
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

April 2021

Combination of Time Series Analysis and Sentiment Analysis for Combination of Time Series Analysis and Sentiment Analysis for

Stock Market Forecasting Stock Market Forecasting

Hsiao-Chuan Chou
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Finance and Financial Management Commons, and the Statistics and Probability

Commons

Scholar Commons Citation Scholar Commons Citation
Chou, Hsiao-Chuan, "Combination of Time Series Analysis and Sentiment Analysis for Stock Market
Forecasting" (2021). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/8749

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=digitalcommons.usf.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usf.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usf.edu%2Fetd%2F8749&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Combination of Time Series Analysis and Sentiment Analysis for Stock Market Forecasting

by

Hsiao-Chuan Chou

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Art in Statistics
Department of Mathematics and Statistics

College of Arts and Sciences
University of South Florida

Major Professor: Kandethody M. Ramachandran, Ph.D.
Manish Agrawal, Ph.D.

Lu Lu, Ph.D.

Date of Approval:
April 5, 2021

Keywords: Long short-term memory, word embedding, neural networks.

Copyright © 2021, Hsiao-Chuan Chou

Dedication

To my mother Li-Ping and family.

Acknowledgements

 Foremost, I sincerely appreciate my thesis advisor Dr. Kandethody M. Ramachandran for

continuous advises and support for the entire journey. His guidance and experiences help me not

just with master thesis but also with learning process in the future. Through the process of writ-

ing thesis, I have confidence in learning new theories and code techniques. My thanks also go to

committee members Dr. Manish Agrawal and Dr. Lu Lu for amount of their time to accommo-

date my defense. All the suggestions from my defense are precious. I also owe thanks to faculties

of department of Mathematics and Statistics for time-saving paperwork.

 I would never have gone through graduate school without the support and encouragement

from my mother and family. My family deserves credit for making my work reachable.

 i

Table of Contents

List of Figures .. iii

List of Tables ... vi

Abstract .. viii

Chapter One: Introduction ...1

Chapter Two: Literature Review ...3

Chapter Three: Data Description ...7

Chapter Four: Data Preprocessing ...13
 4.1 Word Tokenization ..13

4.2 Stop-words Removal ..14
4.3 Stemming ...16
4.4 Part-of-speech Tagger ..17
4.5 Data Transformation ..17

Chapter Five: Methods and Procedures ...19
 5.1 Sentiment Score ...19
 5.1.1 PMI-IR ..20
 5.1.2 SentiWordNet ...21
 5.2 Artificial Neural Networks ..22
 5.3 Word Embedding ...28
 5.3.1 Word2vec ..28
 5.3.2 BERT ..31
 5.4 Convolutional Neural Networks ..34
 5.5 Recurrent Neural Networks (Long Short-term Memory) ..40
 5.6 Support Vector Regression ..43
 5.7 Evaluating the Model ...47

Chapter Six: Models ..49
 6.1 Support Vector Regression Models ...50
 6.2 Unidirectional Long Short-term Memory ..51
 6.2.1 Single Layer of LSTM ..51
 6.2.2 Multilayer LSTM ..52
 6.3 Bidirectional LSTM ...53

6.4 Convolutional Neural Network ..54

 ii

6.5 CNN-LSTM ...55
6.6 Models Based on News Headlines ...56

 6.6.1 Pretrained Word2vec Model ...56
 6.6.2 Word Embedding Model Based on Our Textual Data57
 6.6.3 BERT ..57
 6.7 Model Based on Historical Prices and Sentiment Score ..58

6.8 Model Based on News Headlines and Predicted Prices ...59
6.9 Model Based on Historical Prices, Sentiment Score, and Predicted Prices61
6.10 Model Based on News Headlines Vector, Sentiment Score, and Predicted Prices ...62

Chapter Seven: Result and Performance ..64

7.1 Window Size ..64
7.2 Layers of LSTM ...65
7.3 Predicted Prices for Further Experiments ..68
7.4 Performance Comparison among Models ..73

 7.4.1 Models Summary ..73
 7.4.2 The Boeing Company ...75
 7.4.3 Bank of America Corporation ...77
 7.4.4 Exxon Mobile Corporation ...79
 7.4.5 Uber Technologies, Inc. ..81
 7.4.6 Johnson & Johnson ...83
 7.4.7 Apple Inc. ..85

Chapter Eight: Conclusion and Discussion ..88

References ..91

 iii

List of Figures

Figure 3.1:General View of News and Opinions Data ..8

Figure 3.2:Word Cloud of BA News Title ...8

Figure 3.3: Word Cloud of BAC News Title ...8

Figure 3.4: Word Cloud of XOM News Title ..9

Figure 3.5: Word Cloud of UBER News Title ...9

Figure 3.6: Word Cloud of JNJ News Title ..9

Figure 3.7: Word Cloud of AAPL News Title ...9

Figure 3.8: Chart of Historical Prices of BA ..11

Figure 3.9: Chart of Historical Prices of BAC ...11

Figure 3.10: Chart of Historical Prices of XOM ..11

Figure 3.11: Chart of Historical Prices of UBER ..11

Figure 3.12: Chart of Historical Prices of JNJ ...11

Figure 3.13: Chart of Historical Prices of AAPL ..11

Figure 4.1: Descriptive Statistics of BA Prices ..17

Figure 5.1: Two Model architectures, CBOW and Skip-gram ...29

Figure 5.2: CBOW with Dimensions ...29

 iv

Figure 5.3: Architecture of Encoder From Transformer ..32

Figure 5.4: An Simple CNN Architecture ..36

Figure 5.5: Computation of Convolutional Layer ..37

Figure 5.6: Computation of Max-pooling and Average-pooling Layer ...38

Figure 5.7: The Architecture of CNN Model for Sentiment Classification39

Figure 5.8: An Unrolled Recurrent Neural Network Through Time ..40

Figure 5.9: Long Short-term Memory Cell ..41

Figure 6.1: Price Forecasting Model by Using LSTM ...51

Figure 6.2: Four Layers of Long Short-term Memory ...52

Figure 6.3: Bidirectional Long Short-term Memory ..54

Figure 6.4: Architecture of CNN Model for Time Series Analysis ...55

Figure 6.5: Prices Forecast by Pre-trained Word2vec Model ..57

Figure 6.6: Prices Forecast by Pre-trained BERT Model ...58

Figure 6.7: Price Forecast Based on Sentiment Score and Predicted Prices59

Figure 6.8: Price Forecast Based on BERT and Predicted Prices ..60

Figure 6.9: Price Forecast Based on Word Embedding and Predicted Prices61

Figure 6.10: Architecture of CNN-LSTM Model ..62

Figure 6.11: Model_9 in Situation 1 ..63

 v

Figure 6.12:Model_9 in Situation 2 ...63

Figure 7.1: BA: Stock Price Plotted on Zero Axis ...75

Figure 7.2: Lift: Three Better Models. Right: Our Best Prediction ..76

Figure 7.3: BAC: Stock Price Plotted on Zero Axis ..77

Figure 7.4: Lift: Three Better Models. Right: Our Best Prediction ..78

Figure 7.5: XOM: Stock Price Plotted on Zero Axis ...79

Figure 7.6: Lift: Three Better Models. Right: Our Best Prediction ..80

Figure 7.7: UBER: Stock Price Plotted on Zero Axis ..81

Figure 7.8: Lift: Three Better Models. Right: Our Best Prediction ..82

Figure 7.9: JNJ: Stock Price Plotted on Zero Axis ...83

Figure 7.10: Lift: Three Better Models. Right: Our Best Prediction ...84

Figure 7.11: AAPL: Stock Price Plotted on Zero Axis ..85

Figure 7.12: Lift: Three Better Models. Right: Our Best Prediction ...86

 vi

List of Tables

Table 3.1: Numbers of News, Days, and Days Without News ...10

Table 3.2: Stocks Overview ..12

Table 7.1: Better Window Size and Error Measure for Six Stocks ..65

Table 7.2: Different Number of Layers of LSTM for BA ..66

Table 7.3: Different Number of Layers of LSTM for BAC ..66

Table 7.4: Different Number of Layers of LSTM for XOM ...66

Table 7.5: Different Number of Layers of LSTM for UBER ...67

Table 7.6: Different Number of Layers of LSTM for JNJ ..67

Table 7.7: Different Number of Layers of LSTM for AAPL ...67

Table 7.8: Predicted Prices for BA ...68

Table 7.9: Predicted Prices for BAC ...69

Table 7.10: Predicted Prices for XOM ..70

Table 7.11: Predicted Prices for UBER ...70

Table 7.12: Predicted Prices for JNJ ..71

Table 7.13: Predicted Prices for AAPL ...72

Table 7.14: Models Summary ..73

 vii

Table 7.15: Performance Comparison Based on MAPE, MAE and RSME for BA75

Table 7.16: Performance Comparison Based on MAPE, MAE and RSME for BAC78

Table 7.17: Performance Comparison Based on MAPE, MAE and RSME for XOM80

Table 7.18: Performance Comparison Based on MAPE, MAE and RSME for UBER82

Table 7.19: Performance Comparison Based on MAPE, MAE and RSME for JNJ84

Table 7.20: Performance Comparison Based on MAPE, MAE and RSME for AAPL86

Table 8.1: The Best Model in Time Series, Embedding, and Combined Models88

 viii

Abstract

The goal of this research is to build a model to predict trend of financial asset price using

sentiment from news headlines and financial indicators of the asset. Objective of the model is to

conclude good results but also to minimize the difference between predicted values and actual

values. Unlike previous approaches where the sentiments are usually calculated into score, we

focus on combination of word embedding of news and financial indicators due to nonavailability

of sentiment lexicon.

One idea is that the sentiment of news headline should have impact on financial asset val-

ues. In other words, it would be crucial how we extract information from news headlines. An-

other idea is that price data through time series analysis is also useful to predict trend of financial

asset prices. Hence, improvement should be made with combination of sentiment analysis of

news headlines and time series analysis.

Compared to time series models and word embedding models, our combined model

shows smaller or similar small MAPE, MAE, and RMSE with time series models, and reduces

lag in graphs.

 1

Chapter One:

Introduction

Financial asset forecasting is a charming and challenging problem at all times. There are

bunch of factors affecting trend direction, and they could be reasonable or unreasonable. News

and historical price are commonly considered as two of these important factors affecting trend of

financial asset. Hence, the idea to this thesis is to apply proper analytical approaches to them to

reach better predictions of financial asset prices.

Sentiment is a personally subjective attitude toward a subject, which means that senti-

ment is an opinion to depict emotion. Sentiment analysis known as text mining is capable to ex-

tract subjectivity from reviews, customer feedbacks, or texts. Sentiment analysis is being applied

in many fields, especial business field, to gather valuable information. Adjustment of business

strategy, for instance, can be made from sentiments of customers’ reviews, and that’s why senti-

ment analysis is quite popular.

Sentiment analysis can be performed on not only reviews of customers but also tweets,

news and any personal text, and many researches related to stock market forecasting with

 2

sentiments have been done. With combination of moving average of financial indicator and sen-

tence level sentiment score of Really Simple Syndication (RSS) news, trend of stock price for

specific company is performed [1].

Since historical price of financial asset is time series data, many approaches for time se-

ries are applied to predict stock price. The autoregressive integrated moving average (ARIMA)

has been explored in literature for stock price prediction [90]. Artificial neural networks (ANN)

as widely used forecasting model are also applied to solve non-linear problem such as stock price

prediction [3]. Hybrid strategy, combination of ARIMA and the support vector machine (SVM)

shows the great improvement compared with single ARIMA and single SVM [2]. Besides, recur-

rent neural networks (RNNs) as one of the eyes-catching and popular neural networks family

constructs a model for trend of financial assets [4]. Volatility of financial asset market leads a

difficult situation to predict trend of market. Combination of several machine learning ap-

proaches is being used in prediction [13].

The brief outline of this thesis is as follows. An overview of dataset in Chapter is given in

two and procedure of data preprocessing would be introduced in Chapter three. Methods and

procedure to build model are discussed in Chapter four. Results and evaluation would be pre-

sented in Chapter five, and we finally would summarize and conclude this thesis in Chapter six.

 3

Chapter Two:

Literature Review

Stock price prediction has been a difficult and challenging task due to it volatility. Effi-

cient market hypothesis as an economic hypothesis played a critical role for stock prediction.

The efficient market hypothesis (EMH) is a hypothesis that asset prices reflect all available infor-

mation [37]. EMH can be categorized into “weak-form”, “semi-strong-form”, and “strong-form”.

Weak-form efficiency is that previous asset prices cannot be applied to predict present asset

price. Semi-strong-form efficiency is that present asset price has already reflected all public in-

formation. Strong-form efficiency is that prediction for financial asset cannot base on neither

public nor private information. According to EMH, stock prediction is a time series problem,

also called random walk. However, it was also shown that textual information or investors’ senti-

ment is correlated to stock market direction against efficient market hypothesis [38, 48, 63].

Most of investment decisions are made based on fundamental analysis (financial state-

ments), technical analysis (financial indicators), and textual information (news, opinions,

tweets). The focus of fundamental analysis is on value investing which is estimated by

 4

fundamental attributes such as earning per share [49]. The most popular method is technical

analysis which states that prediction based on historical prices and volume, but it might be less

profitable after mid-1980s [50].

Over the past few decades, many researchers have used machine learning approaches to

analyze financial information including financial time series data and textual data [42]. For time

series data, there are various approaches such as artificial neural network (ANN), autoregressive

integrated moving average (ARIMA), k nearest neighbor (KNN), recurrent neural network

(RNN), support vector regression (SVR), and so on. ANN as one member of the famous neural

network family has been used for time series forecasting for over 20 years for its ability to tackle

nonlinear patterns, but it is sensitive to parameter selection [51,52]. ARIMA which is introduced

in 1970 has also been being used to analyze financial data due to its high ability for linear time

series [3]. Besides, ARIMA is still an option as one component of hybrid approaches because it

does not work well for nonlinear time series. It usually combines machine learning approaches

with better ability to handle nonlinear time series such as ANN or XGBoost [53, 54]. K nearest

neighbor (KNN) is introduced as non-parametric classification approach in 1951, and expanded

as regression approach in 1992 [55, 56]. Some researchers combine SVM as classification ap-

proach and KNN as regression [57]. Support vector machine (SVM) is approach for two-group

classification problem, and it works well with strong mathematical support [58], which means

 5

that SVM can provide global optimal solution. With the mathematical support, it is often com-

bined with other approaches such as ARIMA or KNN [57, 61]. With similar principle and the

same researches, support vector regression (SVR) which uses SVM to do regression task is pro-

posed [59]. It is powerful for financial time series [40, 41, 60, 62] despite sensitivity to its hy-

perparameter. Recurrent neural networks is well-suited to solve both classification and regression

problems with series data. Long short-term memory (LSTM) is the most fashionable member of

it because LSTM is capable to exploit the patterns in data and remember information for long

time[43]. With memory property, it is wildly used for series data such as financial time series

data [44, 45], and text mining task because text is considered as a series of words. A combined

approach is proposed with combination of convolutional neural network (CNN) and LSTM for

gold price time-series analysis [65]. CNN can be applied to reduce dimension, and it also works

for series data due to its sliding processing.

