4 (Artix-7) 242 (27.37%) 5.749 (4.21%) 0.116 (5.45%)

Table 15: Overheads of the proposed error detection schemes for the entire Key Generator
using the parameters m=13, t=119, and n=6,960 on Xilinx Kintex UltraScale+ FPGA.

Architecture
Area

Delay (ns)
Power (mW)

(CLBs) @50 MHz
Key Gen. (adopted from [9]) 7942 9.404 0.844

Key Gen. with CRC-3 8282 (4.28%) 9.695 (3.09%) 0.849 (0.59%)
Key Gen. with CRC-4 8301 (4.52%) 9.918 (5.47%) 0.851 (0.83%)

applied. To calculate the overheads, the implementations are performed in two different

FPGA families and devices. As shown in Table 14, when CRC signatures are applied to

the original architecture, with higher error coverage, they end up having higher overhead

in terms of area, delay, and power. This is expected since CRC signatures perform more

operations ending up having higher error coverage, as seen in the assessments.

Moreover, the proposed error detection schemes are added for the “modified” Key Gen-

erator adopted from [59]. The presented implementations are performed using Xilinx Vivado

with the parameters m=13, t=119, and n=6,960 on Xilinx Kintex Ultrascale+ FPGA. The

implementation results for original work and the presented error detection schemes are shown

in Table 15 in terms of area, delay/frequency, power, throughput, and efficiency. As seen in

this table, acceptable overheads are obtained with efficiency degradation of at most 8.8%.

61

Chapter 5: Reliable CRC-Based Error Detection Constructions for Finite

Field Multipliers with Applications in Cryptography

5.1 Finite Field Multipliers in Luov’s Cryptosystem

2Many modern, sensitive applications and systems use finite field operations in their

schemes. Finite field multipliers perform multiplication modulo an irreducible polynomial

used to define the finite field. For post-quantum cryptography (PQC), the inputs can be

very large and the finite field multipliers may require millions of logic gates. Therefore, it

is a complex task to implement such architectures resilient to natural and malicious faults;

consequently, research has focused on ways to eliminate errors and obtain more reliability

with acceptable overhead [38], [54],, [55], [51], [76], [77]. Moreover, there has been previous

work on countering fault attacks and providing reliability for PQC. In [70], Sarker et al.

use error detection schemes of number-theoretic transform to detect both permanent and

transient faults. Mozaffari Kermani et al. perform fault detection for stateless hash-based

PQC signatures in [40]. Additionally, error detection hash trees for stateless hash-based

signatures are proposed in [78] to make such schemes more reliable against natural faults

and help protecting them against malicious faults. In [56], algorithm-oblivious constructions

are proposed through recomputing with swapped ciphertext and additional authenticated

blocks, which can be applied to the GCM architectures using different finite field multi-

pliers in GF (2128). Several countermeasures based on error detection checksum codes and

spatial/temporal redundancies for the NTRU encryption algorithm have been presented in

[71].

2This chapter was published in the IEEE Transactions on Very Large Scale Integration (VLSI) Systems
[75] ©2020 IEEE.

62

In this chapter, finite fields GF (2m) with m¿1 are considered. The polynomials that such

multipliers use as inputs have the form

p(x) = am−1x
m−1 + ...+ a1x+ a0,

with degree m-1 and ai ε GF (2). To reduce the output, the finite field multiplier uses an

irreducible polynomial or field polynomial

f(x) = xt + ft−1x
t−1 + ...+ f1x+ f0,

with degree t and fi ε GF (2). The multiplication of elements A and B is represented as

A(x)×B(x)mod f(x).

Luov is a multivariate public key cryptosystem and an adaptation of the Unbalanced Oil

and Vinegar (UOV) signature scheme, but there is a restriction on the coefficients of the

public key. Instead, the scheme uses two finite fields, one is the binary field of two elements,

the other is its extension of degree m. F2 is the binary field and F2m is its extension of degree

m. The central map F : Fn2m → Fo2m is a quadratic map, where o and v satisfy n = o + v,

αi,j,k, βi,k and γk are chosen from the base field F2, and whose components f1, . . . , fo are in

the form:

fk(x) =
v∑
i=1

n∑
j=i

αi,j,kxixj +
n∑
i=1

βi,kxi + γk.

The aim of this chapter is to provide countermeasures against natural faults and fault

injections for the finite field multipliers used in cryptosystems such as the Luov algorithm

as a case study, noting that the proposed error detection schemes can be adapted to other

applications and cryptographic algorithms whose building blocks need finite field multipli-

cations. Readers interested in more details about the Luov’s cryptographic algorithm are

encouraged to refer to [79].

63

5.2 Proposed Fault Detection Schemes

As seen in previous chapters, the multiplication of any two elements A and B of GF (2m),

following the approach in [44], can be presented as

A ·B mod f(x) =
m−1∑
i=0

bi · ((Aαi) mod f(x)) =
m−1∑
i=0

bi ·X(i),

where the set of αi’s is the polynomial basis of element A, the set of bi’s is the B coefficients,

f(x) is the field polynomial, X(i) = α · X(i−1) mod f(x), and X(0) = A. Fault injection can

occur in any of these modules and formulations for parity signatures in GF (2m) are derived

in [44].

In this work, the main goal is the derivation of error detection schemes that provide

a broader and higher error coverage than parity signatures (the major drawback of parity

signatures is that their error coverage is approximately 50%, i.e., if the number of faults is

even, the approach would not be able to detect the faults) and explore the application of

such schemes to the Luov algorithm. Thus, CRC signatures [80] are derived and applied to

the finite field multipliers used in Luov algorithm. This would be a step forward towards

detecting natural and malicious intelligent faults, especially and as discussed in this chapter,

considering both primitive and standardized CRCs with different fault multiplicity coverage.

The entire finite field multiplier with the proposed error detection schemes is shown in

Fig. 5.1, where ACRC and PCRC stand for actual CRC signatures and predicted CRC

signatures, respectively. In Fig. 5.1, only one error flag (EF) is shown for clarity; however,

for CRC-5, which is the case study proposed in this work, 5 error flags are computed on each

module. In Fig. 5.2, the α module is shown more in depth to clarify how the proposed CRC

signatures work in each finite field multiplier.

For the sum and pass-thru modules, it follows the approach as for parity signatures

described in [44]. For the sum module in CRC-1, p̂x is equal to the sum of the parity bits

of the input elements A and B in GF (2m), p̂X = pA + pB. Furthermore, for the pass-thru

64

α
module

ACRC

PCRC

EF

α
module

ACRC

PCRC

EF

pass_thru
module ACRC

PCRC

EF

pass_thru
module ACRC

PCRC

EF

ACRC

PCRC

EF

sum
module

b0 b1

α
module

ACRC

PCRC

EF

pass_thru
module ACRC

PCRC

EF

ACRC

PCRC

EF

bm-1

α	array
A(x)

C = AB
sum

module
sum

module

X(0)
X(1) X(2) X(m-1)

Figure 5.1: Finite field multiplier with the proposed error detection schemes based on CRC.

module in CRC-1, p̂X = b·pA, where b is an element in GF(2). For any other CRC-n scheme,

instead of summing all the bits, it checks n bits at a time in the sum and pass-thru modules.

For the α module:

A(x) · x = am−1 · xm + am−2 · xm−1 + ...+ a0 · x,

for which a set of derivations is needed to implement CRC-n into it. In these chapter, four

different generator polynomials are studied. The generator polynomial g0(x) = x5 +x3 + 1 is

one of the standards used for radio-frequency identification [62]. The other three generator

polynomials g1(x) = x5+x2+1, g2(x) = x5+x4+x2+x+1, and g3(x) = x5+x4+x3+x2+1

are primitive polynomials. The benefit of using a primitive polynomial as the generator that

the resulting code has full total block length, which means that all 1-bit errors within that

block length have separate remainders. Moreover, since the remainder is a linear function of

the block, all 2-bit errors within that block length can be identified.

