
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

November 2019 

Algorithms for Multi-Objective Mixed Integer Programming Algorithms for Multi-Objective Mixed Integer Programming 

Problems Problems 

Alvaro Miguel Sierra Altamiranda 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Industrial Engineering Commons, and the Operational Research Commons 

Scholar Commons Citation Scholar Commons Citation 
Sierra Altamiranda, Alvaro Miguel, "Algorithms for Multi-Objective Mixed Integer Programming Problems" 
(2019). USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/8685 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F8685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.usf.edu%2Fetd%2F8685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.usf.edu%2Fetd%2F8685&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


x

Algorithms for Multi-Objective Mixed Integer Programming Problems

by

Alvaro Miguel Sierra Altamiranda

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Industrial Engineering
Department of Industrial and Management Systems Engineering

College of Engineering
University of South Florida

Major Professor: Hadi Charkhgard, Ph.D.
Changhyun Kwon, Ph.D.
Alex Savachkin, Ph.D.
Nasir Ghani, Ph.D.
He Zhang, Ph.D.

Date of Approval:
November 1, 2019

Keywords: Optimization Over Efficient Frontier, Open-Source Software,
Machine Learning, Objective Projection, Nash Bargaining Solution

Copyright c© 2019, Alvaro Miguel Sierra Altamiranda



To my beautiful wife María, and my beloved family, for their unconditional support.



Acknowledgments

First and foremost, I would like to thank my advisor, Dr. Hadi Charkhgard, for

his constant support throughout my Ph.D. journey. His continuous guidance, motivation,

knowledge, and trustfulness were key to achieving all my research goals. It has been an

absolute pleasure to work under his supervision, and to share knowledge and experiences with

the members of his research group, the so-called Multi-Objective Optimization Laboratory

at the University of South Florida (USF).

My sincere thanks also goes to Dr. Tapas K. Das for his consideration and encouragement

to study a Ph.D. at USF. I am grateful to my friends in my native Colombia for the endless

encouragement to pursue a Ph.D. in the United States. From them, I would like at least to

mention Ernesto (Tico) Cantillo, who always showed true happiness for my professional and

personal growth.

I would also like to thank all the talented individuals I had the pleasure to work with

during my journey. Specially to Dr. Julien Martin, Dr. Shahab Mofidi, Dr. Iman Dayarian,

Dr. Ali Eshragh, and Nader Rezaei. I would like to acknowledge the financial support by the

National Science Foundation under Grant No 1849627, and by the United States Geological

Survey - Southeast Ecological Science Center under the Award No 140G0118P0352.

I wish to thank my family, to whom I dedicate this dissertation. My parents, Alvaro and

Mayra, who sacrificed everything to make sure I always received the best education. My

hope is that I can be as you taught me to be, a better person every day. My sister Aileen and

her husband Erik, who provided unconditional support. My grandmother Edith and aunt

Yenny, who always kept me in their prayers. And finally, to my beautiful wife, Maria, whose

endless support and unbelievable patience made of our journey the best of the adventures.



Table of Contents

List of Tables ......................................................................................................... iv

List of Figures........................................................................................................ vii

Abstract ................................................................................................................ ix

Chapter 1 Introduction ........................................................................................... 1
1.1 Motivation ............................................................................................. 1
1.2 Contributions of the Thesis...................................................................... 4

1.2.1 Related Publications and Preprints .............................................. 5
1.3 Outline of the Thesis............................................................................... 6

Chapter 2 Preliminaries .......................................................................................... 8
2.1 Mixed-Integer Linear Programming .......................................................... 8
2.2 Multi-Objective Mixed Integer Linear Programming .................................. 9
2.3 Single-Objective Binary Quadratically Constrained Linear Programming ..... 10

Chapter 3 Optimization Over the Efficient Set of Bi-Objective Mixed Integer Linear
Programs .......................................................................................................... 11

3.1 Introduction ........................................................................................... 11
3.2 Preliminaries .......................................................................................... 14

3.2.1 Bi-Objective Mixed Integer Linear Programming .......................... 14
3.2.2 The Triangle Splitting Method .................................................... 16

3.2.2.1 Lexicographic Operation ................................................ 18
3.2.2.2 Weighted Sum Method Operation ................................... 18
3.2.2.3 Line Detector Operation................................................. 19
3.2.2.4 Triangle Split Operation................................................. 21

3.2.3 Optimization Over the Efficient Set of a BOMILP ........................ 23
3.3 A New Exact Algorithm for Optimizing a Linear Function Over the Efficient

Set of BOMILPs..................................................................................... 23
3.3.1 Key Operations.......................................................................... 23

3.3.1.1 Computing Local Upper Bound Solutions ........................ 24
3.3.1.2 Computing Local Lower Bound Solutions......................... 25

i



3.3.1.3 Computing an Efficient Solution Based on a Local Lower
Solution........................................................................ 25

3.3.2 The Algorithm........................................................................... 26
3.3.2.1 Operation Explore Triangle ............................................ 31

3.3.3 Performance of the Algorithm: A Small Example .......................... 33
3.3.4 Implementation Issues and Enhancements .................................... 36
3.3.5 A Computational Study for the First Implementation of the Algo-

rithm......................................................................................... 40
3.3.5.1 Overall Performance ...................................................... 40
3.3.5.2 Performance of Enhancements ........................................ 42
3.3.5.3 Approximate Solutions ................................................... 44

3.3.5.3.1 Increasing the Optimality Gap Tolerance .......... 45
3.3.5.3.2 Imposing a Time Limit.................................... 46