Many researchers focus on the relationship between stock market and investors’ senti-

ment based on textual data such as news, tweets, and opinions. Sentiment analysis is necessary to

the task, which is capable to extract investors’ subjectivity to textual data. Empirical evidence

shows strong correlation between investors’ sentiment derived from microblogging platform and

stock return. Moreover, investors’ sentiment plays a less important role while companies with

larger capitalization [64]. Combined approach of support vector machine and bag of words is

 6

applied with textual information to predict price and direction [39]. Sentiment analysis ap-

proaches is rarely used to predict stock price alone because it extracts sentiment polarity from

given text. Nevertheless, these approaches are applied to sentiment classification problems by

labeling given texts based on stock price change. Recently, an increasing number of approaches

based on two or more machine learning approaches is introduced into stock price prediction and

direction. Neural networks with great performance to time series data are often combined with

other machine learning approaches. Price prediction of multiple companies based on neural net-

work with concatenation of news and historical prices data of multiple companies is proposed

[46]. Price prediction models based on dictionary-based text mining, time series analysis, and

word embedding are performed with different combination of independent variables including

news, polarity to news, historical prices [47]. SVR is also combined with sentiment analysis of

tweets that work well on price forecasting tasks [66]. Other researchers use textual data and his-

torical prices to predict price, approaches are performed for price movement prediction by mix-

ing TF-IDF language model and three classifiers which are Naïve Bayes, KNN and SVM [67].

 7

Chapter Three:

Data Description

Stock price as known as share price is the price to trade a share of a stock in the market.

The term “market” actually means both the primary market and the secondary market. The pri-

mary market is the place where companies sell new stock to the public for the first time such as

initial public offering (IPO), and stock price would not be affected by any factor each IPO. The

secondary market is the place that investors trade stocks among themselves such as New York

Stock Exchange (NYSE), and stock price is fluctuant and affected by many factors which could

be economic, political, or related to investors’ sentiment. All the prices in this study are share

prices in secondary market which is directly affected by investors’ sentiment.

Common sources for sentiment analysis in finance field are tweets, opinions, or news,

etc. There are huge amounts of comprehensive tweets related to stock market post by any users

who can be individual investors, financial analyst, or companies etc. Thus, tweets are less relia-

ble, and spam detection algorithm are usually applied with sentiment analysis. Investing.com is

one of the top three global financial websites with more than 46 million monthly users, and over

 8

400 million sessions [17]. In other words, news or opinions on Investing.com are more reliable

and influential to investors’ sentiment. In this thesis, we choose to obtain news and opinion head-

lines of six stocks from different sectors, which are Bank of America Corporation (BAC), The

Boeing Company (BA), Exxon Mobil Corporation (XOM), Uber Technologies, Inc. (UBER),

Johnson & Johnson (JNJ), and Apple Inc. (AAPL) on Investing.com, and data overview is shown

in the figure 3.1.

Figure 3.1. General View of News and Opinions Data.

The frequent words in news titles are also visualized for the six stocks respectively so we

can observe frequent words which might bring less information for stock price forecasting. Word

is more frequent when it is larger in figure:

Figure 3.2 Word Cloud of BA News Title. Figure 3.3 Word Cloud of BAC News Title.

 9

Figure 3.4 Word Cloud of XOM News Title. Figure 3.5 Word Cloud of UBER News Title.

Figure 3.6 Word Cloud of JNJ News Title. Figure 3.7 Word Cloud of AAPL News Title.

It is obvious that company name is always frequent, and further stopwords list is adjusted

based on this property in Chapter 4.2. Besides, the textual dataset we use covers the various pe-

riod depending on stock. Reason to choose this dataset is because there are trading days without

 10

news for each stock (See Table 3.1.), which is more realistic. Even for huge company Apple Inc.,

there are still 158 trading days without any news.

Table 3.1 Numbers of News, Days , and Days Without News.

Ticker Period # of news # of days without news # of total days
BA 2008-10-30 2020-01-30 5773 1460 2831

BAC 2008-10-08 2020-01-28 7234 825 2845
XOM 2009-05-21 2020-02-12 2763 1740 2701
UBER 2019-05-14 2020-01-21 1195 2 174

JNJ 2012-07-23 2020-02-10 750 1456 1900
AAPL 2012-07-17 2020-01-27 19972 158 1894

It happens practically so stock price forecasting requires other information, and we

choose historical prices because historical prices are time series data and easy to obtain. Histori-

cal prices are critical due to lack of news and opinion for days, and combination of two types of

data is helpful to show the individual influence of news and opinions. We obtain historical prices

of the six stocks on Yahoo! Finance website [18] over the same period in order to complement

news and opinions data. The numerical data set of historically daily price is series of close prices

of the six stocks, and chart of historical prices are able to show relative stability of stock trend.

 11

Figure 3.8 Chart of Historical Prices of BA. Figure 3.9 Chart of Historical Prices of BAC.

Figure 3.10 Chart of Historical Prices of XOM. Figure 3.11 Chart of Prices of UBER.

Figure 3.12 Chart of Historical Prices of JNJ. Figure 3.13 Chart of Prices of AAPL.

 12

 For time series analysis, dataset is split into training set and test set without shuffle. We

can observe that chart of historical prices of BA shows difference after 2018. We might need

transformation method to ease the difference. Moreover, the reason to choose companies in dif-

ferent sectors is because we are interested in whether sector type affects result of time series

analysis and sensitivity to investors’ sentiment. These sectors are Financial services for BAC, In-

dustrials for BA, Energy for XOM, Healthcare for JNJ, and Technology for UBER and AAPL.

We are also interested in relationship between stock volatility and capitalization.

Table 3.2 Stocks Overview.

Company Ticker Capitalization Sector
Bank of America Corporation BAC 302 B Financial services

The Boeing Company BA 127 B Industrials
Exxon Mobil Corporation XOM 221 B Energy
Uber Technologies, Inc. UBER 102 B Technology

Johnson & Johnson JNJ 426 B Healthcare
Apple Inc. AAPL 2120 B Technology

 13

Chapter Four:

Data Preprocessing

Preprocessing for textual dataset belongs to natural language processing (NLP), which is

an area of research and application that explores how computers can be used to understand and

manipulate natural language text [21]. It plays a critical role in sentiment analysis because ma-

chine learning algorithms show better performance when text is transformed into a more digitally

digestible form [20, 22]. In this thesis, we apply word tokenization, stop-words removal, stem-

ming, and part-of-speech tagger for textual dataset, and data transformation for numerical dataset

prior to further models for better performance.

4.1 Word Tokenization

Word tokenization is the procedure that input text is split into a sequence of words. It is

necessary for sentiment analysis because words are basic unit to sentiment analysis. The words

split by word tokenization are called tokens. In general, word tokenization is to “tell” computer

that the basic unit is a word but a sentence or a letter. In this thesis, a headline is considered as a

 14

single unit by computer before word tokenization, and then a sequence of words which is trans-

formed from the headline would be considered as input tokens by computer. Besides, tokeniza-

tion sometimes includes normalization such as lowercasing. Lowercasing is the simplest prepro-

cessing technique which consists of lowercasing each single token of the input text [22], which

transforms every word of text into lowercase. Normalization also includes abbreviation replacing

which replace abbreviation with its words. “Isn’t”, for instance, is replaced by “is not”.

For better information extraction from textual data, we apply word tokenization, lowercasing,

and abbreviation replacement.

4.2 Stop-words Removal

We consider stopwords removal as crucial step to reduce noise of textual data. Stop

words, referred to as function words, consist of high-frequency words that usually include little

useful information. We need to remove stop words because these words include little information

and slow down computational speed such as “the”, “in”, and “a”. Besides, more words lead more

parameters, which increases overfitting risk. Stop words include pronouns, determiners, and so

on. “She”, for instance, is usually a stop word, and it does not bring much information to further

analysis. Some sentiment classifiers show an improvement in accuracy when stopwords removal

is applied as a preprocessing step [23].

 15

We construct our stop-words list based on the idea Fox (1989) proposes, and we also ad-

just list depending on input data. Fox (1989) shows how to generate a stop-words list for general

text based on Brown Corpus which contains 500 samples of English-language text, about one

million words[6]. Several arbitrary decisions were made for compiling list of the most frequently

occurring word. Firstly, a cut-off point has been chosen, which is the size of the list. The size of

the stopword list bases on observation to count and browse Brown corpus. The way to count

words is to count word lemmas by hands. Words such as “go”, “went”, “goes”, “gone” are

counted as the same word, but words which can be noun or verb would be counted as two words.

For instance, noun keep and verb to keep are counted different. They observe a situation that

many words, including words as important as index items, occur at rate of one or two hundred

per million in English. With the observation, the size of stop list should be less than 300 words.

Furthermore, stop words are added into the list because many words traditionally appearing in

stop list did not in the preliminary list. Words such as “above”, “sure”, and “whether” less than

300 times are added.

Our stop-words list is originally from Natural Language Toolkit (NLTK) which is a plat-

form for building Python programs to work with human language data. The list contains 127

stopwords, and we add new stop words based on word frequency.

 16

For instance, the word “apple” is extremely frequented due to news related to Apple Inc.

It means that “apple” brings little sentiment information so we add apple into our stopwords list.

Besides, our data consists of financial news or opinion, and words related to direction or trend

include up, under, below, etc. are commonly used. These words should be crucial to investors’

sentiment so we remove them from list.

4.3 Stemming

Stemming algorithm is necessary to our data because number of total words in text affects

the computational speed and overfitting risk. For grammatical reasons, text would use different

forms of a word, such as “compute,” “computed,” and “computing”. Additionally, there are fami-

lies of derivationally related words which are words with a same root. “Computer”, “computation”,

and “computational”, for instance, these derivationally related words usually bring similar senti-

ment polarity so they should generally belong to a stem to reduce the size and complexity of input

data. Stem is the form of a word before inflectional affixes are added. Stemmer, or so-called stem-

ming algorithm, is the process to cut off words’ inflectional affixes to its stem form. All the words

in example can be stemmed to “comput” by Porter stemmer.

Porter stemmer, as most popular rule-based stemmer, brings a fast computation based on

vowel and consonant [8, 14]. It removes suffix for better information retrieval but linguistic

 17

readability so that sentence after Porter stemming might not be readable. Porter stemmer has only

5 if-then steps, and it practically works well.

4.4 Part-of-speech Tagging

Part-of-speech (POS) tagging is a process to classify words on the basis of part of speech

category such as noun, verb, adverb, and adjectives. POS tagger is required to some lexicon-

based scoring system. POS tags describe the characteristic structure of words within a text, and

the information is useful for accurate sentiment score which is scaling system to give an associ-

ated score to words having a negative, neutral, or positive sentiment. POS tagger in this thesis

bases on WordNet which is a large lexical database of English, which is dictionary-based [9].

4.5 Data Transformation

Since our numerical data is obtained from Yahoo! Finance, there is no missing values and

it is decent. One problem is wide range among stocks. BA stock prices, for instance, shows an

extremely wide range as shown:

Figure 4.1 Descriptive Statistics of BA Prices.

 18

Data transformation is to apply mathematical function to each sample point in a dataset.

The purpose of data transformation is to make data closely meet the assumptions of statistical in-

ference. Common transformations are logarithm, and MinMaxScaler, and the transformation we

apply varies among the six stocks depending on error.

One advantage of log transformation is to make highly skewed distribution less skewed.

According to previous researches, natural logarithm and logarithm with 10 of base have been ap-

plied. There is no huge error different between the two logarithms, and we decide to apply loga-

rithm with 10 of base. Besides, MinMaxScaler is to rescale features to a given range, e.g., be-

tween zero and one, by computation minus minimum value and then divided by the difference

between maximum and minimum value:

𝑋_𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑	 = 	
(𝑋 − 𝑋_𝑚𝑖𝑛)

(𝑋_𝑚𝑎𝑥	 − 	𝑋 − 𝑚𝑖𝑛)

Our experiments without data transformation shows much more higher error measure

than experiments with transformation. Thus, transformation is always applied in our experi-

ments.

 19

Chapter Five:

Methods and Procedures

5.1 Sentiment Score

Words are assigned an associated score by scaling system, and which represents the scale

of sentiment polarity [24]. The sentiment score represents the scale of polarity of a given text,

which is the one purpose of sentiment analysis. The range of a scale varies, but it always repre-

sents the scale from extremely negative to extremely positive polarity. Based on scaling system,

researchers are able to sophisticatedly understand sentiment polarity of a target text by sentiment

scores of words in the target text [25, 26]. Practically, there are several ways to determine polar-

ity of a target text. With negative score to negative words and positive score to positive words,

polarity of a sentence can be computed by sum of scores of words of a sentence representing sen-

timental polarity. A sentence is considered as positive sentiment with positive score of sums, and

a sentence is considered as negative sentiment with negative score. We estimate polarity of daily

news in score based on the scaling systems, and use these scores to predict stock price because

 20

sentiment score might be highly correlated to direction of stock price movement. Two ap-

proaches to construct scaling system are introduced.

5.1.1 Pointwise Mutual Information and Information Retrieval

The sentiment polarity of individual words, also known as semantic orientation, can be

calculated by Semantic Orientation from Pointwise Mutual Information and Information Re-

trieval (SO-PMI-IR) [10]. SO-PMI-IR bases on seven opposing pairs, called as seed words, to

infer semantic orientation. Seven opposing pairs include seven positive words (good, nice, excel-

lent, positive, fortunate, correct, and superior) and seven negative words (bad, nasty, poor, nega-

tive, unfortunate, wrong, and inferior). With assumption of independence between words, they

applied pointwise mutual information (PMI) to compute strength of the semantic association be-

tween words:

𝑃𝑀𝐼(𝑤𝑜𝑟𝑑1,𝑤𝑜𝑟𝑑2) = log>
𝑃(𝑤𝑜𝑟𝑑1,𝑤𝑜𝑟𝑑2)
𝑃(𝑤𝑜𝑟𝑑1)𝑃(𝑤𝑜𝑟𝑑2)

= log>

𝐶(𝑤𝑜𝑟𝑑1,𝑤𝑜𝑟𝑑2)
𝑁

𝐶(𝑤𝑜𝑟𝑑1)
𝑁 ∙ 𝐶(𝑤𝑜𝑟𝑑2)𝑁

P(word1) in formula represents the probability of word1 in text, which is calculated by numbers

of word1 in text, denoted as C(word1), divided by number of words in text, denoted as N. Fur-

thermore, semantic orientation of word1 is calculated by:

 21

𝑠𝑐𝑜𝑟𝑒(𝑤𝑜𝑟𝑑1) = 𝑆𝑂 − 𝑃𝑀𝐼 − 𝐼𝑅(𝑤𝑜𝑟𝑑1) =

𝑃𝑀𝐼(𝑤𝑜𝑟𝑑1, {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑝𝑎𝑟𝑎𝑑𝑖𝑔𝑚𝑠}) − 𝑃𝑀𝐼(𝑤𝑜𝑟𝑑1, {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑝𝑎𝑟𝑎𝑑𝑖𝑔𝑚𝑠})

where {positive paradigms} represents set of the seven positive words, and {negative para-

digms} represents set of the seven negative words. Based on SO-PMI-IR, sentiment lexicon is

created by utilizing large twitter corpora [15, 27]. 78 seed words (32 positive and 36 negative)

are chosen from hashtagged emotional words from 775,000 tweets. The sentiment score for a

word is calculated as shown above.