For the α module of the Luov’s finite field multipliers, g0(x) = x5 + x3 + 1 is used as

the standardized generator polynomial for CRC-5. To find its CRC signatures, this fixed

65

polynomial is used as follows:

x5 ≡ x3 + 1 mod g0(x)

x6 ≡ x4 + xmod g0(x)

x7 ≡ x5 + x2 ≡ x3 + x2 + 1 mod g0(x)

...

x15 ≡ x2 + 1 mod g0(x).

According to the previous equations, A(x) · x = a15 · x16 + a14 · x15 + ...+ a1 · x2 + a0 · x.

Then, applying the irreducible polynomial f(x) = x16 + x12 + x3 + x+ 1, one obtains

A(x) · x ≡ a15x
12 + a15x

3 + a15x+ a15 + a14x
15

+a13x
14 + a12x

13 + a11x
12 + a10x

11 + a9x
10

+a8x
9 + a7x

8 + a6x
7 + a5x

6 + a4x
5 + a3x

4

+a2x
3 + a1x

2 + a1xmod f(x).

To calculate the predicted CRC-5 for GF (216) in the α module (PCRC516), the generator

polynomial is applied as

A(x) · x ≡ a15(x
4 + x3 + x2 + x) + a15x

3 + a15x+ a15

+a14(x
2 + x) + a13(x+ 1) + a12(x

4 + x2 + 1) + a11(x
4

+x3 + x2 + x) + a10(x
3 + x2 + x+ 1) + a9(x

4 + x

+1) + a8(x
4 + x3 + x2 + 1) + a7(x

4 + x3 + x) + a6(x
3

+x2 + 1) + a5(x
4 + x) + a4(x

3 + 1) + a3x
4 + a2x

3

+a1x
2 + a0xmod g0(x)

,

66

or

PCRC516 = (a15 + a12 + a11 + a9 + a8 + a7

+a5 + a3)x
4 + (a12 + a11 + a9 + a8 + a7 + a6

+a4 + a2)x
3 + (a15 + a14 + a12 + a11 + a10 + a8

+a6 + a1)x
2 + (a14 + a13 + a11 + a10 + a9 + a7

+a5 + a0)x+ (a15 + a13 + a12 + a10 + a9 + a8

+a6 + a4).

To calculate the actual CRC-5 for GF (216) in the α module (ACRC516), the coefficients

are renamed: a14 as γ15,..., a0 as γ1,

A(x) · x ≡ γ15x
15 + γ14x

14 + γ13x
13 + γ12x

12+

γ11x
11 + γ10x

10 + γ9x
9 + γ8x

8 + γ7x
7+

γ6x
6 + γ5x

5 + γ4x
4 + γ3x

3 + γ2x
2 + γ1x

1+

γ0 mod g0(x),

and the generator polynomial is applied as follows

A(x) · x ≡ γ15(x
2 + x) + γ14(x+ 1) + γ13(x

4 + x2 + 1)

+γ12(x
4 + x3 + x2 + x) + γ11(x

3 + x2 + x+ 1) + γ10(x
4

+x+ 1) + γ9(x
4 + x3 + x2 + 1) + γ8(x

4 + x3 + x)

+γ7(x
3 + x2 + 1) + γ6(x

4 + x) + γ5(x
3 + 1) + γ4x

4

+γ3x
3 + γ2x

2 + γ1x
1 + γ0 mod g0(x)

or

ACRC516 = (γ13 + γ12 + γ10 + γ9 + γ8 + γ6

+γ4)x
4 + (γ13 + γ12 + γ11 + γ9 + γ8 + γ7 + γ5

+γ3)x
3 + (γ15 + γ13 + γ12 + γ11 + γ9 + γ7 + γ2)

·x2 + (γ15 + γ14 + γ12 + γ11 + γ10 + γ8 + γ6 + γ1)

·x+ (γ14 + γ13 + γ11 + γ10 + γ9 + γ7 + γ5 + γ0).

67

α
Module

Predicted
CRC
module

Actual
CRC
module

A(x)

EF_1

EF_5

EF_4

EF_3

EF_2

xp1

xp2

xp4

xp5

xp3

xa1

xa2

xa4

xa5

xa3

Figure 5.2: The proposed error detection constructions for α module.

The predicted output and the actual output are divided into five parity groups. These

parity groups are XORed with each other to determine if there has been any fault, e.g.,

flip of bits, during the α module operation. In total, each α module outputs five error

flags. Fig. 5.2 shows the implementation of the α module with the proposed error detection

schemes. A(x) is the input with the form p(x) = am−1x
m−1 + ... + a1x + a0, which goes to

two different modules that run in parallel. The output from the α module is divided into

5 groups in the actual CRC module, which are denoted as x1a − x5a in Fig. 5.2. Meanwhile,

A(x) is also being divided into 5 groups in the predicted CRC module, which are denoted

as x1p − x5p. Once the two CRC modules are done, each group is XORed with its respective

one to produce 5 error flags, which are represented as EF1 − EF5. As an example, to

obtain EF1, x
1
p (or a15 + a13 + a12 + a10 + a9 + a8 + a6 + a4 for g0(x)) is XORed with x1a (or

γ14 +γ13 +γ11 +γ10 +γ9 +γ7 +γ5 +γ0 for g0(x)). For this case study, the outputs are divided

into 5 groups since CRC-5 is used; however, if any other CRC-n is used, there will be n

error flags and the actual and predicted outputs will be divided into n groups. The choice

68

of the utilized CRC can be tailored based on the reliability requirements and the overhead

to be tolerated.

5.3 Error Coverage and FPGA Implementations

Luov polynomial generation is implemented to show that the proposed error detection

schemes provide high error coverage with acceptable overhead. Such implementation pro-

duces a polynomial p(x) = am−1x
m−1 + ...+a1x+a0, which requires m-1 finite field multipli-

cations and m-1 XOR operations. As pointed out before, each finite field multiplication uses

three different modules called α, sum, and pass-thru modules. A total of m-1 α modules,

m-1 sum modules, and m pass-thru modules are needed to perform each finite field multi-

plication. Moreover, a total of m-1 sum modules are needed to perform an XOR operation.

For each architecture, the error coverage is calculated as 100 · (1 − (1
2
)sign)%, where sign

denotes the number of signatures.

Luov uses the finite field GF (216), or m=16. Implementing its polynomials in the form of

p(x) = a15x
15 + ...+ a1x+ a0 requires 14 finite field multiplications and 15 XOR operations.

Since each finite field multiplication uses m-1 α modules, m-1 sum modules, and m pass-

thru modules, 14 × 15 α modules, 14 × 15 sum modules, and 14 × 16 pass-thru modules

are needed. Moreover, a total of 14multiplications · (15α + 15sum + 16pass−thru) + 15xor or 659

signatures are implemented. The error coverage percentage for the generation of Luov’s

polynomial using the finite field GF (216) is 100 · (1 − (1
2
)659)%. In Table 16, the overhead

of the proposed error detection architectures is presented in terms of area (CLBs), delay,

and power consumption (at the frequency of 50 MHz) for the generation of polynomial p(x)

where p(x) = am−1x
m−1 + ...+ a1x+ a0.

Xilinx FPGA family Kintex Ultrascale+ for device xcku5p-ffvd900-1-i is utilized, using

Verilog as the hardware design entry and Vivado as the tool for the implementations. As

shown in Table 16, when CRC signatures are applied to the original architecture, with higher

error coverage, they end up having higher overhead in terms of area, delay, and power.

69

Table 16: Overheads of the proposed error detection schemes for the finite field multipliers
used in the Luov algorithm during the polynomial generation on Xilinx FPGA family Kintex
Ultrascale+ for device xcku5p-ffvd900-1-i.