5.1.2 SentiWordNet

SentiWordNet, another scaling system to scale of sentiment polarity, is constructed with

the similar idea to previous system. Firstly, the mentioned seven opposing pairs in 5.1.1 are con-

sidered as original set of seed words with manually labelled. The original sets of positive words

and negative words, denoted 𝐿L and 𝐿M, are then iteratively expanded in K iterations into final

training set, denoted 𝑇𝑟LO and 𝑇𝑟MO. At each iteration step k, two sets 𝑇𝑟LO and 𝑇𝑟MO are gener-

ated, where 𝑇𝑟LO ⊃ 𝑇𝑟LOQR ⊃ ⋯ ⊃ 𝑇𝑟LR = 𝐿L and 𝑇𝑟MO ⊃ 𝑇𝑟MOQR ⊃ ⋯ ⊃ 𝑇𝑟MR 	= 𝐿M. In other

words, sets after each iteration are added new words and also contain previous words. Iteration

step k is from 0 to 6, and new words are decided by direct antonymy, similarity, derived-form,

pertain-to, attribute, and also-see respectively from other resource. Besides, a set for objective

 22

words, denoted 𝐿T, is constructed by words that do not have either positive or negative charac-

teristics in General Inquirer lexicon [81], and 𝐿T always consists of 17,530 synsets. Afterward, a

ternary classifier is applied, which includes two binary classifiers. One is to classify words to

positive or not positive, and the other one is to classify words to negative or not negative. Words

are considered as positive when positive by former classifier and not negative by latter classifier.

Words are considered as negative when not positive by former classifier and negative by latter

classifier. Words are considered as objective when positive by former classifier and negative by

latter classifier, or when not positive by former classifier and not negative by latter classifier. For

training classifier, four training sets are determined when iteration step k=0, 2, 4, 6. Two alterna-

tive classifiers are Rocchio [84] and Support vector machines packages [83]. Finally, sentiment

scores to each synset are obtained by the ternary classifiers, and then are normalized to 1.0.

5.2 Artificial Neural Networks

Artificial neural networks (ANNs), usually called neural networks (NNs), are nothing more

than nonlinear regression and discriminant models [36]. NN is critical to our NLP tasks because

we apply it to map words form the vocabulary to vectors of real numbers, which is called word

embedding and introduced in Section 5.3. Besides, two members of NN family, convolutional

neural networks and recurrent neural networks, are used to avoid overfitting and to perform time

 23

series analysis due to their characteristics respectively, which are introduced in the further Sections

5.4 and 5.5, respectively. A neuron as simplest and basic unit of neural networks is just linear

regression. Neural networks are able to do non-linear algorithm by combination of linear regres-

sions. Given an input data matrix X with n observations and k features, the input for a neuron is

linear combination of X and parameter vector w.

𝑋 ∈ 𝐹(OWR)×M

𝑤 ∈ 𝐹(OWR)×R

The unit works in the following way:

𝑦 = 𝑓(𝑢)

where u is a scaler number, which is input of the neuron. Number u is defined as:

𝑢 = 𝑤\𝑋

The size of X depends on how many data we like to feed algorithm each time. The output of a

neuron is derived from activation function f. Popular activation functions include Heaviside func-

tion (ReLU function), hyperbolic function (tanh function) and logistic function (sigmoid function)

as shown as:

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:		𝑓(𝑢) =
1

1 + 𝑒Q_

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:	𝑓(𝑢) =
𝑒_ − 𝑒Q_

𝑒_ + 𝑒Q_

𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:		𝑓(𝑢) = c𝑢								𝑖𝑓	𝑢 > 0
0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 24

Neural networks are popular due to its further derivation, multi-layer perceptron (MLP). An

MLP is composed of one input layer, one or more layers (so called hidden layers), and one out-

put layer. Every layer includes one or more neurons. Every layer except the output layer includes

bias neuron and is fully connected to next layer. A neural network is called deep neural network

(DNN) when it includes two or more hidden layer. Furthermore, softmax function is usually ap-

plied for classification task, which estimates the probability of each output value of output layer.

Given M classes, softmax function is calculated as:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:		𝑓(𝑂f) =
𝑒gh

∑ 𝑂fj
fkR

For error measure, cross entropy as following equation is commonly applied for classification

task. Unlike mean square error, cross entropy stands for the difference between predicted proba-

bility and target probability from given dataset.

𝐻(𝑡, 𝑝) = −l𝑡(𝑥)	𝑙𝑜𝑔	𝑝(𝑥)
m

where t is target distribution and p is predicted distribution.

Furthermore, backpropagation training algorithm, known as Gradient Descent (GD) with

chain rule, is applied to update weights to perform optimization. GD is a very generic, basic and

common algorithm to optimize neural networks with differentiable loss function. The idea of GD

is to tweak parameters iteratively in order to minimize object function, which is loss function for

machine learning approaches [12, 32]. Gradient is the partial derivatives of the function, which

 25

means a vector with increasing direction. It is explanation why there is a minus in gradient descent

step as following equation. There are also two hyperparameters, learning rate 𝜂 and value of pa-

rameters 𝜃 (weights in NN) at beginning.

𝜃(Mpq) = 𝜃(Trs) − 	𝜂∇u𝐿(𝜃)

where ∇u𝐿(𝜃) is gradient vector and 𝐿(𝜃) is loss function. The gradient vector is computed as:

∇u𝐿(𝜃) =

⎝

⎜
⎛

y
yuz

{(u)

y
yu|

{(u)

⋮
y
yu~

{(u)
⎠

⎟
⎞

Gradient descent algorithm cannot work at all when the initial value of parameters are

zero. Moreover, gradient vector often become smaller and smaller values when the algorithm

progresses down to lower layers, which means parameters in lower layer keep unchanged, called

vanishing gradients problem. Weight Initialization strongly affect the efficiency to reach local

minima. A popular solution is to random initialization with mean of zero and standard deviation

of one [33]. We also apply random initialization to avoid vanishing gradient problem.

Besides, the number of hidden layers and the number of neurons per hidden layer are still

somewhat of a black art. All we know is that number of hidden layers is related to how complex-

ity of target model. Higher level structures are required higher hidden layers. A practical ap-

proach is to pick a model with more layers and neurons as possible, then apply regularization

such as dropout or early stopping.

 26

For better optimization, some gradient descent-based algorithms also consider combina-

tion of learning rate, gradient, and momentum, etc. These algorithms include GD with momen-

tum, RMSProp, Adam and so on [36, 37]. All of them focus on the width of step of gradient de-

scent. Firstly, gradient descent with momentum bases on an idea that gradient is related to previ-

ous gradients by adding a momentum vector. Gradient descent with momentum gets fast, if gra-

dients are in the same direction by adding a new hyperparameter 𝛽R, called the momentum, as

shown:

𝑚(Mpq) = 𝛽R𝑚(Trs) − 	𝜂∇u𝐿(𝜃)

𝜃(Mpq) = 𝜃(Trs) + 𝑚(Mpq)

Secondly, gradient descent ideally should be fast for steep dimensions and it should be

slow for gentle slope. For the purpose, adaptive learning rate is applied, which means learning

rate of each parameter is divided by the root mean square of its previous derivatives. Besides, de-

cay rate 𝛽> is added to slow down gradient descent. The algorithm based on combination of

adaptive learning rate and decay rate is called RMSProp as shown:

𝑠(Mpq) = 𝛽>𝑠(Trs) + (1 − 𝛽>)∇u𝐿(𝜃)⨂∇u𝐿(𝜃)

𝜃(Mpq) = 𝜃(Trs) − 	𝜂∇u𝐿(𝜃) ⊘�𝑠(Mpq) + 𝜀

where ⨂ is element-wise multiplication, ⊘ is element-wise division, and 𝜀 is a number to

avoid division by zero. RMSProp is created by Tijmen Tieleman and Geoffrey Hinton in 2012,

 27

and presented in his Coursera class on neural networks and no paper is written for it. Further-

more, Kingma and Ba propose adaptive moment estimation algorithm (adam) by combining mo-

mentum and RMSProp as following equation [35]. Since adam requires less tuning learning rate,

we applied it for our experiments.

𝑚(Mpq) = 𝛽R𝑚(Trs) −	(1 − 𝛽R)𝜂∇u𝐿(𝜃)

𝑠(Mpq) = 𝛽>𝑠(Trs) + (1 − 𝛽>)∇u𝐿(𝜃)⨂∇u𝐿(𝜃)

𝑚� =
𝑚(Mpq)

1 − 𝛽R
�

�̂� =
𝑠(Mpq)

1 − 𝛽>
�

𝜃(Mpq) = 𝜃(Trs) − 	𝜂𝑚� ⊘��̂� + 𝜀

where t is the iteration number. Since m and s are initialized at 0, they are divided by small num-

bers to counteract their bias to 0 especially for first few iterations.

Since NN usually has so many parameters to fit a huge variety of complex datasets, it is

likely to overfit. Regularization is quite useful to ease the overfitting situation. Penalty can be

added into loss function. Otherwise, dropout is a simple but effective technique to prevent NN

from overfitting [34]. Dropout is that every neuron in neural network has probability p of being

entirely ignored during training step at every training step. The probability p is 0.5 in our experi-

ments.

 28

5.3 Word Embedding

For every language analysis, the first and most important is to find a great word represen-

tation method which is able to represent semantic and contextual meaning, and further to obtain

sentence/text information. In our study, one of our concerns is the potential relationship between

news headlines information and stock price. Pretrained word embedding is applied to our news

data due to our small size of textual data.

5.3.1 Word2vec

Word embedding is any of a set of language modeling and feature learning techniques in

natural language processing (NLP) where vocabulary words are mapped to vectorial representa-

tion of real numbers. The key idea for word embedding is dimension reduction, which means

that mathematical embedding from a space with many dimensions per word to a continuous vec-

tor space with much lower dimension [28]. Methods to generate vector representation include

neural networks (NN), word co-occurrence matrix, and so on. Tomas Mikolov and colleagues

propose two NN-based model architectures to learn vector representations of words, which are

continuous bag-of-words model (CBOW) and continuous skip-gram model (Skip-gram). Given a

sentence, denoted S, including n words as training dataset, S = (𝑤R,𝑤>,…, 𝑤M) where 𝑤R stands

for first order word in the sentence, 𝑤>	stands for second order word, and so on [11].

 29

Figure 5.1 Two Model Architectures, CBOW and Skip-gram.

 The CBOW predicts the current word based on surrounding 2m words, and the Skip-
gram predicts 2m surrounding words based on the current words. With mathematical detail,
CBOW is shown as:

 Figure 5.2 CBOW with Dimensions.

 30

The input vectors are one-hot encoded, which means only one out of V units will be 1,

and all other units are 0 for a given input context word. V is the number of distinct words in the

given training texts. The weight between input layer and hidden layer is a V×d matrix 𝑊�M,

where d is a hyperparameter. The “d” is number of dimensions of new word vector. Each row of

𝑊�M is the d-dimension vector representation of the associated word 𝜔� of the input layer, de-

noted 𝑣��
\ , where 𝑖 = 1, . . . , 𝑉. Because input vectors are one-hot encoded, given a context, hid-

den layer output is computed as:

ℎ =
1
2𝑚𝑊\(𝑥�Q� +⋯+ 𝑥�QR + 𝑥�WR + ⋯+ 𝑥�W�)

 = R
>�
�𝑣���� + ⋯+ 𝑣���| + 𝑣���| + ⋯+ 𝑣�����

\

where m is window size we have chosen. From hidden layer to output layer, a score 𝑢f for each

word can be computed as:

𝑢f = 𝑣�h
� \ℎ

where 𝑣�h
� is the j-th column of the weight matrix 𝑊T_�. Furthermore, softmax function is ap-

plied to obtain the posterior distribution of words as:

𝑝(𝜔�	|	𝜔�Q� ⋯𝜔�QR𝜔�WR ⋯𝜔�W�) =
𝑒𝑥𝑝(𝑢f)

∑ 𝑒𝑥𝑝(𝑢f�)�
f�kR

The loss function is maximum of the conditional probability of actual output word 𝜔� given its

surrounding words 𝜔�Q� ⋯𝜔�QR𝜔�WR ⋯𝜔�W� [30]:

𝑚𝑎𝑥	𝑝(𝜔�	|	𝜔�Q� ⋯𝜔�QR𝜔�WR ⋯𝜔�W�)

 31

The skip-gram model is opposite to CBOW model, which means surrounding words are pre-

dicted based on current word.

Vector representations of words by the two model architectures are capable to be meas-

ured similarity between words by cosine similarity. Given vector representations of two words,

�⃑� and 𝑏�⃑ , the similarity between them, cos(𝜃), is represented as:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =
�⃑� ∙ 𝑏�⃑

||�⃑�||	||𝑏�⃑ ||
=

∑ 𝑎� ∙ 𝑏��

�∑ 𝑎�>� �∑ 𝑏�>�

where �⃑� ∙ 𝑏�⃑ is dot product of the two vector, and 𝑎�	𝑎𝑛𝑑	𝑏� are components of vector �⃑� and 𝑏�⃑

respectively. Moreover, the impressive thing is that relationship between words is characterized

by a relation-specific vector offset. The famous example is that vector(“king”) – vector(“man”) +

vector(“woman”) result in a vector which is closest to vector representation of word “queen” [11,

29]. These representations capture syntactic and semantic regularities in English.

Since our dataset is much smaller than other dataset to pretrained word2vec model, we

applied Google’s trained model which is trained on roughly 100 billion words from a Google

News dataset [31].