Architecture
Area

Delay (ns)
Power (mW)

(CLBs) @50 MHz
Luov Multiplier 120 4.044 0.465

Luov Multiplier-CRC5-g0(x) 139 (15.83%) 4.194 (3.71%) 0.466 (' 0%)
Luov Multiplier-CRC5-g1(x) 134 (11.67%) 4.242 (4.90%) 0.466 (' 0%)
Luov Multiplier-CRC5-g2(x) 131 (9.17%) 4.252 (5.14%) 0.466 (' 0%)
Luov Multiplier-CRC5-g3(x) 142 (18.33%) 4.499 (11.25%) 0.466 (' 0%)

Configurable logic blocks (CLBs), which are the main resources for implementing general-

purpose combinational and sequential circuits, are read in the Vivado’s place utilization

report to obtain the area. To determine the delay, the Timing Constraints Wizard function in

Vivado is used, setting a primary clock period constraint of 20 ns, which equals to a frequency

of 50 MHz. The total on-chip power is also reported, which is the power consumed internally

within the FPGA and it is obtained by adding device static power and design power. As seen

in this table, acceptable overheads are obtained with efficiency degradations of at most 19%.

The error detection architecture that uses the primitive generator polynomial g2(x) has the

least amount of area overhead with 9.17%; however, the error detection implementation using

g0(x), or the standardized generator polynomial for CRC-5, performs the fastest, obtaining

the least amount of delay overhead with 3.71%. These degradations are acceptable for

providing error detection to the original architectures which lack such capability to thwart

natural or malicious faults.

70

Chapter 6: CRC-Oriented Error Detection Schemes for Fast Inversions in

GF (2m) Normal Basis

6.1 Finite Field Inversions

In the previous chapters, finite field arithmetic with polynomial basis have been studied.

This chapter explores finite field operations over GF (2m) with normal basis. Normal basis

has been used in many works such as [81], [82], [83], [84], and [85]. The importance of finite

field inversions with normal basis has attracted researchers to investigate many different

approaches in an effort to reduce the size, delay, and power of such designs [86], [87], [88].

In this chapter, new error detection approaches for the well-known ITA algorithm, based in

the FLT algorithm, are proposed.

Binary fields with normal basis are of special interest for hardware constructions since

the squaring is done by simply performing a cyclic right shift. However, some works have

been focusing on either proposing faster finite field inversion constructions or in modifying

the finite field multipliers used in such architectures [74], [89], [90], [91]. In [89], the authors

present new architectures for digit-level single, hybrid-double, and hybrid-triple multiplica-

tion over GF (2m) elements based on the Gaussian normal basis (GNB) representation. In a

more recent work, the authors of [90] propose two new inversion architectures, an improved

architecture for classic inversion scheme using a single multiplier and a novel fully-serial-in

square-multiply processor. In [74] and [91], authors perform fast inversion over GF (2m) by

using single and hybrid-double multipliers. Lastly, other works such as [92], [93], and [94]

explore different modifications of the ITA. To the best of the author’s knowledge, this is the

first work that uses cyclic redundancy check (CRC) signatures to obtain secure finite field

inversions over GF (2m) with normal basis using the well-known ITA. Some previous works

71

perform concurrent error detection in classical and post-quantum cryptography, e.g., [55],

[95], [76] [96], and [97], and some in bit-serial and digit-normal basis multiplication using

parity prediction such as those in [98] and [99], respectively. However, as it has been men-

tioned previously, the main concern with parity prediction schemes is that the error coverage

percentage is at most 50%, since if the natural or injected faults are even, the predicted par-

ity bit will be the same as the original parity bit. The contributions in this chapter can be

summarized as follows:

1. Error detection schemes for finite field inversion in GF (2m) with normal basis are

proposed, used in many different traditional and post-quantum cryptographic algorithms.

Even though these error detection schemes are based on CRC-3, larger CRCs can be used

by applying the similar derivations as presented in this chapter.

2. Formulations for error detection in finite field inversion employing FLT and ITA are

derived and verified by performing software implementations. m=7 is used for the sake of

brevity as a case example. Nonetheless, the error detection schemes presented in this chapter

can be applied to any other NIST field [100]. This will allow generalizing the scheme to be

used in classical and post-quantum cryptographic algorithms and implementations.

3. The proposed fault-detection architectures are embedded into the original finite

field inversion to benchmark the overhead/degradation tolerance using Xilinx FPGA family

Virtex-7 for device xc7vx1140tflg1930-i. The results of the presented work show acceptable

overhead and very high error coverage suitable for deeply-embedded constructions.

In this chapter, finite fields GF (2m) are constructed by using a normal basis N =

{α, α2, α22 , ..., α2m−1}, where each α is a normal element of GF (2m). Any element A in

GF (2m) with normal basis is represented as:

A =
m−1∑
i=0

aiα
2i ,

where ai ε GF (2).

72

Gaussian normal basis (GNB) is a specific class of normal basis where m > 1 and it is not

divisible by 8. A more detailed definition presented in [60] states that m and t are positive

integers such that p=mt+1 is a prime number. A Gauss period of type (m,t) over GF(2) is

represented as:

α =
t−1∑
i=0

βτ
i

,

where β is the primitive (mt+1)th root of unity in GF(mt+1). To calculate τ , which is the

primitive tth root of unity, the following property is applied: τ t = 1 mod p. For example, the

GNB with type-4 over GF (27) has τ = 12 since 124 = 1 mod 29. Moreover, α is calculated

as follows:

α =
t−1∑
i=0

β12i = β + β12 + β17 + β28.

To perform addition of elements A and B over GF (2m), the coefficients of each element

are added such as
∑m−1

i=0 (ai + bi)α
2i using XOR gates. As stated earlier, one of the main

advantages of normal basis is that squaring has no cost in hardware, it is performed by just

applying cyclic right shifts. Squaring an element A over GF (2m) in normal basis can be

expressed as:

A2i =
m−1∑
j=0

a<j−i>α
2i .

Lastly, to perform multiplication of elements A and B and obtain C, the scheme from [99]

stating that

C = (((am−1αB
2−(m−1))2 + am−2αB

2−(m−2)
)2+

+...)2 + a0αB,

is used in this work.

6.2 Proposed Fault Detection Schemes

The inverse of an element A ε GF (2m) is expressed as A−1 ε GF (2m) as A × A−1 = 1.

As previously mentioned, FLT has been used by many hardware implementations since it

obtains less logic overhead by reusing finite field multipliers and squarers. Nevertheless, finite

73

Table 17: Steps to perform the inverse of A ε GF (27) using addition chains.

Step γVi(x) γVj+Yk(x) Exponentiation

1 γ1(x) - A

2 γ2(x) γ1+1(x) (γ1)
21γ1 = A22−1

3 γ3(x) γ2+1(x) (γ2)
21γ1 = A23−1

4 γ6(x) γ3+3(x) (γ3)
23γ3 = A26−1

field inversion using FLT requires a total of m-1 finite field squarings and m-2 finite field

multiplications. This might not be practical for some resource-constrained deeply-embedded

systems, where low complexity and high performance is a requirement.

ITA has gained attention since it performs not as many finite fields multiplications. ITA is

capable of reducing the number of multiplications to log2(m−1)+H2(m−1)−1, whereH2(m−

1) is the Hamming weight, by renaming 20 +21 +22 + ...+2m−2 into 1+2n+22n+ ...+2(k−2)n

and decomposing it as follows: If k−1 ≡ 0 mod 2, then (1+2n)×(1×22n+24n+ ...+2(k−3)n)

and if k − 1 ≡ 1 mod 2, then 1 + 2n × (1 + 2n)× (1× 22n + 24n + ...+ 2(k−4)n).

Following ITA, the field GF (27) has the following decomposition: 1 + 2 + 22 + ...+ 25 =

(1+2)×(1+22×(1+22)×(1+24)). Other approaches perform ITA with the effective use of

addition chains. As in [101], the inverse of element A can be expressed as A−1 = [γm−1(A)]2,

where γk(A) = A2k−1 and k ε N . To find the addition chain U = {u1,u2, ..., ut}, u0 = 0 and

ut = m− 1 are assigned, and if ui is even, ut−1 = ut/2, and if ui is odd, ui−1 = ui − 1. For

m=7, the addition chain is U = {1, 2, 3, 6}. Once the addition chain is calculated, the steps

to perform finite field inversion over GF (27) are shown in Table 17, where Vi’s correspond

to the integers of the addition chain U, Vj = Vi−1, and Yk = Vi−Vj. Unfortunately, addition

chains do not reduce the number of multiplications for the case of GF (27). Along this work,

the original ITA is used; however, the same error detection schemes are applicable for ITA

using addition chains.