 32

5.3.2 Bidirectional Encoder Representations from Transformers

Bidirectional encoder representations from transformers (BERT) is a language represen-

tation model from unlabeled text [86], and it is a pre-training transformer-based machine learn-

ing approach for NLP task by Google. Pre-training BERT is used for headlines embedding due to

our small size of distinct words in our textual data, our limitedly computational power, and its

notable achievements for many natural language processing tasks. We generally know what

structure it is from its name, which is encoders from transformer as shown in figure 5.3. The en-

coder consists of a stack of 6 identical layers. Each layer contains two sublayers, multi-head self-

attention mechanism, and fully connected feed-forward network. The outputs of dimension, de-

noted 𝑑�Tspr for all sub-layers including embedding layers is 512 in original paper [85].

Figure 5.3 Architecture of Encoder From Transformer.

 33

where represents concatenation. Firstly, positional encoding is applied to obtain relative or

absolute position information because order of sequence of input data is unimportant for models

with self-attention mechanism. Position information can be provided by one-hot encoding, and in

paper to encoder, sine and cosine functions of different frequencies are used for positional em-

bedding (PE) as shown:

𝐹𝑜𝑟	𝑒𝑣𝑒𝑛	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠:	𝑃𝐸(LT ,>�) = 𝑠𝑖𝑛(𝑝𝑜𝑠
10000

>�
s�¡¢£¤¥¦)

𝐹𝑜𝑟	𝑜𝑑𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠:	𝑃𝐸(LT ,>�) = 𝑐𝑜𝑠(𝑝𝑜𝑠
10000

>�
s�¡¢£¤¥¦)

where pos is the position and i is the dimension. These functions are chosen because they would

allow model to easily learn. Afterward, positional embedding is concatenated with input embed-

ding vector as new input vector for multi-head self-attention mechanism.

Since multi-head self-attention mechanism consists of multiple self-attention function,

self-attention function should be explained. Self-attention function is to map a query and key-

value pairs to an output [85]. In other words, three vectors, query, key, and value, are created by

three learnable weight matrices, denoted 𝑊§,𝑊¨, 𝑎𝑛𝑑	𝑊� respectively, and then scale of im-

portance is calculated by element-wise multiplication of query and key vector. The output is pro-

duced by element-wise multiplication of value and scale of importance after softmax function. In

mathematical detail, given a input matrix a, self-attention function is shown as:

𝑄 = 𝑊§
\𝑎

 34

𝐾 = 𝑊¨
\𝑎

𝑉 = 𝑊�
\𝑎

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ¬
𝑄𝐾\

�𝑑O
𝑉

Multi-head self-attention is actually multiple self-attention mechanism, which has h sets of

𝑊§,𝑊¨, 𝑎𝑛𝑑	𝑊�, and h is hyperparameter. The output of multi-head self-attention is concatena-

tion of outputs of all self-attention.

Afterward, output of multi-head self-attention is concatenated with input vector, and fol-

lowed by layer normalization. Layer normalization is a technique to normalize summed input

into standard normal distributed to each hidden layer. Layer normalization is able to reduce co-

variate shift problem which means that changes in the output of one layer will tend to cause

highly correlated changes in the summed inputs to the next layer [88].

5.4 Convolutional Neural Networks

Convolutional neural network (CNN) is an important approach to cope with our textual

data and numerical data. Unlike long short-term memory introduced in Section 5.5, CNN ex-

tracts information of subsequence of our series data through whole dataset by its sliding filters.

Given m of window size, for our historical prices data, prices of m days are converted into one

new representation form. For textual data, matrix of m of words are also converted into one new

 35

form. Besides, CNN is popular in hybrid approaches such as convolutional long short-term

memory due to its ability to extract information.

CNN is one member of neural networks family proposed by Lecun et al. in 1998 [71],

and originally designed to perform image-driven pattern classification problems. Afterward, it is

also used to perform NLP task such as sentiment classification [70] based on its architecture and

mechanism, and its key characteristic is combined with notable long short-term memory for time

series analysis such as financial asset price forecasting [65, 72].

CNN is analogous to ANN in the idea that they consist of layers of neurons which opti-

mize through gradient descent. The obvious difference between CNN and ANN is that CNN is

able to reduce overfitting risk than ANN. For pattern recognition within images, ANN requires

much more parameters to compute image data than CNN, which leads that neural networks is un-

able to extract pattern of data effectively. Thus, two new types of layers, convolutional layer and

pooling layer, are added into ANN architecture to reduce computational complexity, which is

named convolutional neural network (CNN). A simple CNN architecture, comprised of one con-

volutional layer with 4 kernels first, one pooling layer, and artificial neural network (See figure

5.4). Firstly, the image is converted into matrix form of pixel values. Secondly, the convolutional

layer determines the output of neurons of which are connected to local regions of the input ma-

trix through the calculation of element-wise product between learnable kernel (weights) and the

 36

region connected to the input matrix. Thirdly, the pooling layer downsamples along the spatial

dimensionality of the given input, which reduces number of parameters. Lastly, traditional artifi-

cial neural network is performed [73] for further classification or regression task.

Figure 5.4 An Simple CNN Architecture

The convolutional layer is the critical and crucial layer for CNN operation, and the focus

of convolutional layer is the learnable kernels as known as filters. These filters are always

smaller than input matrix in spatial dimensionality, and produce convolutional feature map by

element-wisely multiplying connected regions across the spatial dimensionality of the input ma-

trix. That’s how convolutional layer is able to reduce complexity of input data through the opti-

mization of its output. The optimization bases on four hyperparameters, the number of filters, the

size of filter, the stride, and zero-padding. The learnable filters are actual parameters of neural

networks in matrix forms so that overfitting risk increases when the number of filters increases.

 37

Similarly, overfitting risk increases with the large size of filter due to increasing number of pa-

rameters. Besides, large size of filter leads to the smaller feature map. The stride is the depth that

kernels slide across the spatial dimensionality of the input matrix. Feature map becomes smaller

when stride increases. Zero-padding is the process of padding border of the input matrix with

zero, which is able to maintain the size of feature map as input matrix. Given the same condi-

tions of figure 5.4, the size of kernel is 3 by 3 the stride is 1, number of kernel is 1, computation

of convolutional layer is shown as:

Figure 5.5 Computation of Convolutional Layer.

The learnable kernel element-wisely multiplies region across the spatial dimensionality of

the input matrix. The output of convolutional layer as known as feature map, would be a 2 by 2

matrix.

 38

Pooling layer is the next step which also reduce dimensionality of input matrix and com-

plexity of the neural network by downsampling. There are two common pooling layers, max-

pooling layer and average-pooling layers. Pooling layers also require a kernel size and stride of

the kernel along the spatial dimensions of input. The average-pooling layer computes the average

of elements of corresponding regions of input matrix as output. The max-pooling layer computes

the maximum value of elements of corresponding regions of input matrix. Given the condition of

Figure 5.4.2 and 2 by 2 of kernel size, output of max-pooling layer and average-pooling layer are

respectively shown as:

 Figure 5.6 Computations of Max-pooling Layer and Average-pooling Layer.

In our example, 4 by 4 of input matrix becomes one value after convolutional layer and

pooling layer. That’s why CNN is able to cope with high dimension of image classification prob-

lems. Besides, CNN is also able to cope with sentiment classification problems based on its slid-

ing property [70]. Since words can be represented in vector form after word embedding, a sen-

tence as a series of words is represented in matrix form. Afterward, the matrix of a sentence can

be considered as input matrix to CNN as shown. Given conditions that sentence contains |s| of

 39

words, each word is represented in 1 by d of vector, filter size is d by m, architecture of CNN for

sentiment classification problem is shown as:

Figure 5.7 The Architecture of CNN Model for Sentiment Classification.

Every sentence can be represented in matrix form by combination of series of its words

vector, and then it is considered as input matrix of convolutional layer. Filter (F) as known as

kernel always has the same length (d) with length of word vector in natural language process.

The width m of filter is decided by us. Afterward, element-wise multiplication between filter and

regions of input matrix results in convolutional feature map, and spatial dimensionality of feature

map further decreases by pooling layer. Lastly, any classifier can be performed for classification

task.

Moreover, CNN of sliding characteristic with recurrent neural networks is also powerful

and useful to time series analysis. Unlike traditional time series analysis approach, its sliding

 40

characteristic is able to extract days’ information each stride. Thus, convolutional layer is often

combined with recurrent neural networks.

5.5 Recurrent Neural networks (Long Short-term memory)

Recurrent neural network (RNN) was referred to neural networks structure with repeated

loops conditionally allowing information moving from one state to afterward states. RNN is the

main tool in our study due to its moving characteristic and high performance in sentiment analy-

sis and time series analysis. It can be used not only to forecast stock price on next day but also to

obtain news headlines vector because text is considered as a series of words and historical prices

are considered as a time series of prices. Given input data at time step t, denoted X(t), and output

(cell’s state) at time step t, denoted h(t), RNN is as shown:

Figure. 5.8 An Unrolled Recurrent Neural Network Through Time.

 41

where memory cell can be a single neuron, or a layer. RNN is capable to analyze series data such

as time series and text which seems a series of in NLP. However, RNN is totally superseded by

one special kind of RNN, named Long short-term memory (LSTMs), nowadays because of its

vanishing gradient problem. LSTM is designed to store useful information for long period and to

forget unnecessary information. Given input X at time step t, denoted X(t), and output Y at time

step t, denoted y(t), computation of a LSTM cell is shown as:

Figure 5.9 Long Short-term Memory Cell [12].

The structure of LSTM cell shows the three key points:

1. How LSTMs store long-term information, which is cell state c(t).

2. How LSTMs forget information, which is controlled by forget gate f(t).

3. How LSTMs get short-term output,, which is hidden state h(t).

 42

The first key point is what scale of long-term information would be dropped, and the decision is

controlled by forget gate layer. The output range of forget gate layer is (0,1) because logistic

function is activation function, which represents the dropping percentage. The output can be

computed as:

𝑓(𝑡) = 𝜎(𝑊m¯
\𝑋(�) +𝑊°¯

\ ℎ(�QR) + 𝑏±)

where 𝜎 is logistic function X(t) is input vector at time step t, and h(t-1) is output vector at time

step t-1. Besides, new information might be party added into cell state, and it is controlled by in-

put gate layer and tanh layer. The input gate layer works as same as forget gate layer, which de-

cides how much information is added into cell state due to (0,1) of range. The activation function

of the tanh layer is tanh function as known as hyperbolic function, and it is a rescaling function

due to its (-1,1) of range. Element-wise multiplication between them decides new information

added into cell state:

𝑖(𝑡) = 𝜎(𝑊m�
\𝑋(�) +𝑊°�

\ℎ(�QR) + 𝑏�)

𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊m²
\ 𝑋(�) +𝑊°²

\ ℎ(�QR) + 𝑏�)

where tanh is hyperbolic function. Thus, the procedure of updating cell state is shown as:

𝑐(𝑡) = 𝑓(𝑡)	⨂	𝑐(𝑡 − 1) + 𝑖(𝑡)	⨂	𝑔(𝑡)

 43

The last part is output for current time step, which is decided by current cell state, hidden state

and input. Current cell state is rescaled by tanh function, and then multiplied by percentage

which is decided by current input and last hidden state as shown:

𝑜(𝑡) = 𝜎(𝑊m¡
\𝑋(�) +𝑊°¡

\ ℎ(�QR) + 𝑏�)

𝑦(𝑡) = ℎ(�) = 𝑜(𝑡)	⨂	𝑡𝑎𝑛ℎ(𝑐(𝑡))

LSTMs as one kind of neural networks also use gradient descent to update parameters which are

all W above.

5.6 Support Vector Regression

Support vector regression (SVR) is a notable global optimization method in nonlinear re-

gression estimation with mathematically theorical support which tries to locate a hyperplane by

transforming input data into a higher dimension space [76]. It has been successful applied in time

series forecasting in financial market [75] so that we consider SVR as our baseline model.

Stock price prediction is to establish an optimal prediction function based on historical

data and other technical indicators to forecast stock price. Suppose we are given training data

{(𝑥R, 𝑦R),…, (𝑥ℓ, 𝑦ℓ)}⊂ 𝒳 ×ℝ, where 𝒳 denotes the space of the input data. For example, these

might be historical stock prices measured at subsequent stock price. The goal is to find a function

 44

f(x) having at most 𝜀 deviation from the actual targets 𝑦�, and at the same time is flat as possi-

ble. In other words, those points with error less than 𝜀 are ignored. The function f is shown as:

𝑓(𝑥) = 𝑤\𝑥� + 𝑏, 𝑤 ∈ 𝒳, 𝑏 ∈ ℝ

The goal is considered as a convex optimization problem as:

⎩
⎨

⎧ min
q,½

	
1
2
𝑤\𝑤

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 ¿𝑦� − (𝑤
\𝑥� + 𝑏) ≤ 𝜀		

𝑤\𝑥� + 𝑏 − 𝑦� ≤ 𝜀

Furthermore, slack variables 𝜉�, 𝜉�∗ are introduced for otherwise infeasible constraints of the opti-

mization problem [76], and problem can be stated as:

⎩
⎪⎪
⎨

⎪⎪
⎧ min

q,½
	
1
2𝑤

\𝑤 + 𝐶l(𝜉� + 𝜉�∗)
ℓ

�kR

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 Ä
𝑦� − (𝑤\𝑥� + 𝑏) ≤ 𝜀 + 𝜉�
𝑤\𝑥� + 𝑏 − 𝑦� ≤ 𝜀 + 𝜉�∗

𝜉�, 𝜉�∗ ≥ 0

where C is a regularization. A larger C gives more weight to minimize the error. By using La-

grangian, the constrained optimization problem can be solved as:

min
q,½,Æ�,Æ�

∗𝐿(𝑤, 𝑏, 𝜉�, 𝜉�
∗) = min

q,½

1
2𝑤

\𝑤 + 𝐶l(𝜉� + 𝜉�∗)
ℓ

�kR

−l(𝜂�𝜉� + 𝜂�∗𝜉�∗)	
ℓ

�kR

−l𝛼�(𝜀 + 𝜉� − 𝑦� + 𝑤\𝑥� + 𝑏))
ℓ

�kR

−l𝛼�∗(𝜀 + 𝜉�∗ + 𝑦� − 𝑤\𝑥� − 𝑏))
ℓ

�kR

The partial derivatives of L with respect to variables(𝑤, 𝑏, 𝜉�, 𝜉�∗) equal to zero are applied for

finding minimization of L as:

 45

𝜕𝐿(𝑤, 𝑏, 𝜉�, 𝜉�∗)
𝜕𝑏 =l(𝛼� − 𝛼�∗) = 0

ℓ

�kR

𝜕𝐿(𝑤, 𝑏, 𝜉�, 𝜉�∗)
𝜕𝑤 = 𝑤 −l(𝛼� − 𝛼�∗)𝑥� = 0

ℓ

�kR

𝜕𝐿(𝑤, 𝑏, 𝜉�, 𝜉�∗)
𝜕𝜉�

= 𝐶 − 𝛼� − 𝜂� = 0

𝜕𝐿(𝑤, 𝑏, 𝜉�, 𝜉�∗)
𝜕𝜉�∗

= 𝐶 − 𝛼�∗ − 𝜂�∗ = 0

Also, Karush-Kuhn-Tucker (KKT) condition states the product of the Lagrange multipliers and

the constraints is equal to zero as shown:

𝛼�(𝜀 + 𝜉� − 𝑦� + 𝑤\𝑥� + 𝑏) = 0

𝛼�∗(𝜀 + 𝜉�∗ + 𝑦� − 𝑤\𝑥� − 𝑏)0

𝜂�𝜉� = 0

𝜂�∗𝜉�∗ = 0

By substituting these equations, the optimization problem yields the dual optimization problem:

⎩
⎪⎪
⎨

⎪⎪
⎧𝑚𝑎𝑥	 −

1
2ll(𝛼� − 𝛼�∗)�𝛼f − 𝛼f∗�𝑥�\𝑥f − 𝜀l(𝛼� − 𝛼�∗) +

ℓ

�kR

l𝑦�(𝛼� − 𝛼�∗)
ℓ

�kR

ℓ

fkR

ℓ

�kR

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 Él
(𝛼� − 𝛼�∗) = 0

ℓ

�kR
0 ≤ 𝛼f, 𝛼f∗ ≤ 𝐶

Thus, the goal function f is shown as:

𝑓(𝑥) = 	l(𝛼� − 𝛼�∗)
ℓ

�kR

𝑥�\𝑥 + 𝑏

 46

KKT condition which state that the product between dual variables and constraints must vanish

at point of the solution. Training data with error larger than 𝜀 will have nonzero 𝛼�	𝑜𝑟	𝛼�∗. Points

with error less than 𝜀, 𝜉� = 0, and so does 𝜉�∗. Therefore, b can be calculated by KKT condition:

𝑏 = 𝑦� − 𝑤\𝑥� − 𝜀

𝑏 = −𝑦� + 𝑤\𝑥� − 𝜀

Furthermore, kernels are introduced which preprocesses features to yield nonlinearity by map-

ping transformation. Definition of kernel function is:

𝐾(𝑥, 𝑥�) = 𝜙(𝑥)\𝜙(𝑥�) =< 𝜙(𝑥), 𝜙(𝑥�) >

∀𝑥, 𝑥� ∈ Χ, ∃𝜙: 𝑥 → 𝑍

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝐾(𝑥, 𝑥�) = 𝜙(𝑥)\𝜙(𝑥�)

The optimization problem would be restated as:

⎩
⎪⎪
⎨

⎪⎪
⎧𝑚𝑎𝑥	 −

1
2ll(𝛼� − 𝛼�∗)�𝛼f − 𝛼f∗�𝐾(𝑥, 𝑥�) − 𝜀l(𝛼� − 𝛼�∗) +

ℓ

�kR

l𝑦�(𝛼� − 𝛼�∗)
ℓ

�kR

ℓ

fkR

ℓ

�kR

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 Él
(𝛼� − 𝛼�∗) = 0

ℓ

�kR
0 ≤ 𝛼f, 𝛼f∗ ≤ 𝐶

The goal function f would be restated as:

𝑓(𝑥) = 	l(𝛼� − 𝛼�∗)
ℓ

�kR

𝐾(𝑥, 𝑥�) + 𝑏

Common kernel functions are linear, polynomial, Gaussian RBF, and sigmoid:

 47

𝐿𝑖𝑛𝑒𝑎𝑟:	𝐾(𝑥, 𝑥�) = 𝑥\𝑥�

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙: 𝐾(𝑥, 𝑥�) = (𝛾𝑥\𝑥� + 𝑟)s

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛	𝑅𝐵𝐹:	𝐾(𝑥, 𝑥�) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑥�‖>)

𝑆𝑖𝑔𝑚𝑜𝑖𝑑:	𝐾(𝑥, 𝑥�) = 𝑡𝑎𝑛ℎ(𝛾𝑥\𝑥� + 𝑟)

Moreover, hyperparameters such as C, gamma 𝛾, 𝜀 are critical to the regression result. C

is regularization term which is a penalty. Small C leads larger margin, and vice versa. Besides, 𝜀

decides the width of margin, which is margin of tolerance, and data points in the margin would

be ignored to compute error. In other words, smaller 𝜀 means that less data points would be ig-

nored, and overfitting risk increases. Gamma is actually a parameter of kernel function. It affects

how original data points are projected into higher-dimension feature space. Larger gamma tends

to increase overfitting risk [79].

5.7 Evaluating the model

Forecast error is the measure to estimate how good the model is, and it is the difference

between an actual prices and predicted prices in many ways. In this thesis, three error measures

are applied, which are root mean squared error (RMSE), mean absolute error (MAE), and Mean

absolute percentage error (MAPE). MAE and RMSE measure difference between predicted

prices and actual prices as shown:

 48

𝑅𝑀𝑆𝐸 = Õ
1
𝑛l(𝑦� − 𝑦�

,)>
M

�kR

𝑀𝐴𝐸 =
1
𝑛lÖ𝑦� − 𝑦�

,Ö
M

�kR

The two measures are popular because they are intuitive, but they might not work well in

stock forecasting because of high volatility of stock market. It happens that stock price boosts

more than 100% in short term such as GameStop stock price which boosts 500% in three days.

They are sensitive to these outliers. MAPE is more intuitive than previous two measures. It

shows the difference between predicted and actual prices in average percentage:

𝑀𝐴𝑃𝐸 =
1
𝑛l×

𝑦�
, − 𝑦�
𝑦�
, ×

M

�kR

MAPE resembles daily return which is percentage change between prices of two days.

Despite various prices among our data, it is easy to compare one stock with other five stocks. For

instance, one of notorious disadvantages of MAPE is that its denominator cannot be zero or

MAPE does not exist, and it becomes advantage because it is hardly happens for stock price pre-

diction. For easier readability, MAPE would multiply by 100 in result.

 49

Chapter Six:

Models

For experimental setting, numerical dataset and textual dataset would be joint based on

date so there are days without news (see table 3.1). Afterward, joint dataset would split into

training and test dataset by 80/20 without shuffle because we prefer to keep it a time series of

prices and news headlines. Series of data would be converted into generic data for computational

reason.

We focus on the combination of time series analysis and sentiment analysis to better fore-

cast stock price, and our combination approach includes four part:

1. Find a time series model which lead smallest error. Predicted prices by the model are consid-

ered as new input data.

2. Use current word embedding approach to obtain representation matrix of daily news head-

lines for each stock as new input data.

3. Apply lexicon-based sentiment approach to obtain the polarity of each daily news headline in

score as new input data.

 50

4. Perform neural networks with these new input data for stock price forecasting.

For time series analysis, window size is a key factor, which is number of price of the past

days for current price prediction. Intuitively, everyone believes that there is somehow relation

between historical stock prices and present price. We experiment different window sizes (3, 4, 5,

10, 15, 20, 30) and window size is decided by the model with smallest error (MAPE, MAE, and

RMSE). Secondly, we would perform all models 6.1 to 6.5, and the one with smallest error is

used to further predict stock prices.

Time series models includes Model_1, Model_2a, Model_2b, Model_3, Model_4a, and

Model_4b which are introduced from Section 6.1 to 6.5. Word embedding models include

Model_5a, Model_5b, and Model_5c which are introduced in Section 6.6. Combined models in-

clude Model_6, Model_7, Model_8, and Model_9 which are introduced from Section 6.7 to 6.10.

6.1 Support Vector Regression Models (Denoted Model_1)

Experiment based on Support vector regression (SVR) as baseline models from previous

researches [77]. Instead of the training error at the minimum, SVR tends to minimize the training

error and regularization, and shows potential alternative to stock price forecasting. All the hy-

perparameters (C, 𝜀, gamma) and kernel function are decided by experiments that result in

smallest error.

 51

The input data for model_1 is a time series of closing prices, 𝑃R	𝑃>. . . 𝑃�. . . 𝑃M, for n trad-

ing days, and the SVR is applied to learns the pattern of input data by:

𝑃�Ø = 𝑓(𝑃�QÙ, 𝑃�QÚ, 𝑃�Q>, 𝑃�QR)

where 𝑃� is the real closing price at time t, and 𝑃�Ø is the predicted value at time t [77]. For better

performance, kernel function and hyperparameters are selected by grid search to reach the small-

est as possible.

6.2 Unidirectional Long Short-term Memory (Denoted Model_2a)

6.2.1 Single Layer of Long Short-term Memory

Kumar and Ningombam perform long short-term memory to implement technical analy-

sis for stock price forecasting of APPL in 2018 [44]. They only use series of close prices from

Jan 1 2013 to May 1 2018. Close prices are rescaled with Min-Max scaler into range of (0,1),

which make outlier less effective to model. Their training details include dropout of 0.25, learn-

ing rate is 0.001, optimizer is adam with first order moment estimates 0.9 and second order mo-

ment estimates 0.999, and epochs of 50. Their output layer activation is linear activation. Given

series of t rescaled close prices P(t) and window size w, their model is shown as:

 52

Figure. 6.1 Price Forecasting Model Using LSTM.

We consider their single layer of recurrent neural network as our baseline model, and window

size would be selected depending on error.

6.2.2 Multilayer LSTM

The architecture of multilayer LSTM is to stack several LSTM layers. The design is able

to capture more complicated patterns of data, but it also increases overfitting risk. We are inter-

ested in how many layers of LSTM is better to capture information so that LSMT models with

different layers are performed to lead smallest error. The number of layers is from one layer to

five layers, and the model with the smallest error is denoted model_2a.

 53

Figure 6.2 Four Layers of Long Short-term Memory

6.3 Bidirectional LSTM (Denoted Model_2b)

According to an analysis of forecasting financial time series by Siami-Namini et al, Bidi-

rectional LSTM results in smaller error than LSTM and ARIMA on NASDAQ index, Nikki 225

index, S&P 500 commodity price index, Dow Jones industrial average index, and IBM stock

[69]. Bidirectional LSTM firstly is applied on the input sequence (from past to present) and then

on the reverse of input sequence (from present to past) so that it improves the shortcoming of

unidirectional LSTM which is moving information from the past. For example, given a series of t

daily stock prices and window size w, computation of bidirectional LSTM is shown as:

 54

Figure 6.3 Bidirectional Long Short-term Memory.

6.4 Convolutional Neural Network (Denoted Model_3)

The Convolutional neural network (CNN) model is based on the idea that price at a cer-

tain time is less affected by the prices a long time ago. Recurrent neural networks must go

through prices day by day, but on the contrast, CNN model goes through prices subseries days by

subseries days. The baseline CNN model consists of one input layer, two convolutional layers,

one pooling layer, and a hidden layer. The size of convolutional filter is 1 × 7, and pooling size

is 1 × 2, and there are 6 and 12 filters in two convolutional layers respectively [80]. Given n

days of time series of prices, the procedure of whole CNN model is shown as:

 55

Figure 6.4 Architecture of CNN Model for Time Series Analysis.

6.5 CNN-LSTM (Denoted Model_4a and Model_4b)

 Recurrent neural networks may capture sequence pattern information, but they are unable

to filter out noise of input. In contrast, convolutional neural networks may filter out noise and ex-

tract more valuable feature, but they are designed to cope with spatial data. Therefore, combina-

tion of the two neural networks might lead better performance on time series data which is series

with noise. Proposed LSTMs with convolutional layer (CNN-LSTM) provide a boost in predic-

tion performance for gold price in 2020 [65]. Raw data is converted into new feature values by

element-wise multiplication with kernel in convolutional layers, which aims at filtering out

noise. These feature values are subsampled in pooling layer for lower dimension. Their first

 56

architecture of CNN-LSTM consists of two convolutional layers of 32 and 64 filters of size (2,),

respectively, followed by a max-pooling layer with size (2,), a LSTM layer of 100 units, and a

output layer of one neuron,, denoted Model_4a. The second architecture consists of two convolu-

tional layers of 64 and 128 filters of size (2,), respectively, followed by a max-pooling layer

with size (2,), a LSTM layer of 200 units, a hidden layer of 32 neurons and a output layer of one

neuron, denoted Model_4b.

6.6 Models Based on News Headlines

Inspired by prediction based on sentiment score of news headlines and historical prices,

polarity of news headlines is informative so that new headlines vector might also provide useful

information. We convert new headlines into vector by pretrained word2vect, BERT and LSTM,

and then use news headline vectors as input and actual price as target.

6.6.1 Pretrained Word2vec Model (Denoted Model_5a)

Since our textual datasets for six stock are much smaller than any corpus for training lan-

guage models, pre-trained language model is preferred to produce vectorial representation of

words. Thus, we apply package gensim, pre-trained word2vec model to convert word into vector,

and afterward, the series of word vectors are fed into recurrent neural network to extract

 57

information (see Figure 6.5). The pre-trained Word2vec bases on amount of the training data

including First billion characters form Wikipedia, Latest Wikipedia dump, WMT11 site, dataset

from “One Billion Word Language Modeling Benchmark”, UMBC webbase corpus, and text

data at statmt.org and in the Polyglot project [91].

Figure 6.5 Price Forecast by Pre-trained Word2vec Model.

6.6.2 Word Embedding Model Based on Our Textual Dataset (Denoted Model_5b)

Unlike usage of pre-training language models, we train our word embedding model based

on our textual data, and word vectors are produced by our embedding model.

6.6.3 BERT (Denoted Model_5c)

We apply pre-training language model (BERT-base-uncased) on BookCorpus which con-

sists of 11,038 books and English Wikipedia. It is trained by masked language modeling. Besides

 58

lowercase does not make different because of uncased. In other words, there is no difference be-

tween Headline and headline. [87,89]. Every news headline is converted into headline embed-

ding with 1 × 768 of dimension, and then support vector regression with grid search is applied

to forecast stock price as shown:

Figure 6.6 Price Forecast by Pre-trained BERT Model.