74

By employing ITA, only squarings that have no cost and multiplications of elements over

GF (2m) with normal basis are needed. To perform multiplication, (1) is computed as shown

in Algorithm 1.

Algorithm 1 Multiplication of elements in GF (2m) with normal basis

1: Input: A ε GF (2m), B ε GF (2m)
2: C0 ← 0
3: for i← 1 to m do
4: Ci = C2

i−1 + am−iαB
2−(m−i)

5: end for
6: C = Cm
7: return C

The most complex step in Algorithm 1 is done by the αB multiplier, which multiplies α

by the field element B. To perform αB, α = γ + γ2
m

+ ... + γ2
m(t−1)

is used to produce the

normal basis and B is expressed as:

B = bF (0) + bF (1)γ + ...+ bF (p−1)γ
p−1,

where F (2i2mj mod p) = i, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ t − 1. For the case of GF (27), the F

values of type-4 GNB in GF (27) are shown in Table 18.

Moreover, the GNB form of αB is computed as

αB = B(1) +B(2m mod p) + ...+B(2m(t−1) mod p),

where B(i) =
∑p−1

i=0 bF (j−i)γ
j. The normal basis form is then expressed as

αB =
m−1∑
i=0

b̄iα
2i ,

where b̄i =
∑t−1

i=0 bF (2i−2mj) + bF (0). If t is even, bF (0) is omitted.

In this chapter, error detection schemes based on CRC signatures are proposed. CRC-X

divides the output of an specific block/module into X groups, called actual CRC-X signatures

75

Table 18: F values of type-4 GNB in GF (27).

n 1 2 3 4 5 6 7 8 9 10
F(n) 0 1 5 2 1 6 5 3 3 2

n 11 12 13 14 15 16 17 18 19 20
F(n) 4 0 4 6 6 4 0 4 2 3

n 21 22 23 24 25 26 27 28 - -
F(n) 3 5 6 1 2 5 1 0 - -

or ACRCx, and compares them with predicted CRC-X signatures or PCRCx, which are pre-

calculated by a set of derivations. ACRCx and PCRCx are compared by using X two-input

XOR gates. If any of the outputs is a ’1 ’, there is a faulty bit in the block/module. For the

case study of GF (27), CRC-3 is used to provide a low overhead needed for deeply-embedded

systems such as implantable or wearable medical devices; however, for not so resource-

constrained systems, larger CRC signatures can be applied following the formulations derived

next.

For GF (27), B = (b0, b1, ..., b7) is the normal basis element and α = γ+ γ12 + γ17 + γ28 is

used to produce the normal basis. The redundant basis of B is expressed using the results

form Table 18 and applying them as

B = b0γ + b1γ
2 + b5γ

3 + b2γ
4 + b1γ

5 + b6γ
6+

b5γ
7 + b3γ

8 + b3γ
9 + b2γ

10 + b4γ
11 + b0γ

12+

b4γ
13 + b6γ

14 + b6γ
15 + b4γ

16 + b0γ
17 + b4γ

18+

b2γ
19 + b3γ

20 + b3γ
21 + b5γ

22 + b6γ
23 + b1γ

24+

b2γ
25 + b5γ

26 + b1γ
27 + b0γ

28.

To calculate αB, the previous derivations are used, obtaining αB = (γ + γ12 + γ17 + γ28)B,

or αB = B(1) +B(12) +B(17) +B(28), where

76

B(1) = b0 + b0γ
2 + b1γ

3 + b5γ
4 + b2γ

5 + b1γ
6+

b6γ
7 + b5γ

8 + b3γ
9 + b3γ

10 + b2γ
11 + b4γ

12+

b0γ
13 + b4γ

14 + b6γ
15 + b6γ

16 + b4γ
17 + b0γ

18+

b4γ
19 + b2γ

20 + b3γ
21 + b3γ

22 + b5γ
23 + b6γ

24+

b1γ
25 + b2γ

26 + b5γ
27 + b1γ

28,

B(12) = b0 + b4γ + b2γ
2 + b3γ

3 + b3γ
4 + b5γ

5+

b6γ
6 + b1γ

7 + b2γ
8 + b5γ

9 + b1γ
10 + b0γ

11+

b0γ
13 + b1γ

14 + b5γ
15 + b2γ

16 + b1γ
17 + b6γ

18+

b5γ
19 + b3γ

20 + b3γ
21 + b2γ

22 + b4γ
23 + b0γ

24+

b4γ
25 + b6γ

26 + b6γ
27 + b4γ

28,

B(17) = b0 + b4γ + b6γ
2 + b6γ

3 + b4γ
4 + b0γ

5+

b4γ
6 + b2γ

7 + b3γ
8 + b3γ

9 + b5γ
10 + b6γ

11+

b1γ
12 + b2γ

13 + b5γ
14 + b1γ

15 + b0γ
16+

b0γ
18 + b1γ

19 + b5γ
20 + b2γ

21 + b1γ
22 + b6γ

23+

b5γ
24 + b3γ

25 + b3γ
26 + b2γ

27 + b4γ
28,

and

B(28) = b0 + b1γ
1 + b5γ

2 + b2γ
3 + b1γ

4 + b6γ
5+

b5γ
6 + b3γ

7 + b3γ
8 + b2γ

9 + b4γ
10 + b0γ

11+

b4γ
12 + b6γ

13 + b6γ
14 + b4γ

15 + b0γ
16 + b4γ

17+

b2γ
18 + b3γ

19 + b3γ
20 + b5γ

21 + b6γ
22 + b1γ

23+

b2γ
24 + b5γ

25 + b1γ
26 + b0γ

27.

77

Table 19: αB2−i
predicted CRC-3 signatures.

Step Predicted CRC-3 signatures

αB2−6 (b3 + b6) + (b1 + b2 + b3 + b5+
b6)x+ (b1 + b3 + b4)x

2

αB2−5 (b1 + b2 + b4 + b5) + (b1 + b3+
b5 + b6)x+ x2

αB2−4 (b0 + b1 + b2 + b5 + b6) + (b1 + b2+
b3 + b5 + b6)x+ (b1 + b4 + b6)x

2

αB2−3 (b1 + b3) + (b0 + b1 + b3 + b6)x+
(b3 + b5)x

2

αB2−2 (b1 + b6) + (b1 + b2 + b4 + b6)x+
(b0 + b1 + b2 + b3 + b4 + b5)x

2

αB2−1 (b1 + b2 + b5) + (b0 + b6)x+
(b1 + b4 + b6)x

2

Using these derivations, it can be concluded that

αB = (b4 + b4 + b1)α + (b0 + b2 + b6 + b5)α
2+

(b1 + b3 + b6 + b2)α
22 + (b5 + b3 + b4 + b1)α

23+

(b1 + b6 + b4 + b5)α
24 + (b5 + b2 + b3 + b3)α

25+

(b6 + b2 + b0 + b0)α
26 .

It is noted that the previous equations are derived using i=7 in Algorithm 1, which makes

αB2−(7−7)
or αB. To derive the rest of formulations for other i ’s, the formulation

B2−i

=
m−1∑
j=0

b<j−i>α
2i

is used. The formulations and the error detection schemes for the other i ’s in Algorithm 1

are not derived in this chapter for the sake of brevity, but they are presented in Table 19.

To produce CRC-3 error detection schemes in the calculation of αB, a generator poly-

nomial p(x) = x3 + x+ 1 for CRC-3 is chosen. A set of equations are then derived

78

x4 ≡ x2 + xmod p(x),

x5 ≡ x3 + x2 ≡ x2 + x+ 1 mod p(x),

x6 ≡ x3 + x2 + x ≡ x2 + 1 mod p(x),

and the predicted CRC-3 signatures are obtained

PCRC3 = (b4 + b4 + b1) + (b0 + b2 + b6 + b5)x+

(b1 + b3 + b6 + b2)x
2 + (b5 + b3 + b4 + b1)(x+

1) + (b1 + b6 + b4 + b5)(x
2 + x) + (b5 + b2 + b3+

b3)(x
2 + x+ 1) + (b6 + b2 + b0 + b0)(x

2 + 1)

or

PCRC3 = (b3 + b4 + b6) + (b0 + b3)x+

(b3 + b4 + b6 + b2)x
2.

To calculate the actual CRC-3 signatures, the coefficients are renamed: b0 as δ0, ..., b6 as δ6

to obtain

ACRC3 = (δ0) + (δ1)x+ (δ2)x
2 + (δ3)(x+ 1)+

(δ4)(x
2 + x) + (δ5)(x

2 + x+ 1) + (δ6)(x
2 + 1),

or

ACRC3 = (δ0 + δ3 + δ5 + δ6) + (δ1 + δ3+

δ4 + δ5)x+ (δ2 + δ4 + δ5 + δ6)x
2.

The actual CRC-3 signatures are the same for all i ’s. In Fig. 6.1, the error detection

schemes proposed in this chapter for the multiplication of αB are shown. Since CRC-3 is

used, three different error flags or Ei are obtained by XORing the predicted CRC-3 signatures

with the actual CRC-3 signatures. E1 is obtained by XORing the predicted CRC3 signature

(b3 + b4 + b6) with the actual CRC3 signature (δ0 + δ3 + δ5 + δ6) that is obtained after α is

multiplied with input B. In the same way, (b0 + b3) is compared with (δ1 + δ3 + δ4 + δ5) to

obtain E2, and (b3 + b4 + b6 + b2) is compared with (δ2 + δ4 + δ5 + δ6) to obtain E3.

79

alpha
multiplier

Actual
CRC-3

Predicted
CRC-3

B �1+�3+�4+�5

�0+�3+�5+�6

�2+�4+�5+�6

b3+b4+b6

b0+b3

b2+b3+b4+b6

E1

E2

E3

αB

Figure 6.1: αB multiplication with the proposed error detection scheme based on CRC
signatures.

6.3 Error Coverage and FPGA Implementations

The error coverage provided by the different error detection schemes presented in this

chapter is calculated by finding the number of signatures and by performing 100 ·(1−(1
2
)s)%,

where s stands for the number of signatures. To perform the finite field inversion of an

element in GF (27) with normal basis, a total of 3mult · (6αB · (3EF)) or 54 signatures are

needed, where mult denotes the number of finite field multiplications, αB stands for the

number of αB operations in each multiplication, and EF is the number of error flags in each

αB operation. These 54 signatures translate into an error coverage of 100 · (1− (1
2
)54)% or

close to 100%.

To demonstrate that the error detection schemes proposed in this work provide high

error coverage with an acceptable overhead, such schemes are embedded into the original αB

multipliers to perform finite field inversion using ITA. The implementations are performed on

Xilinx FPGA family Virtex-7 device xc7vx1140tflg1930-i using the Vivado tool and Verilog

80

Table 20: Overheads of the proposed error detection schemes for finite field inversion using
ITA and elements in GF (27) with normal basis.

Architecture
Area

Delay (ns)
Power (mW)

(CLBs) @50 MHz
Original ITA 294 1.452 0.599

ITA with CRC-3 408 (38.78%) 1.609 (10.81%) 0.610 (1.84%)

as the hardware design entry. The respective overheads are presented in Table 20 in terms of

area (occupied slices), delay (ns), and power (mW) with the clock frequency of 50 MHz. As

shown in Table 20, CRC-3 obtains an area overhead of less than 39% and a delay overhead

of close to 11%.

To the best of the author’s knowledge, there is no previous research on this type of

error detection schemes for finite field inversions using ITA for elements in GF (2m) with

normal basis. In [99], authors performed error detection based on parity prediction for

normal basis multiplication obtaining a combined worst-case area and delay overhead of

58.1%. Additionally, parity prediction signatures provide an error detection of up to 50%,

i.e., if the number of faults is even, the approach would not be able to detect the faults.

This highly predictable countermeasure can be circumvented by intelligent fault injection.

In this chapter, CRC-3 is proposed as the case study for this chapter, which overcomes

this problem and is intended for deeply-embedded systems where high-performance, low-

overhead, and low-energy are preferred; however, larger CRC signatures can be employed

for devices where power and area are not critical.

In Table 21, worst-case complexity comparisons in terms of XOR gates, finite field mul-

tiplications, error flags, and error coverage for larger GF (2m) finite field inversions with

normal basis using ITA are presented. The number of XOR gates is calculated by perform-

ing r · (m − 1) · (m · (t − 1) + 1) for constructions without any error detection scheme and

r·(m−1)·((m·(t−1)+1)+(2·m·(x−1)+(x−1)·x)) for constructions with CRC-3 signatures.

In such formulations, x corresponds to the CRC-X used and r stands for the number of finite

field multiplications needed using ITA. Following ITA, the field GF (2163) has the decomposi-

81

Table 21: Comparisons for different GF (2m) inversions using ITA.

Finite field t-type Sign. XOR gates Mult. Error Flags Error Coverage

GF (2163) 4
None 635,040

8
- -

CRC-3 1,487,808 3,888 100 · (1− (1
2
)3,888)%

GF (2233) 2
None 635,040

9
- -

CRC-3 1,487,808 6,264 100 · (1− (1
2
)6,264)%

GF (2283) 6
None 635,040

10
- -

CRC-3 1,487,808 8,460 100 · (1− (1
2
)8,460)%

GF (2409) 4
None 635,040

10
- -

CRC-3 1,487,808 12,240 100 · (1− (1
2
)12,240)%

GF (2571) 10
None 635,040

12
- -

CRC-3 1,487,808 20,520 100 · (1− (1
2
)20,520)%

tion: (1+2)×(1+22×(1+22)×(1+24)×(1+28)×(1+216)×(1+232×(1+232)×(1+264)));

the field GF (2233) has the decomposition: (1+2)×(1+22)×(1+24)×(1+28×(1+28)×(1+

216)× (1 + 232× (1 + 232)× (1 + 264× (1 + 264)))); the field GF (2283) has the decomposition:

(1+2)× (1+22× (1+22)× (1+24)× (1+28× (1+28)× (1+216× (1+216)× (1+232)× (1+

264)× (1 + 2128)))); the field GF (2409) has the decomposition: (1 + 2)× (1 + 22)× (1 + 24)×

(1 + 28× (1 + 28)× (1 + 216× (1 + 216)× (1 + 232)× (1 + 264)× (1 + 2128× (1 + 2128)))); and

the field GF (2571) has the decomposition: (1 + 2)× (1 + 22 × (1 + 22)× (1 + 24)× (1 + 28 ×

(1 + 28)× (1 + 216× (1 + 216)× (1 + 232× (1 + 232)× (1 + 264)× (1 + 2128)× (1 + 2256))))). The

column GF (2m) multiplications is determined by such decompositions and the error flags

are calculated by performing r · (m− 1) · x. As it is shown in Table 21, the larger the NIST

field is, the more signatures and the more error coverage the architecture will have.

82

Chapter 7: Conclusion

In this dissertation, many different error detection schemes based on normal, interleaved,

two-part, three-part, and CRC signatures have been proposed. Chapters 2, 3, and 4, present

fault diagnosis approaches for code-based cryptosystems, i.e., McEliece and Niederreiter

cryptosystems. Chapter 5 applies error detection techniques to the multivariate-based Luov’s

cryptosystem. Lastly, Chapter 6 presents countermeasures against side-channel attacks for

the algorithms FLT and ITA, which are used to perform finite field inversions in a more

efficient way. The latter one is not confined to specific cryptosystem, e.g., any cryptographic

application that uses finite field inversions within its design can apply such countermeasures

to create a more reliable system. Many error detection schemes are derived along this

dissertation to provide reliability to a broad type of applications. For applications such as

where performance is critical (and power consumption is not because these are plugged in),

larger signatures can be applied. However, for deeply-embedded systems such as implantable

and wearable medical devices, smaller signatures are preferred.