6.7 Model Based on Historical Prices and Sentiment Score (Denoted Model_6)

Mohan et al combined lexicon-based sentiment analysis and LSTM for stock price pre-

diction [47]. Words of news headline is converted into sentiment score, and then pair of histori-

cal price and sentiment score is used to forecast price. Sentiment score is computed as shown:

𝑆𝑐𝑜𝑟𝑒� = (+/−)𝑚𝑎𝑥(𝑎𝑏𝑠(𝑁�, 𝑃�))

 59

𝑆𝑐𝑜𝑟𝑒 =
1
𝑘l𝑆𝑐𝑜𝑟𝑒�

O

�kR

where 𝑁� and 𝑃� are negative and positive values to words in the i-th of k news headlines, and

abs is absolute. Afterward, stock price at time t, denoted 𝑃𝑟𝑖𝑐𝑒(�), is predicted by pairs

(𝑃𝑟𝑖𝑐𝑒(�QR), 𝑆𝑐𝑜𝑟𝑒(�)),…,(𝑃𝑟𝑖𝑐𝑒(�Q�), 𝑆𝑐𝑜𝑟𝑒(�Q�QR)), where m is window size. Window size m

is decided by error.

Figure 6.7 Price Forecast Based on Sentiment Score and Historical Prices.

6.8 Model Based on News Headlines and Predicted Prices (Model_7)

Instead of identifying the polarity of news headlines, news headline is processed in Sec-

tion 6.6 by word embedding model, and then concatenated with predicted prices by time series

model for further analysis. There are two situations for word2vec and BERT respectively. In the

 60

first situation, headline is converted into headline vector by BERT, concatenated with predicted

prices by timeseries model, and then support vector regression is applied for prediction when

Model_5c is better than other embedding models (see Figure 6.8). In second situation, headline

is converted into a sequence of word vectors, and the converted into headline vector by LSTM.

Afterward, the headline vector is concatenated with predicted prices by time series model, and

the neural network is applied for prediction, when Model_5a and Model_5b are better than

Model_5c (see Figure 6.9).

Figure 6.8 Price Forecast Based on BERT and Predicted Prices.

 61

Figure 6.9 Price Forecast Based on Word Embedding and Predicted Prices.

6.9 Model Based on Historical Prices, Sentiment Scores, and Predicted Prices

This model, denoted Model_8 is constructed on the idea of Model_6, which bases on

pairs of sentiment score and historical prices. For Model_6, stock price at time t is predicted by

pairs of historical price at time t-1 and sentiment score at time t. On the contrast, for Model_8,

stock price at time t is predicted by pairs of historical price at time t-1, sentiment score at time t,

and predicted price at time t. The predicted prices base on the BERT language model which is

Model_5c in Section 6.6.3. Afterward, convolutional LSTM (CNN-LSTM) is applied for price

forecasting.

 62

Figure 6.10 Architecture of CNN-LSTM Model.

6.10 Model Based on News Headlines Vector, Sentiment Score, and Predicted Prices

The last model is extension of model_7 which combines sentiment score, headline vector

and predicted price, and this model is denoted Model_9. We assume that sentiment scores by

lexicon and headline vector should be complementarily informative. When Model_5c is better

than Model_5a and Model_5b, headline vector by BERT is concatenated with sentiment score by

lexicon and predicted price by time series model, and support vector regression is applied for

price forecasting (see Figure 6.11). When Model_5a and Model_5b are better than Model_5c,

headline is converted into headline vector by word embedding model and LSTM, the headline

vector is further concatenated with sentiment score by lexicon and predicted price by time series

model, and then neural network is applied for price prediction (see Figure 6.12).

 63

Figure 6.11 Model_9 in Situation 1.

Figure 6.12 Model_9 in Situation 2.

 64

Chapter Seven:

Result and Performance

7.1 Window Size

Window size as an important issue to time series analysis can quite influence the perfor-

mance of time series performance, and it is greatly determined by the structure of prediction

model. Window size is actually related to the difficulty to determine the scaling region and the

proper number of sample. For neural network, the optimal time window size depends on dataset

and task, which might neglect important information with too small size or might lead overfitting

with large window size. Despite ability to learn long-term information, recurrent neural networks

still is under overfitting risk by the size of how long-term the window covers. In this study, Grid

search is used for finding out proper window size and hyperparameters. For time series analysis,

a set of window size (3, 4, 5, 10, 15, 30, 60) is selected from previous researches, and proper

window is decided based on smallest MAE, RMSE, and MAPE among models for the six stocks.

Besides, data transformation also influences prediction performance, especially for wide range of

historical prices so that either logarithm and MinMaxScaler transformations might be applied to

 65

rescale dataset. The following tables (see Table 7.1) show the proper window size for the chosen

six stocks.

Table 7.1 Better Window Size and Error Measure for Six Stocks.

Stock Window size MAPE MAE RMSE
BA 3 1.9164 6.7913 9.1339

BAC 10 1.8153 0.5271 0.6446
XOM 3 1.3685 1.0141 1.3214
UBER 3 2.7847 0.8476 1.0531

JNJ 3 1.2789 1.7449 2.3005
AAPL 4 2.0712 1.1166 1.3669

Window size for BA, BAC, XOM, UBER, JNJ, and AAPL are respectively 3, 10, 3, 3, 3,

and 4, and the result confirms that window sizes depend on task and data. Generally, window

size should be 3 or 4.

7.2 Layers of Long Short-term Memory

Long short-term memory uses information from previous lags and predicts the future

price, and stock market is highly dynamic and volatile. Multilayer of long short-term memory

might work better than single layer because Multilayer of long short-term memory use infor-

mation not only from previous lags but also information from previous layers. In other words,

multilayer of LSTMs might better recognize pattern from training data. Based on the idea, error

should decrease once the number of layer increases, but error would not decrease forever. These

 66

experiments show relationship between number of layers of LSTM and prediction performance.

For easy comparison, we fixe window size and transformation method and perform different

numbers of layers of LSTM.

Table 7.2 Different Number of Layers of LSTM for BA.

Number of layers MAPE MAE RMSE
1 1.9164 6.7913 9.1339
2 2.1505 7.7570 9.6390
3 2.7687 9.7242 12.3683
4 3.7149 13.8079 17.4910
5 4.2101 15.6775 19.6143

Table 7.3 Different Number of Layers of LSTM for BAC.

Number of layers MAPE MAE RMSE
1 1.8153 0.5271 0.6446
2 1.9433 0.5614 0.7038
3 1.6162 0.4621 0.6258
4 1.9229 0.5562 0.7274
5 3.1085 0.9245 1.0910

Table 7.4 Different Number of Layers of LSTM for XOM.

Number of layers MAPE MAE RMSE
1 1.3685 1.0141 1.3214
2 1.4400 1.0639 1.3996
3 1.5632 1.1538 1.5029
4 1.5409 1.1456 1.4766
5 2.2152 1.6344 2.0873

 67

Table 7.5 Different Number of Layers of LSTM for UBER.

Number of layers MAPE MAE RMSE
1 2.7085 0.8476 1.0531
2 2.5714 0.8154 1.0296
3 3.1322 1.0086 1.2712
4 3.1210 0.9984 1.2493
5 3.2270 1.0315 1.2879

Table 7.6 Different Number of Layers of LSTM for JNJ.

Number of layers MAPE MAE RMSE
1 1.2789 1.7449 2.3005
2 1.6781 2.3002 2.7912
3 1.3550 1.85513 2.4729
4 1.5462 2.1180 2.7180
5 1.2921 1.7447 2.4921

Table 7.7 Different Number of Layers of LSTM for AAPL.

Number of layers MAPE MAE RMSE
1 2.0712 1.1166 1.3669
2 3.6187 1.9810 2.3459
3 2.4294 1.2966 1.7728
4 4.6721 2.7262 3.8571
5 5.7976 3.4918 5.4482

With fixed window sizes respectively, numbers of layers of LSTM to better prediction

performance for BA, BAC, XOM, UBER, JNJ, and AAPL are 1, 3, 1, 2, 1, and 1 of layers. Only

two stocks out of six have better performance with increasing layers of LSTM.

 68

7.3 Predicted Prices for Further Experiments

Our proposed approaches require combination of time series analysis and sentiment anal-

ysis, and the way is to use time series model to produce predicted prices and then concatenation

of predicted prices with further information such as sentiment scores and sentence embedding

vector. The following tables show part of the predicted prices by the time series models we men-

tioned with smallest error, and BERT model (Model_5c) which is used as new input in Model_8.

Split rate to training dataset and test set is 80/20 but number of predicted prices is different.

UBER, for instance, has IPO after 2019 so there is only 174 trading days of prices into 140 train-

ing set and 34 test set (predicted prices).

Table 7.8 Predicted Prices for BA

By time series model Actual prices Predicted prices by BERT
55.90502 53.619999 94.45471746
57.016468 49.549999 94.45471746
56.136967 45.720001 94.45471746
53.562096 46.580002 94.45471746
50.71529 46.139999 94.45471746
49.383514 43.970001 94.45471746
48.83146 42.52 94.45471746
47.318375 43.16 94.45471746
46.094635 41.040001 94.45471746
45.06647 41.18 94.45471746
44.53123 39.560001 94.45471746
43.205296 37.48 94.45471746
41.93259 37.110001 94.45471746
40.34494 39.580002 94.45471746

 69

Table 7.8 (Continued)

By time series mode Actual prices Predicted prices by BERT
40.189342 40.75 94.45471746
41.40405 40.18 94.45471746
42.660007 41.279999 94.45471746
43.26565 42.630001 94.45471746
43.92046 39.880001 94.45471746

Table 7.9 Predicted Prices for BAC

By time series mode Actual prices Predicted prices by BERT
23.653166 22.66 13.3624329
22.76592 23 13.3624329
22.677708 21.07 13.3624329
21.312956 20.530001 13.3624329
20.420527 23.02 13.3624329
22.08265 22.32 13.3624329
22.445232 22.780001 13.3624329
22.777256 24.17 13.2389584
23.805891 23.610001 13.3624329
23.683867 24.530001 14.0655187
24.147396 21.75 13.7834306
22.191664 20.120001 13.3624329
20.152433 20.49 13.3624329
19.860502 19.48 13.3624329
19.378168 18.690001 14.757032
18.794096 17 13.3624329
17.45471 17.1 13.3624329
17.031914 16.42 13.4661974
16.52534 15.03 13.9857656

 70

Table 7.10 Predicted Prices for XOM

By time series mode Actual prices Predicted prices by BERT
68.75148 69.230003 83.238681
68.92249 69.349998 83.238681
69.122444 71.760002 83.238681
70.883804 72.919998 83.238681

72.3832 72.080002 83.238681
72.402885 72.980003 83.238681
72.679146 72.970001 83.238681
72.83158 73.169998 83.238681
73.08029 73.120003 83.238681
73.06102 73.839996 83.238681
73.53398 74.050003 83.238681
73.89136 73.779999 83.238681
73.843956 72.809998 83.238681
73.09559 71.629997 83.238681
71.97472 71.419998 83.238681
71.391464 71.440002 83.238681
71.294586 71.050003 83.238681
71.095604 68.839996 83.238681
69.54818 68.949997 83.6726548

Table 7.11 Predicted Prices for UBER

By time series mode Actual prices Predicted prices by BERT
41.42359 41.91 39.8690397
41.983772 41.59 39.5427463
41.88908 41.5 39.4716121
41.444958 41.25 39.2139419
41.22674 40.470001 38.4278436
40.796894 41.509998 39.4741452
40.852325 40.950001 38.9102186
40.817997 39.939999 37.9004557

 71

Table 7.11 (Continued)

By time series mode Actual prices Predicted prices by BERT
40.47547 39.799999 37.7555056
39.895496 40.41 38.3795847
39.822906 41.25 39.2064611
40.34874 42.75 40.7065307
41.425518 45 42.9667674
43.133774 44.919998 42.8781939
44.370842 44.16 42.1181574
44.628384 42.610001 40.5690943
43.675083 42.450001 40.4125572
42.81097 42.169998 40.133007

Table 7.12 Predicted Prices for JNJ

By time series mode l Actual prices Predicted prices by BERT
68.14055 68.739998 102.078387
68.58469 69.519997 102.078387
69.37894 69.449997 102.078387
69.85374 69.220001 102.078387
69.88141 69.379997 102.078387
69.85879 68.449997 102.078387
69.46047 69.120003 102.078387
69.46586 68.839996 102.078387
69.39138 68.290001 102.078387
69.18478 68.349998 102.078387
68.966965 68.32 102.078387
68.866714 68.639999 102.078387
69.00861 68.459999 102.078387
69.03386 68.639999 102.078387
69.11361 68.349998 102.078387
68.38765 67.779999 102.078387
69.01299 68.199997 102.078387

 72

Table 7.12 (Continued)

By time series mode l Actual prices Predicted prices by BERT
68.8826 67.800003 102.078387

68.59859 67.699997 102.078387

 Table 7.13 Predicted Prices for AAPL

By time series mode Actual prices Predicted prices by BERT
21.506311 21.582144 18.546224
21.452919 21.565357 17.0180009
21.369572 21.461428 18.0456217
20.965223 20.534643 18.0456217
20.665445 20.531429 17.2525287
20.583292 20.898571 18.0632034
20.703457 21.251072 20.609269
21.084103 21.812857 18.0456217
21.32057 21.671785 19.6596934
21.453775 21.706785 18.0456217
21.601538 21.989286 18.0456217
21.762096 22.233929 19.1443206
21.878563 22.175358 18.0456217
21.934334 22.137857 18.0456217
21.951183 22.168928 17.6171127
21.957548 22.203571 18.0456217
22.074627 22.5 19.7312202

Predictions based on time series models are likely either under or above actual prices. Be-

sides, word embedding model likely produce the same or volatile prediction, and it might be ex-

plained by news occurrence.

 73

7.4 Performance Comparison Among Models

7.4.1 Models Summary

Table 7.14 Models Summary.

Symbol Description Input data

Model_1 Support vector regression Historical prices

Model_2a Multilayer LSTM Historical prices

Model_2b Bidirectional LSTM Historical prices

Model_3 CNN Historical prices

Model_4_a CNN-LSTM architecture 1 Historical prices

Model_4_b CNN-LSTM architecture 2 Historical prices

Model_5_a Pre-trained word2vec and LSTM News headlines

Model_5_b Self-trained word2vec and LSTM News headlines

Model_5_c BERT and SVR News headlines

Model_6 SentiWordNet & CNN-LSTM Sentiment scores & historical prices

Model_7 Word embedding model News vector & predicted prices

Model_8 Combined model of 6.9
Historical prices, sentiment scores & pre-

dicted prices

Model_9 Combined model of 6.10
Headline vectors, sentiment scores & pre-

dicted prices

All models are introduced in Chapter 6, and comparisons of models based on stocks are

shown for better presentation. Since we want to boost prediction performance by combination of

two analysis, the results of time series models are firstly showed, and then results by three

 74

different word embedding models would be shown for relation between news headlines and

stock prices. Furthermore, results by combined models would lastly be presented.

Table 7.14 show description and input data for each model. Model_1, Model_2a,

Model_2b, Model_3, Model_4a, and Model_4b are time series analysis based on different ap-

proaches, which are support vector regression, multilayer of LSTM, bidirectional LSTM, convo-

lutional neural network, and convolutional LSTM respectively with historical prices. Besides,

Model_5a, Model_5b, and Model_5c base on Pre-trained word2vec, self-trained word embed-

ding, and BERT to exploit the pattern between news headlines and prices. Model_6 bases on

SentiWordNet, a lexicon-based scaling system, and convolutional LSTM to exploit sentiment of

news headlines and historical prices. Model_7 is our focus on information of textual representa-

tion vectors and predicted prices by time series model. Model_8 is a model combining sentiment

score of news headlines, historical prices, and predicted prices of BERT. Model_9 states the po-

tential based on headline vectors, sentiment scores, and predicted prices by time series model.

Since error measures sometimes does not look ag good as small values, we also use

graphs for our decision-making. In each section, we would firstly present one graph by all mod-

els, followed by an table of error measure and two graphs which are best models among time se-

ries models, word embedding models, and combined models, and best model with smallest error.

 75

 7.4.2 The Boeing Company (BA)

Figure 7.1 BA: Stock Prices Plotted on Zero Axis.

Table 7.15 Performance Comparison Based on MAPE, MAE and RSME for BA

Model MAPE MAE RMSE
Model_1 6.1905 22.7480 29.7917
Model_2a 1.9157 6.7867 9.1399
Model_2b 1.7766 6.2972 8.4879
Model_3 3.2922 11.9305 14.2742
Model_4a 5.9260 21.6058 23.5110
Model_4b 2.0090 7.1192 9.5257
Model_5a 40.2427 145.4781 160.0848
Model_5b 58.9057 211.8250 214.5503
Model_5c 53.0341 191.0317 193.2290
Model_6 2.3790 8.6836 10.4685

 76

Table 7.15 (Continued)

Model MAPE MAE RMSE
Model_7 52.1324 187.4539 128.1867
Model_8 0.9521 3.3952 4.5568
Model_9 42.9119 154.4238 156.1739

Figure 7.2 Left: Three Better Models. Right: Our Best Model.

 Among the time series models (Model_1, Model_2a, Model_2b, Model_3, Model_4a,

and Model_4b), Bidirectional LSTM (Model_2b) produces smallest error which are MAPE of

1.7766, MAE of 6.2972, and RMSE of 8.4879. Among word embedding models (Model_5a,

Model_5b, and Model_5c), it looks like None of embedding models is able to catch pattern and

predictions based on embedding model are unreliable. However, compared with Model_6 which

consists of CNN-LSTM with sentiment score of news headline, and historical prices, Model_8

shows an improvement in 1.4269 of decrease in MAPE, 5.2884 of decrease in MAE, and 5.9117

of decrease in RMSE, which means that predicted prices by BERT are informative. From Figure

 77

7.2, regression line by Model_2b resembles moving average line which shows lag between re-

gression line by Model_2b and actual prices. Combined model Model_8 shows less lag than

Model_2b with similarly small errors. With sentiment scores as new input feature, error de-

creases from Model_7 to Model_9, but combined model_7 and Model_9 are still less reliable

than Model_6 and Model_8.

 7.4.3 Bank of America Corporation (BAC)

Figure 7.3 BAC: Stock Prices Plotted on Zero Axis.

 78

Table 7.16 Performance Comparison Based on MAPE, MAE and RSME for BAC

Model MAPE MAE RMSE
Model_1 7.0236 2.0168 2.3744
Model_2a 1.5338 0.4401 0.5925
Model_2b 1.1405 0.3282 0.4383
Model_3 1.5294 0.4421 0.5643
Model_4a 1.3321 0.3877 0.5016
Model_4b 1.2309 0.3564 0.4687
Model_5a 29.8403 8.9151 10.2604
Model_5b 41.3456 12.2594 12.8196
Model_5c 44.6574 13.2564 13.5243
Model_6 1.2356 0.3558 0.4437
Model_7 36.1119 10.6882 11.0415
Model_8 0.6809 0.1956 0.2397
Model_9 28.6205 8.4836 8.7312

Figure 7.4 Left: Three Better Models. Right: Our Best Model.

Among the time series models, bidirectional LSTM gives smallest errors which are

MAPE of 1.1405, MAE of 0.3282, and RMSE of 0.4383 than others. None of embedding models

seem functional because of smallest MAPE by embedding models is 29.8403. In other words,

 79

stock price predictions based on embedding models are volatile. Besides, combined models,

Model_6 and Model_8, produce similarly small errors as time series model. Especially, errors by

Model_8 are smaller than by bidirectional LSTM, which also shows more reliability and less lag

in Figure 7.4. Despite smaller error by Model_9 than by Model_7, Model_5a outperforms

Model_7 and Model_9, which is not reasonable. The possible reason could be the way to com-

bine headline vector and predicted prices.

7.4.4 Exxon Mobile Corporation (XOM)

Figure 7.5 XOM: Stock Prices Plotted on Zero Axis.

 80

Table 7.17 Performance Comparison Based on MAPE, MAE and RSME for XOM

Model MAPE MAE RMSE
Model_1 5.0748 3.7610 4.6909
Model_2a 1.2073 0.8922 1.1568
Model_2b 1.0858 0.8098 1.0289
Model_3 1.4269 1.0513 1.3528
Model_4a 1.7493 1.3182 1.5955
Model_4b 1.4663 1.0785 1.3994
Model_5a 11.1683 7.9629 9.8078
Model_5b 13.9731 10.0166 11.8135
Model_5c 12.3759 8.8043 10.3865
Model_6 0.9327 0.6789 0.8942
Model_7 12.9858 9.3518 10.7769
Model_8 0.6887 0.5212 0.6407
Model_9 11.6688 8.4274 9.5500

Figure 7.6 Left: Three Better Models. Right: Our Best Model.

Overall, time series models give great performance excluding support vector regression

model, and Bidirectional LSTM leads smallest error than other time series models, which is

MAPE of 1.0858, MAE of 0.8098, and RMSE of 1.0289. All of word embedding models look

 81

much more functional than in BA, BAC cases, which give rough MAPE of 11 under conditions

without news during 1740 out of 2701 days, With such informatively numerical and textual data,

there is no doubt that Model_6 and Model_8 show small MAPE. Besides, Model_7 and Model_9

seem no improvement to embedding model, and reason could be word2vec might not extract im-

portant information.

7.4.5 Uber Technologies, Inc. (UBER)

Figure 7.7 UBER: Stock Prices Plotted on Zero Axis.

 82

Table 7.18 Performance Comparison Based on MAPE, MAE and RSME for UBER

Model MAPE MAE RMSE
Model_1 13.0715 4.1223 4.4782
Model_2a 2.5365 0.8111 1.0336
Model_2b 2.3639 0.7551 0.9751
Model_3 5.3941 1.7214 1.9704
Model_4a 7.7479 2.2953 2.6787
Model_4b 4.2463 1.2725 1.5279
Model_5a 19.3778 5.8230 6.8904
Model_5b 12.9310 3.9197 4.6411
Model_5c 16.0682 4.8024 5.3988
Model_6 4.1442 1.3402 1.7054
Model_7 10.6323 3.2549 4.0323
Model_8 3.0765 0.9387 1.0554
Model_9 15.1156 4.8640 5.4916

Figure 7.8 Left: Three Better Models. Right: Our best two Models.

Prediction for Uber price is much worse than for other stocks, all models for UBER give

much larger errors than for other stocks. Small sample might cause the result. There are 140 days

for training and 34 for test. Bidirectional LSTM still leads to smallest errors which is MAPE of

 83

2.3639 among time series models. Surprisingly, embedding models for UBER give small error,

and self-trained embedding model produces smallest errors among embedding models. The rea-

son might be quality and quantity of news headlines. Besides, Model_8 is able to give similar

small error with Model_2b. Despite larger error, Model_8 shows less lag than Model_2b in Fig-

ure 7.8. Model_9 shows no improvement after adding sentiment scores as new feature, and rea-

son could be small sample size and stochastic characteristic of neural network.

7.4.6 Johnson & Johnson (JNJ)

Figure 7.9 JNJ: Stock prices plotted on zero axis.

 84

Table 7.19 Performance Comparison Based on MAPE, MAE and RSME for JNJ

Model MAPE MAE RMSE
Model_1 5.5753 7.6714 8.6684
Model_2a 1.0044 1.3571 2.0105
Model_2b 0.9566 1.2965 1.8897
Model_3 1.4535 1.9818 2.6458
Model_4a 1.6421 2.2583 2.7734
Model_4b 1.3241 1.7789 2.5504
Model_5a 19.7436 27.1313 29.7720
Model_5b 20.1212 27.6287 30.1566
Model_5c 18.9405 26.0472 28.2778
Model_6 1.0636 1.4393 2.0482
Model_7 3.6074 4.9771 5.3382
Model_8 0.7580 1.0371 1.3188
Model_9 3.6029 4.9709 5.3326

Figure 7.10 Left: Three Better Models. Right: Our Best Model.

Model_2b based on bidirectional LSTM shows better performance among time series

models again, and unidirectional LSTM also gives similar errors. Since there are days without

news, embedding models produce large errors and are less reliable than time series models and

 85

combined models. Model_6 as combined model with sentiment score and historical price leads to

similar performance with time series models based on neural networks, and Model_8 produces

smallest errors among all models. Since Model_5c outperforms Model_5a and Model_5b, sup-

port vector regression is applied for prediction. Comparison of Model_7 and Model_9, it seems

that headline vector by BERT is more informative than by word2vec and LSTM.

7.4.7 Apple Inc. (AAPL)

Figure 7.11 AAPL: Stock Prices Plotted on Zero Axis.

 86

Table 7.20 Performance Comparison Based on MAPE, MAE and RSME for AAPL

Model MAPE MAE RMSE
Model_1 10.6527 5.6437 6.5346
Model_2a 2.0027 1.0736 1.3920
Model_2b 1.6852 0.8788 1.1741
Model_3 2.4920 1.2638 1.7805
Model_4a 4.9625 2.7769 3.3100
Model_4b 3.0298 1.6806 2.0872
Model_5a 36.7100 20.1947 22.5825
Model_5b 41.9674 22.8933 24.9113
Model_5c 33.1868 18.4446 20.8859
Model_6 1.8301 0.9519 1.1928
Model_7 20.0284 11.2110 12.8617
Model_8 1.0405 0.5222 0.6774
Model_9 20.0526 11.2261 12.8853

Figure 7.12 Left: Closer Perspective of Multiple Models. Right: Our best Model.

Bidirectional LSTM outperforms other time series models for every stock. Quality of

news headlines might play an important role in analysis because there are only 158 days without

news out of 1894 days and errors for embedding models are larger than 30 which means there is

 87

average 30% difference between predictions and real prices. Comparison between Model_7 and

Model_9, sentiment scores are not informative with headline vector by BERT. Model_8 again

gives smallest MAPE, MAE and RMSE.

 88

Chapter Eight:

Conclusion and Discussion

Table 8.1 The Best Model in Time Series, Embedding, and Combined Models.

Ticker Model MAPE MAE RMSE

BA
Model_2b 1.7766 6.2972 8.4879
Model_5a 40.2427 145.4781 160.0848
Model_8 0.9521 3.3952 4.5568

BAC
Model_2b 1.1405 0.3282 0.4383
Model_5a 29.8403 8.9151 10.2604
Model_8 0.5406 0.1556 0.1955

XOM
Model_2b 1.0858 0.8098 1.0289
Model_5a 11.1683 7.9629 9.8078
Model_8 0.6887 0.5212 0.6407

UBER
Model_2b 2.3639 0.7551 0.9751
Model_5b 12.9310 3.9197 4.6411
Model8 3.0765 0.9387 1.0554

JNJ
Model_2b 0.9566 1.2965 1.8897
Model_5c 18.9405 26.0472 28.2778
Model_8 0.7580 1.0371 1.3188

AAPL
Model_2b 1.6852 0.8788 1.1741
Model_5c 33.1868 18.4446 20.8859
Model_8 1.0405 0.5222 0.6774

 89

This thesis focuses on stock price prediction by combination of different models includ-

ing sentiment analysis, word embedding model, and time series models to better analyze time se-

ries data in financial field. Time series models are able to grab the periodic status but its regres-

sion line always resembles moving average line and always shows lag. Sentiment analysis is able

to extract polarity of given text and can be used for sudden and short-term influence.

In Chapter seven, we predict stock prices using time series models, word embedding

models, and combined models. The results show the advantages and disadvantages of each

model. Time series models are able to performance prediction with small error but it is less help-

ful to time series data in finance field because predictions by time series models are likely either

higher than actual prices or lower than actual prices. On the graphs, regression line by time series

data resembles a smooth move average line, which is lagging. Besides lexicon-based scaling sys-

tem and word embedding models are able to extract information of given text, which is reaction

to textual data such as news. Our proposed approach is complemented by these models, and it is

likely to keep low error like time series models and sensitive to news like sentiment analysis ap-

proaches. The results in Chapter seven suggests potential combination of time series models and

sentiment analysis approaches.

Despite stochastic characteristic of neural networks, bidirectional LSTM (Model_2b) out-

performs the other time series models in 6 out of 6 stocks, but on the figures, it does not look like

 90

models with low error. Prediction based on word embedding models is unreliable because of

high error so embedding models is not helpful to stock prediction but word embedding is able to

extract information from words. Our proposed model Model_8 show the potential not only to

keep as lower error as time series models and but also to extract information from words. In 5

out of 6 chosen stocks, Model_8 shows beneficial performance, and also show sensitivity on

graph. Regression line by Model_8 shows less lag than other models.

 91

References

[1]. Bharathi, S., & Geetha, Angelina. (2017). Sentiment Analysis for Effective Stock Market
Prediction. International Journal of Intelligent Engineering and System. (Vol. 10, No. 3).

[2]. Pai, P.-F., & Lin, C.-S. (2005). A hybrid ARIMA and support vector machines model in stock
price forecasting. The International Journal of Management Science. 497-505.

[3]. Adebiyi, A. A., & Adewumi, O. A. (2014). Stock Price Prediction Using the ARIMA Model.
UKSim-AMSS 16th International Conference on Computer Modeling and Simulation.

[4]. Huynh, H.D., Dang, L.M., & Duong, D. (2017). A New Model for Stock Price Movements
Prediction Using Deep Neural Network. SoICT 2017: Proceedings of the Eighth International
Symposium on Information and Communication Technology. 57-62.