Such schemes have been implemented on different Xilinx FPGA families to benchmark the

overhead of the proposed schemes with the original designs. In most of the implementations,

the target platform does not necessarily affect the results because the chosen FPGAs belong

to the same series (Xilinx series 7), being very similar from a technological point of view. As

there are not any specific FPGA-related sub-blocks in most of them, such as large multipliers

or inner multiplexers, the choice for hardware platform does not directly affect the derived

overhead. The error coverage percentage for the different designs are all close to 100% with

an acceptable overhead.

83

As long-term extensions to this dissertation, countermeasures for side-channel attacks

against lattice-based cryptography will be studied. Lattice-based cryptosystems are not new,

they have been used for many years in traditional known public-key schemes such as the

RSA, Diffie-Hellman or elliptic-curve cryptosystems. Lattice-based cryptography involves

all cryptographic primitives that include lattices, either in the construction itself or in the

security proof. Their high efficiency, strong security guarantees from worst-case hardness,

and simplicity to implement, make lattice-based cryptography a promising quantum-resistant

class. Another type of concurrent error detection technique based on recomputing with

shifted, negated, and scaled operands will be applied to their original implementation on

FPGA to provide reliability to lattice-based cryptography systems.

84

References

[1] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.

[2] Don Coppersmith. The Data Encryption Standard (DES) and its strength against

attacks. IBM journal of research and development, 38(3):243–250, 1994.

[3] Qiuxia Zhang, Zhan Li, and Chao Song. The improvement of digital signature al-

gorithm based on elliptic curve cryptography. In 2011 2nd International Conference

on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC),

pages 1689–1691. IEEE, 2011.

[4] Nan Li. Research on Diffie-Hellman key exchange protocol. In 2010 2nd International

Conference on Computer Engineering and Technology, volume 4, pages V4–634. IEEE,

2010.

[5] Xin Zhou and Xiaofei Tang. Research and implementation of RSA algorithm for

encryption and decryption. In Proceedings of 2011 6th international forum on strategic

technology, volume 2, pages 1118–1121. IEEE, 2011.

[6] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[7] Dustin Moody. Post-quantum cryptography: NIST’s plan for the future. In The

Seventh International Conference on Post-Quntum Cryptography, Japan, 2016.

85

[8] Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,

Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas

Sendrier, et al. Classic McEliece: conservative code-based cryptography. NIST sub-

missions, 2017.

[9] Upendra Kapshikar and Ayan Mahalanobis. A quantum-secure Niederreiter cryptosys-

tem using quasi-cyclic codes. arXiv preprint arXiv:1803.07827, 2018.

[10] Sabah Suhail, Rasheed Hussain, Abid Khan, and Choong Seon Hong. On the role of

hash-based signatures in quantum-safe internet of things: Current solutions and future

directions. IEEE Internet of Things Journal, 2020.

[11] Daniel J Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijn-

eveld, and Peter Schwabe. The SPHINCS+ signature framework. In Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages

2129–2146, 2019.

[12] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. A high-performance

and scalable hardware architecture for isogeny-based cryptography. IEEE Transactions

on Computers, 67(11):1594–1609, 2018.

[13] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozaffari-

Kermani. NEON-SIDH: Efficient implementation of supersingular isogeny Diffie-

Hellman key exchange protocol on ARM. In International Conference on Cryptology

and Network Security, pages 88–103. Springer, 2016.

[14] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev.

A post-quantum digital signature scheme based on supersingular isogenies. In In-

ternational Conference on Financial Cryptography and Data Security, pages 163–181.

Springer, 2017.

86

[15] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gre-

gor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-based digital signature

scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages

238–268, 2018.

[16] Naina Gupta, Arpan Jati, Amit Kumar Chauhan, and Anupam Chattopadhyay. PQC

acceleration using GPUs: FrodoKEM, NewHope, and Kyber. IEEE Transactions on

Parallel and Distributed Systems, 32(3):575–586, 2020.

[17] Viet B Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj. Implementing

and benchmarking three lattice-based post-quantum cryptography algorithms using

software/hardware codesign. In 2019 International Conference on Field-Programmable

Technology (ICFPT), pages 206–214. IEEE, 2019.

[18] W Beullens, A Szepieniec, F Vercauteren, and B Preneel. Luov: Signature scheme

proposal for NIST PQC project (round 2 version), 2018.

[19] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature

scheme. In International Conference on Applied Cryptography and Network Security,

pages 164–175. Springer, 2005.

[20] Mehran Mozaffari Kermani, Meng Zhang, Anand Raghunathan, and Niraj K Jha.

Emerging frontiers in embedded security. In 2013 26th international conference on

VLSI design and 2013 12th international conference on embedded systems, pages 203–

208. IEEE, 2013.

[21] Mehran Mozaffari Kermani, Erkay Savas, and Shambhu J Upadhyaya. Guest editorial:

Introduction to the special issue on emerging security trends for deeply-embedded

computing systems. IEEE Transactions on Emerging Topics in Computing, 4(3):318–

320, 2016.

87

[22] Xiaofei Guo and Ramesh Karri. Recomputing with permuted operands: A concurrent

error detection approach. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 32(10):1595–1608, 2013.

[23] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh. Concurrent structure-

independent fault detection schemes for the Advanced Encryption Standard. IEEE

Transactions on Computers, 59(5):608–622, 2010.

[24] Mehran Mozaffari-Kermani and Reza Azarderakhsh. Efficient fault diagnosis schemes

for reliable lightweight cryptographic ISO/IEC standard CLEFIA benchmarked on

ASIC and FPGA. IEEE Transactions on Industrial Electronics, 60(12):5925–5932,

2012.

[25] Paolo Maistri and Régis Leveugle. Double-data-rate computation as a countermeasure

against fault analysis. IEEE Transactions on Computers, 57(11):1528–1539, 2008.

[26] Duško Karaklajić, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware designer’s

guide to fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 21(12):2295–2306, 2013.

[27] Nahid Farhady Ghalaty, Bilgiday Yuce, and Patrick Schaumont. Analyzing the ef-

ficiency of biased-fault based attacks. IEEE Embedded Systems Letters, 8(2):33–36,

2016.

[28] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa Taha, and Patrick Schaumont. Dif-

ferential fault intensity analysis. In 2014 Workshop on Fault Diagnosis and Tolerance

in Cryptography, pages 49–58. IEEE, 2014.

[29] ©2020 IEEE. Reprinted with permission from Alvaro Cintas Canto, Mehran Mozaffari

Kermani, and Reza Azarderakhsh. Reliable architectures for composite-field-oriented

constructions of McEliece post-quantum cryptography on FPGA. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 2020.

88

[30] Daniel J Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the

McEliece cryptosystem. In International Workshop on Post-Quantum Cryptography,

pages 31–46. Springer, 2008.

[31] Rafael Misoczki and Paulo SLM Barreto. Compact McEliece keys from Goppa codes.

In International Workshop on Selected Areas in Cryptography, pages 376–392. Springer,

2009.

[32] Paulo SLM Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes in cryp-

tography. In International Workshop on Post-Quantum Cryptography, pages 179–199.

Springer, 2011.

[33] V Gauthier Umana and Gregor Leander. Practical key recovery attacks on two

McEliece variants. In Proceedings of the Second International Conference on Sym-

bolic Computation and Cryptography, pages 27–44. Citeseer, 2010.

[34] Abdulhadi Shoufan, Thorsten Wink, H Gregor Molter, Sorin A Huss, and Eike Kohn-

ert. A novel cryptoprocessor architecture for the McEliece public-key cryptosystem.

IEEE Transactions on Computers, 59(11):1533–1546, 2010.

[35] Falko Strenzke, Erik Tews, H Gregor Molter, Raphael Overbeck, and Abdulhadi

Shoufan. Side channels in the McEliece PKC. In International Workshop on Post-

Quantum Cryptography, pages 216–229. Springer, 2008.

[36] Cong Chen, Thomas Eisenbarth, Ingo Von Maurich, and Rainer Steinwandt. Differen-

tial power analysis of a McEliece cryptosystem. In International Conference on Applied

Cryptography and Network Security, pages 538–556. Springer, 2015.

[37] Ingo Von Maurich and Tim Güneysu. Towards side-channel resistant implementations

of QC-MDPC McEliece encryption on constrained devices. In International Workshop

on Post-Quantum Cryptography, pages 266–282. Springer, 2014.

89

[38] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh. A low-cost S-box for the

Advanced Encryption Standard using normal basis. In 2009 IEEE International Con-

ference on Electro/Information Technology, pages 52–55. IEEE, 2009.

[39] Xiaofei Guo, Debdeep Mukhopadhyay, Chenglu Jin, and Ramesh Karri. Security anal-

ysis of concurrent error detection against differential fault analysis. Journal of Cryp-

tographic Engineering, 5(3):153–169, 2015.

[40] Mehran Mozaffari-Kermani, Reza Azarderakhsh, and Anita Aghaie. Fault detection

architectures for post-quantum cryptographic stateless hash-based secure signatures

benchmarked on ASIC. ACM Transactions on Embedded Computing Systems (TECS),

16(2):1–19, 2016.

[41] Mehran Mozaffari-Kermani, Niranjan Manoharan, and Reza Azarderakhsh. Reli-

able radix-4 complex division for fault-sensitive applications. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 34(4):656–667, 2015.

[42] Mehran Mozaffari Kermani, Rajkumar Ramadoss, and Reza Azarderakhsh. Effi-

cient error detection architectures for CORDIC through recomputing with encoded

operands. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 2154–2157. IEEE, 2016.

[43] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh. A high-performance fault

diagnosis approach for the AES SubBytes utilizing mixed bases. In 2011 Workshop

On Fault Diagnosis And Tolerance In Cryptography, pages 80–87. IEEE, 2011.

[44] Arash Reyhani-Masoleh and M Anwarul Hasan. Error detection in polynomial basis

multipliers over binary extension fields. In International Workshop on Cryptographic

Hardware and Embedded Systems, pages 515–528. Springer, 2002.

90

[45] Mariano López-Garćıa and Enrique Cantó-Navarro. Hardware-software implementa-

tion of a McEliece cryptosystem for post-quantum cryptography. In Future of Infor-

mation and Communication Conference, pages 814–825. Springer, 2020.

[46] Lake Bu, Rashmi Agrawal, Hai Cheng, and Michel A Kinsy. A lightweight McEliece

cryptosystem co-processor design. arXiv preprint arXiv:1903.03733, 2019.

[47] Srivatsan Subramanian, Mehran Mozaffari-Kermani, Reza Azarderakhsh, and

Mehrdad Nojoumian. Reliable hardware architectures for cryptographic block ciphers

LED and HIGHT. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 36(10):1750–1758, 2017.

[48] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses

in gf(2m) using normal bases. Information and computation, 78(3):171–177, 1988.

[49] Jorge Guajardo and Christof Paar. Itoh-Tsujii inversion in standard basis and its

application in cryptography and codes. Designs, Codes and Cryptography, 25(2):207–

216, 2002.

[50] Francisco Rodŕıguez-Henŕıquez, N Cruz-Cortes, and NA Saqib. A fast implementation

of multiplicative inversion over gf(2m). In International Conference on Information

Technology: Coding and Computing (ITCC’05)-Volume II, volume 1, pages 574–579.

IEEE, 2005.

[51] Jean-Luc Danger, Youssef El Housni, Adrien Facon, Cheikh T Gueye, Sylvain Guilley,

Sylvie Herbel, Ousmane Ndiaye, Edoardo Persichetti, and Alexander Schaub. On the

performance and security of multiplication in gf(2n). Cryptography, 2(3):25, 2018.

[52] Bao Liu and Ravi Sandhu. Fingerprint-based detection and diagnosis of malicious

programs in hardware. IEEE Transactions on Reliability, 64(3):1068–1077, 2015.

91

[53] Dariush Abbasinezhad-Mood and Morteza Nikooghadam. Efficient design of a novel

ECC-based public key scheme for medical data protection by utilization of NanoPi

fire. IEEE Transactions on Reliability, 67(3):1328–1339, 2018.

[54] Muhammad Yasin, Bodhisatwa Mazumdar, Sk Subidh Ali, and Ozgur Sinanoglu. Se-

curity analysis of logic encryption against the most effective side-channel attack: DPA.

In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFTS), pages 97–102. IEEE, 2015.

[55] Mehran Mozaffari-Kermani and Reza Azarderakhsh. Reliable hash trees for post-

quantum stateless cryptographic hash-based signatures. In 2015 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFTS), pages 103–108. IEEE, 2015.

[56] Mehran Mozaffari Kermani and Reza Azarderakhsh. Reliable architecture-oblivious

error detection schemes for secure cryptographic GCM structures. IEEE Transactions

on Reliability, 68(4):1347–1355, 2018.

[57] Sayandeep Saha, Dirmanto Jap, Debapriya Basu Roy, Avik Chakraborty, Shivam

Bhasin, and Debdeep Mukhopadhyay. A framework to counter statistical ineffective

fault analysis of block ciphers using domain transformation and error correction. IEEE

Transactions on Information Forensics and Security, 15:1905–1919, 2019.

[58] Sikhar Patranabis, Debapriya Basu Roy, Anirban Chakraborty, Naveen Nagar, Astikey

Singh, Debdeep Mukhopadhyay, and Santosh Ghosh. Lightweight design-for-security

strategies for combined countermeasures against side channel and fault analysis in IoT

applications. Journal of Hardware and Systems Security, 3(2):103–131, 2019.

[59] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based key generator for the

Niederreiter cryptosystem using binary Goppa codes. In International Conference on

Cryptographic Hardware and Embedded Systems, pages 253–274. Springer, 2017.

92

[60] Alfred J Menezes, Ian F Blake, XuHong Gao, Ronald C Mullin, Scott A Vanstone,

and Tomik Yaghoobian. Applications of finite fields, volume 199. Springer Science &

Business Media, 2013.

[61] Burton S Kaliski. The Montgomery inverse and its applications. IEEE transactions

on computers, 44(8):1064–1065, 1995.

[62] Tenkasi V Ramabadran and Sunil S Gaitonde. A tutorial on CRC computations. IEEE

micro, 8(4):62–75, 1988.

[63] Vladimir M Sidelnikov and Sergey O Shestakov. On insecurity of cryptosystems based

on generalized Reed-Solomon codes. Discrete Mathematics and Applications, 2(4):439–

444, 1992.

[64] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric De Portzamparc, and

Jean-Pierre Tillich. Structural cryptanalysis of McEliece schemes with compact keys.

Designs, Codes and Cryptography, 79(1):87–112, 2016.

[65] Gustavo Banegas, Paulo SLM Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel,

Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard Haeussler,

Jean Belo Klamti, Ousmane N’diaye, et al. Dags: Reloaded revisiting dyadic key

encapsulation. In Code-Based Cryptography Workshop, pages 69–85. Springer, 2019.

[66] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo

Santini. LEDAkem: A post-quantum key encapsulation mechanism based on QC-

LDPC codes. In International Conference on Post-Quantum Cryptography, pages 3–24.

Springer, 2018.

[67] Pierre-Louis Cayrel and Pierre Dusart. McEliece/Niederreiter PKC: Sensitivity to fault

injection. In 2010 5th International Conference on Future Information Technology,

pages 1–6. IEEE, 2010.

93

[68] Bhaskar Biswas and Nicolas Sendrier. Mceliece cryptosystem implementation: Theory

and practice. In International Workshop on Post-Quantum Cryptography, pages 47–62.