[5]. Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based senti-
ment classification of evaluative text based on Multi-feature fusion. Information Processing
& Management, 56(4), 1245-1259. doi:10.1016/j.ipm.2019.02.018

[6]. Fox, C. (1989). A stop list for general text. ACM SIGIR Forum, 24(1-2), 19–21.
[7]. Ignatow, G., & Mihalcea, R. (2018). An Introduction to Text Ming Research Design, Data

Collection, and Analysis. SAGE Publications India Pvt. Ltd.
[8]. Porter, M. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.
[9]. Fellbaum, C. (1998, ed.) WordNet: An Electronic Lexical Database. Cambridge, MA: MIT

Press.
[10]. Turney, P. D. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to Un-

supervised Classification of Reviews. Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, (2002), Philadelphia, Pennsylvania, 417-424

[11]. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv:1301.3781 [cs.CL]

[12]. Géron, A. (2019). Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts,
tools, and techniques to build intelligent systems. Beijing ; Boston ; Farnham ; Sebastopol ;
Tokyo: O'Reilly.

[13]. Khan, W., Ghazanfar, M.A., Azam, M.A., Karami, A., Alyoubi, K.H., & Alfakeeh, A.S.
(2020). Stock Market Prediction using Machine Learning Classifiers and Social Media, News.
Journal of Ambient Intelligence and Humanized Computing.

 92

[14]. Kaur, G., & Bajaj, K. (2016). News Classification and Its Techniques: A Review. IOSR Jour-
nal of Computer Engineering. 18(1), 22-26. DOI: 10.9790/0661-18132226.

[15]. Fredriksen, V., Jahren, B., & Gambäck, B. (2018). Utilizing Large Twitter Corpora to Create
Sentiment Lexica. In Proceedings of the 11th International Conference on Language Re-
sources and Evaluation, pages 2829–2836, Miyazaki, Japan. ELRA.

[16]. Goldberg, Y., & Levy, O. (2014). Word2vec Explained: Deriving Mikolov et al.’s Negative-
Sampling Word-Embedding Method. arXiv:1402.3722 [cs.CL]

[17]. Stock market quotes & financial news. (n.d.). Retrieved February 06, 2021, from
https://www.investing.com/

[18]. Yahoo finance - stock Market Live, Quotes, business & finance news. (n.d.). Retrieved
February 06, 2021, from https://finance.yahoo.com/

[19]. Understanding lstm networks. (n.d.). Retrieved February 07, 2021, from http://co-
lah.github.io/posts/2015-08-Understanding-LSTMs/

[20]. NLP text preprocessing: A practical guild and template. (Weng, Jiahao). Retrieved February
07, 2021, from https://towardsdatascience.com/nlp-text-preprocessing-a-practical-guide-
and-template-d80874676e79

[21]. Dr. S. Vijayarani et al , International Journal of Computer Science & Communication Net-
works, Vol 5(1),7-16

[22]. Camacho-Collados, J., & Pilehvar, M. T. (2018). On the Role of Text Preprocessing in Neural
Network Architectures: An Evaluation Study on Text Categorization and Sentiment Analysis.
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 40–46

[23]. Ghag, K.V., & Shah, K. (2015). Comparative Analysis of Effect of Stopwords Removal on
Sentiment Classification. IEEE international Conference on Computer, communication and
Control (IC4-2015).

[24]. Sentiment analysis. (2021, February 03). Retrieved February 07, 2021, from https://en.wik-
ipedia.org/wiki/Sentiment_analysis

[25]. Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep Learning-based Sentiment
Classification oof Evaluation text based on Multi-feature Fusion. Information Processing and
Management. 56, 1245-1259.

[26]. Taboada, M., Brooke, J., Tofiloski, M., Voll, K.,, & Stede, M. (2011). Lexicon-based Meth-
ods for Sentiment Analysis. Computational Linguistics. 37, 268-307.

[27]. Mohammad, S. M., Kiritchenko, S.,, & Zhu, X. (2013). NRC-Canada: Building the State-of-
the-Art in Sentiment Analysis of Tweets. In Proceedings of the seventh international work-
shop on Semantic Evaluation Exercises.
arXiv:1308.6242 [cs.CL]

 93

[28]. Word embedding. (2021, January 24). Retrieved February 15, 2021, from https://en.wikipe-
dia.org/wiki/Word_embedding

[29]. Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic Regularities in Continuous Space Word
Representation. Proceedings of NAACL-HLT. 746-751.

[30]. Rong, X. (2016). Wword2vec Parameter Learning Explained. arXiv:1411.2738 [cs.CL]
[31]. Google code archive - long-term storage for Google code project hosting. (n.d.). Retrieved

February 13, 2021, from https://code.google.com/archive/p/word2vec/
[32]. Ruder, S. (2020, March 20). An overview of gradient descent optimization algorithms. Re-

trieved May 03, 2020, from https://ruder.io/optimizing-gradient-descent/index.html
[33]. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks.
[34]. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Drop-

out: A Simple way to Prevent Neural Networks from Overfitting. Journal of Machine Learn-
ing Research. 15, pp. 1929-1958.

[35]. Kingma, D. P., & Ba, J. L. (2015). Adam: A Method for Stochastic Optimization. Published
as a conference paper at ICLR. arXiv:1412.6980 [cs.LG]

[36]. Sarle, W.S. (1994). Neural Networks and Statistical Models. Proceedings of the Nineteenth
Annual SAS Users Group International Conference.

[37]. Malkiel, B.G., & Fama, E.F. (1970) Efficient Capital Markets: A review of theory and
empirical work. The Journal of Finance. Vol. 25, 383-417. https://doi.org/10.1111/j.1540-
6261.1970.tb00518.x

[38]. Gidofalviand, G., Elkan, C. (2001). Using news articles to predict stock price movements.
Department of Computer Science and Engineering, University of California, San Diego.

[39]. Schumaker, R.P., & Chen, H. (2009). Textual analysis of stock market prediction using
breaking financial news: The AZFin text system. ACM Transactions on Information Sys-
tems (TOIS-09). vol. 27, no. 2, pp. 12:1–12:19.

[40]. Liang, X., Zhang, H. , Xiao, J., & Chen, Y. (2009). Improving option price forecasts with
neural networks and support vector regressions.’ Neurocomputing. 72, 13–15, 3055–3065.

[41]. Lu, C.-J., Lee, T.-S., & Chiu, C.-C. (2009). ‘Financial time series forecasting using inde-
pendent component analysis and support vector regression. Decision Support Syst. vol. 47,
no. 2, pp. 115–125.

[42]. Emioma, C.C., & Edeki, S.O. (2021). Stock price prediction using machine learning on
least-squares linear regression basis. Journal of Physics: Conference Series.
doi:10.1088/1742-6596/1734/1/012058

[43]. Hochreiter,, S.,& Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation.
9, 1735-1780.

 94

[44]. Kumar S., & Ningombam, D. (2018). Short-Term Forecasting of Stock prices using Long
Short Term Memory. International Conference on Information Technology (ICIT).
10.1109/ICIT.2018.00046

[45]. Yadav, A., Jha, C. K., & Sharan. (2019). Optimizing LSTM for time series prediction in In-
dian stock market. International Conference on Computational Intelligence and Data Sci-
ence (ICCIDS) 10.1016/j.procs.2020.03.257

[46]. Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016). Deep Learning for Stock Pre-
diction Using Numerical and Textual Information. ICIS.

[47]. Mohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P.,, & Anastasiu, D. C. (2019). Stock
Price Prediction Using News Sentiment Analysis. 2019 IEEE Fifth International Conference
on Big Data Computing Service and Applications. 10.1109/BigDataService.2019.00035

[48]. Morck, R., Shleifer, A., Vishny, R., Shapiro, M., & Poterba, J. (1990). The Stock Market and
Investment: Is the Market a Sideshow? Brookings Papers on Economic Activity, 1990(2), 157-215.
doi:10.2307/2534506

[49]. Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental Analysis, Future earnings, and
Stock Price. Journal of Accounting Research. Vol. 55 no. 1.

[50]. Park, C.-H. (2007). What do we know about the profitability of technical analysis? Journal
of Economic Surveys. Vol. 21, No. 4, pp 786-826.

[51]. Yao, J. T., & Tan, C. L. (2001). Guidelines for financial forecasting with neural networks.
International Conference on Neural Information Processing. pp. 757–761.

[52]. Remus, W., & O'connor, M. (2001). Neural Networks For Time Series Forecasting. Princi-
ples of Forecasting: A Handbook for Researchers and Practitioners. Kluwer Academic
Publishers.

[53]. Wang, Y., & Guo, Y. (2020). Forecasting method of stock market volatility in time series
data based on mixed model of ARIMA and XGBoost. China Communications, vol. 17, no.
3, pp. 205-221. doi: 10.23919/JCC.2020.03.017.

[54]. Musa,, Y., & Joshua, S. (2020). Analysis of ARIMA-Artificial Neural Network Hybrid
model in Forecasting of Stock Market Returns. Asian Journal of Probability and Statistics.
6(2), 42-53.

[55]. Fix, E., & Hodges, J. L. (1951). Discriminatory Analysis. Nonparametric Discrimination:
Consistency Properties. USAF School of Aviation Medicine,, Randolph Field, Texas.

[56]. Altman, N S. (1992). An introduction to kernel and nearest-neighbor nonparametric regres-
sion. The American Statistics. 46(3): 175-185.10.1080/00031305.1992.10475879

[57]. Puspitasari, D. A., & Rustam, Z. (2018). Application of SVM-KNN Using SVR as Feature
Selection on Stock Analysis for Indonesia Stock Exchange. AIP Conference Proceedings
2023.

 95

[58]. Cortes, C., &Vapnik, V. (1995). Support vector networks. Machine Learning 20: 273–297.
[59]. Drucker, H., Burges, C.J.C., Kaufman,, L., Smola, A., & Vapnik V. (1997). Support vector

regression machines. In: Mozer M.C., Jordan M.I., and Petsche T. (Eds.), Advances in Neu-
ral Information Processing Systems 9, MIT Press, Cambridge, MA, pp. 155–161.

[60]. Nava, N., Di Matteo, T., & Aste, T. (2018). Financial time series forecasting using empiri-
cal mode decomposition and support vector regression. Risks, 6(1):7.

[61]. Xiao, C., Xia, W., & Jiang, J. (2019). Stock price forecast based on combined model of
ARI-MA-LS-SVM. Neural Comput & Applic 32, 5379–5388 (2020).
https://doi.org/10.1007/s00521-019-04698-5

[62]. Meesad, P., & Rasel, R. I. (2013). Predicting stock market price using support vector re-
gression. 2013 International Conference on Informatics, Electronics and Vision (ICIEV).
pp. 1-6, doi: 10.1109/ICIEV.2013.6572570.

[63]. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of
Computational Science, 2(1), 1–8.

[64]. Renault, T. (2019). Sentiment analysis and machine learning in finance: a comparison of
methods and models on one million messages. Digital Finance.
https://doi.org/10.1007/s42521-019-00014-x

[65]. Liveris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN-LSTM model for gold price time-
series forecasting. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-
04867-x

[66]. Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal, S., Aadil, F., Selim, M. M., &
Muhammad, K. (2019). A local and global event sentiment based efficient stock exchange
forecasting using deep learning. International Journal of Information Management. 50, 432-
451.

[67]. Sagala,, T. W., Saputri, M. S., Mahendra, R., & Budi, I. (2020). Stock Price Movement Pre-
diction Using Technical Analysis and Sentiment Analysis. Association for Computing Ma-
chinery. https://doi.org/10.1145/3379310.3381045

[68]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8), 1735-1780.

[69]. Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). A comparative analysis of forecast-
ing financial time series using arima, lstm, and bilstm. arXiv preprint arXiv:1911.09512.

[70]. Severyn, A., & Moschitti, A. (2015, June). Unitn: Training deep convolutional neural network
for twitter sentiment classification. In Proceedings of the 9th international workshop on se-
mantic evaluation (SemEval 2015) (pp. 464-469).

[71]. Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE. vol. 86, no. 11, pp. 2278–2324, 1998.

 96

[72]. Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020). A CNN-LSTM-Based Model to Forecast
Stock Prices. Complexity, 2020.

[73]. O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv pre-
print arXiv:1511.08458.

[74]. Lu, C. J., Lee, T. S., & Chiu, C. C. (2009). Financial time series forecasting using independent
component analysis and support vector regression. Decision support systems, 47(2), 115-125.

[75]. Liang, X., Zhang, H., Xiao, J., & Chen, Y. (2009). Improving option price forecasts with
neural networks and support vector regressions. Neurocomputing, 72(13-15), 3055-3065.

[76]. Vapnik, V.N. (1995) The Nature of Statistical Learning Theory. Springer Science + Busi-
ness Media, New York. https://doi.org/10.1007/978-1-4757-2440-0

[77]. Yang, H., Chan, L., & King, I. (2002, August). Support vector machine regression for volatile
stock market prediction. In International Conference on Intelligent Data Engineering and
Automated Learning (pp. 391-396). Springer, Berlin, Heidelberg.

[78]. Chen, J., Chen, H., Huo, Y., & Gao, W. (2017). Application of SVR models in stock index
forecast based on different parameter search methods. Open Journal of Statistics, 7(02), 194.

[79]. Ito, K., & Nakano, R. (2003, July). Optimizing support vector regression hyperparameters
based on cross-validation. In Proceedings of the International Joint Conference on Neural
Networks, 2003. (Vol. 3, pp. 2077-2082). IEEE.

[80]. Cao, J., & Wang, J. (2019). Stock price forecasting model based on modified convolution
neural network and financial time series analysis. International Journal of Communication
Systems, 32(12), e3987.

[81]. Stone, P. J., Dunphy, D. C., & Smith, M. S. (1966). The general inquirer: A computer ap-
proach to content analysis.

[82]. Esuli, A., & Sebastiani, F. (2006, May). Sentiwordnet: A publicly available lexical resource
for opinion mining. In LREC (Vol. 6, pp. 417-422).

[83]. Svmlight.joachims.org. (n.d.). Retrieved Feb 15, 2021, from http://svmlight.joachims.org/)
[84]. McCallum, A. K. (1996). "Bow: A toolkit for statistical language modeling, text retrieval,

classification and clustering." http://www.cs.cmu.edu/~mccallum/bow.
[85]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin,

I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
[86]. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidi-

rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[87]. Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language mod-

els. arXiv preprint arXiv:1908.10063.
[88]. Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

 97

[89]. Malo, P., Sinha, A., Korhonen, P., Wallenius, J., & Takala, P. (2014). Good debt or bad debt:
Detecting semantic orientations in economic texts. Journal of the Association for Information
Science and Technology, 65(4), 782-796.

[90]. Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014, March). Stock price prediction using the
ARIMA model. In 2014 UKSim-AMSS 16th International Conference on Computer Model-
ling and Simulation (pp. 106-112). IEEE.

[91]. Google code archive - long-term storage for Google code project hosting. (n.d.). Retrieved
April 05, 2021, from https://code.google.com/archive/p/word2vec/

	Combination of Time Series Analysis and Sentiment Analysis for Stock Market Forecasting
	Scholar Commons Citation

	Microsoft Word - Semester Report May_4.docx