Springer, 2008.

[69] Stefan Heyse and Tim Güneysu. Towards one cycle per bit asymmetric encryption:

Code-based cryptography on reconfigurable hardware. In International Workshop on

Cryptographic Hardware and Embedded Systems, pages 340–355. Springer, 2012.

[70] Ausmita Sarker, Mehran Mozaffari-Kermani, and Reza Azarderakhsh. Hardware con-

structions for error detection of number-theoretic transform utilized in secure cryp-

tographic architectures. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 27(3):738–741, 2018.

[71] Abdel Alim Kamal and Amr M Youssef. Strengthening hardware implementations of

NTRUEncrypt against fault analysis attacks. Journal of Cryptographic Engineering,

3(4):227–240, 2013.

[72] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob.

Contr. Inform. Theory, 15(2):157–166, 1986.

[73] Luca Breveglieri, Israel Koren, and Paolo Maistri. An operation-centered approach to

fault detection in symmetric cryptography ciphers. IEEE Transactions on Computers,

56(5):635–649, 2007.

[74] Reza Azarderakhsh, Kimmo Järvinen, and Vassil Dimitrov. Fast inversion in gf(2m)

with normal basis using hybrid-double multipliers. IEEE Transactions on Computers,

63(4):1041–1047, 2012.

[75] ©2020 IEEE. Reprinted with permission from Alvaro Cintas Canto, Mehran Mozaffari-

Kermani, and Reza Azarderakhsh. Reliable CRC-based error detection constructions

for finite field multipliers with applications in cryptography. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 29(1):232–236, 2020.

94

[76] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh. Reliable hardware architec-

tures for the third-round SHA-3 finalist Grostl benchmarked on FPGA platform. In

2011 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-

otechnology Systems, pages 325–331. IEEE, 2011.

[77] Mehran Mozaffari-Kermani, Reza Azarderakhsh, Ausmita Sarker, and Amir Jalali.

Efficient and reliable error detection architectures of Hash-Counter-Hash tweakable

enciphering schemes. ACM Transactions on Embedded Computing Systems (TECS),

17(2):1–19, 2018.

[78] Mehran Mozaffari-Kermani and Reza Azarderakhsh. Reliable hash trees for post-

quantum stateless cryptographic hash-based signatures. In 2015 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFTS), pages 103–108. IEEE, 2015.

[79] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signa-

ture schemes. In International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 206–222. Springer, 1999.

[80] EPC Global. Epc radio-frequency identity protocols class-1 generation-2 UHF RFID

protocol for communications at 860 mhz–960 mhz. Version, 1(0):23, 2008.

[81] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Low-resource and

fast binary edwards curves cryptography. In International Conference on Cryptology

in India, pages 347–369. Springer, 2015.

[82] Reza Azarderakhsh and Arash Reyhani-Masoleh. Efficient FPGA implementations of

point multiplication on binary Edwards and generalized Hessian curves using Gaussian

normal basis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

20(8):1453–1466, 2011.

95

[83] Qiliang Shao, Zhenji Hu, Shaobo Chen, Pingxiuqi Chen, and Jiafeng Xie. Low-

complexity digit-level systolic Gaussian normal basis multiplier. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 25(10):2817–2827, 2017.

[84] Hayssam El-Razouk, Kirthi Kotha, and Mahidhar Puligunta. Novel gf(2m) digit-

serial PISO multipliers for the self-dual Gaussian normal bases. IEEE Transactions

on Computers, 2020.

[85] Bahram Rashidi, Sayed Masoud Sayedi, and Reza Rezaeian Farashahi. Efficient and

low-complexity hardware architecture of Gaussian normal basis multiplication over

gf(2m) for elliptic curve cryptosystems. IET Circuits, Devices & Systems, 11(2):103–

112, 2017.

[86] Atef Ibrahim, Turki Alsomani, and Fayez Gebali. Unified systolic array architecture for

finite field multiplication and inversion. Computers & Electrical Engineering, 61:104–

115, 2017.

[87] Haibo Yi, Shaohua Tang, and Ranga Vemuri. Fast inversions in small finite fields by

using binary trees. The Computer Journal, 59(7):1102–1112, 2016.

[88] Jiakun Li, Zhe Li, Chengbo Xue, Jingqi Zhang, Wei Gao, and Shan Cao. A fast

modular inversion FPGA implementation over gf(2m) using modified x2n unit. In

2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5.

IEEE, 2018.

[89] Hayssam El-Razouk and Arash Reyhani-Masoleh. New architectures for digit-level sin-

gle, hybrid-double, hybrid-triple field multiplications and exponentiation using Gaus-

sian normal bases. IEEE Transactions on Computers, 65(8):2495–2509, 2015.

[90] Arash Reyhani-Masoleh, Hayssam El-Razouk, and Amin Monfared. New multiplicative

inverse architectures using Gaussian normal basis. IEEE Transactions on Computers,

68(7):991–1006, 2018.

96

[91] Reza Azarderakhsh and Arash Reyhani-Masoleh. Low-complexity multiplier architec-

tures for single and hybrid-double multiplications in Gaussian normal bases. IEEE

Transactions on Computers, 62(4):744–757, 2012.

[92] Francisco Rodŕıguez-Henŕıquez, Guillermo Morales-Luna, Nazar A Saqib, and Nareli

Cruz-Cortés. Parallel Itoh–Tsujii multiplicative inversion algorithm for a special class

of trinomials. Designs, Codes and Cryptography, 45(1):19–37, 2007.

[93] Jingwei Hu, Wei Guo, Jizeng Wei, and Ray CC Cheung. Fast and generic inversion

architectures over gf(2m) using modified Itoh–Tsujii algorithms. IEEE Transactions

on Circuits and Systems II: Express Briefs, 62(4):367–371, 2015.

[94] M Kalaiarasi, VR Venkatasubramani, and S Rajaram. A parallel quad Itoh-Tsujii mul-

tiplicative inversion algorithm for FPGA platforms. In 2020 Third ISEA Conference

on Security and Privacy (ISEA-ISAP), pages 31–35. IEEE.

[95] Sergei Bauer, Stefan Rass, and Peter Schartner. Generic parity-based concurrent error

detection for lightweight ARX ciphers. IEEE Access, 8:142016–142025, 2020.

[96] Prashant Ahir, Mehran Mozaffari-Kermani, and Reza Azarderakhsh. Lightweight ar-

chitectures for reliable and fault detection Simon and Speck cryptographic algorithms

on FPGA. ACM Transactions on Embedded Computing Systems (TECS), 16(4):1–17,

2017.

[97] Anita Aghaie, Mehran Mozaffari Kermani, and Reza Azarderakhsh. Fault diagnosis

schemes for low-energy block cipher Midori benchmarked on FPGA. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 25(4):1528–1536, 2016.

[98] Chiou-Yng Lee. Concurrent error detection in digit-serial normal basis multiplication

over gf(2m). In 22nd International Conference on Advanced Information Networking

and Applications-Workshops (aina workshops 2008), pages 1499–1504. IEEE, 2008.

97

[99] C. Lee, P. K. Meher, and J. C. Patra. Concurrent error detection in bit-serial nor-

mal basis multiplication over gf(2m) using multiple parity prediction schemes. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 18(8):1234–1238, 2010.

[100] Lily Chen, Dustin Moody, Andrew Regenscheid, and Karen Randall. Recommenda-

tions for discrete logarithm-based cryptography: Elliptic curve domain parameters.

Technical report, National Institute of Standards and Technology, 2019.

[101] Lijuan Li and Shuguo Li. Fast inversion in gf(2m) with polynomial basis using optimal

addition chains. In 2017 IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1–4. IEEE, 2017.

98

Appendix A: Copyright Permissions

The permission below is for the use of Chapter 2 and Chapter 5.

Figure A.1: Copyright permissions for IEEE journals.

99

	Efficient Hardware Constructions for Error Detection of Post-Quantum Cryptographic Schemes
	Scholar Commons Citation

	tmp.1626305046.pdf.WL4EE