3.4 OOESAlgorithm.jl: A Julia Package for Optimizing Over the Efficient Set
of BOMILP............................................................................................ 48

3.4.1 Main Characteristics of the Package............................................. 49
3.4.1.1 Parallelization Techniques .............................................. 49
3.4.1.2 Single-Objective Solvers Supported ................................. 53

3.4.2 A Computational Study for the Package....................................... 53
3.4.2.1 OOESAlgorithm.jl Versus C++ Implementation............... 54
3.4.2.2 Comparison Between Different Solvers ............................. 55
3.4.2.3 Parallelization ............................................................... 56

3.5 Conclusion ............................................................................................. 59

Chapter 4 Nash Bargaining Solution: Application of a Special Case of Optimization
Over the Efficient Set for Spatial Conservation Planning Problems......................... 61

4.1 Spatial Conservation Planning and the Role of Operations Research............ 61
4.2 Mathematical Formulation of an MPT-SCP Problem ................................. 67

4.2.1 Return and Risk Functions ......................................................... 67
4.2.2 A Bi-Objective Optimization Formulation .................................... 70
4.2.3 Issues Related to the Bi-Objective Optimization Formulation......... 71

4.3 A Nash Bargaining Solution Approach for the MPT-SCP Problem.............. 73
4.3.1 Implementation Issues ................................................................ 76
4.3.2 Performance of the Approach: A Numerical Example .................... 78
4.3.3 A Computational Study.............................................................. 81

4.4 Conclusion ............................................................................................. 84

Chapter 5 Learning to Project in Multi-Objective Binary Linear Programming ............ 86
5.1 Introduction ........................................................................................... 86

ii



5.2 Preliminaries .......................................................................................... 90
5.3 Machine Learning Framework .................................................................. 92

5.3.1 A Pre-Ordering Approach for Objective Functions ........................ 93
5.3.2 Features and Labels Describing a MOBLP Instance....................... 94

5.3.2.1 Features........................................................................ 94
5.3.2.2 Labels .......................................................................... 95

5.3.3 Best Subset Selection of Features................................................. 96
5.3.4 A Computational Study.............................................................. 99

5.3.4.1 Complete Training and Testing Sets ................................ 100
5.3.4.2 Complete Training Set and Reduced Testing Set .............. 104
5.3.4.3 Reduced Training and Testing Sets ................................. 105
5.3.4.4 Replacing MSVM by Random Forest............................... 108

5.4 Conclusion ............................................................................................. 109

Chapter 6 Conclusions and Future Research Directions .............................................. 111
6.1 Optimization Over the Efficient Set .......................................................... 111
6.2 Ecological Applications of the Nash Bargaining Solution ............................ 111
6.3 Learning to Project in MOBLP................................................................ 112

References.............................................................................................................. 125

Appendix A: Copyright Permissions ......................................................................... 125
A1: Reprint Permission for Chapter 3, Sections 3.1 - 3.3 .................................. 126
A2: Reprint Permission for Chapter 3, Section 3.4........................................... 130

Appendix B: Chapter 3 ........................................................................................... 130
B1: Documentation of OOESAlgorithm.jl ...................................................... 134

Appendix C: Chapter 4 ........................................................................................... 147
C1: Neighboring Constraints ......................................................................... 148
C2: Data for the Example ............................................................................. 149

Appendix D: Chapter 5........................................................................................... 149
D1: List of Features...................................................................................... 152

iii



List of Tables

Table 3.1 – Performance of the new algorithm in comparison to TSM ....................... 42

Table 3.2 – Basic performance statistics of the operations of the new algorithm ......... 43

Table 3.3 – Performance of the new algorithm in comparison to C++ implementation 55

Table 4.1 – Overall performance of the proposed approach on the class of instances
with 50 parcels ................................................................................... 83

Table 4.2 – Overall performance of the proposed approach on the class of instances
with 100 parcels ................................................................................. 83

Table 4.3 – Overall performance of the proposed approach on the classes of instances
with 200, 400, and 800 parcels ............................................................. 84

Table 5.1 – Projecting based on different objectives using the KSA........................... 89

Table 5.2 – Accuracy and average time decrease of testing set when using the pro-
posed ML technique (for the case of the complete training and testing
sets) .................................................................................................. 104

Table 5.3 – Accuracy and average time decrease of testing set when using the pro-
posed ML technique (for the case of the complete training set and the
reduced testing set) ............................................................................ 105

Table 5.4 – Accuracy and average time decrease of testing set when using the pro-
posed ML technique (for the case of the reduced training and testing
sets) .................................................................................................. 107

Table 5.5 – A performance comparison between MSVM and Random Forest on a
testing set .......................................................................................... 109

Table B2.1 – Parcels data........................................................................................ 149

Table B2.2 – Correlation between pairs of parcels ...................................................... 149

iv



List of Figures

Figure 3.1 – An illustration of different types of (feasible) points in the criterion
space ................................................................................................ 15

Figure 3.2 – An example of the nondominated frontier of a BOMILP....................... 16

Figure 3.3 – Progression of TSM in terms of the discovery of nondominated points ... 17

Figure 3.4 – Weighted sum optimization problem ................................................... 19

Figure 3.5 – Line detector operation ..................................................................... 21

Figure 3.6 – Horizontal splitting of triangle T(z1, z2) ............................................. 21

Figure 3.7 – Image of some efficient solutions in the criterion space.......................... 23

Figure 3.8 – Initial rectangle ................................................................................ 26

Figure 3.9 – Changing rectangle R(z1, z2) into smaller triangles .............................. 27

Figure 3.10 – Generating a smaller triangle after observing that the hypotenuse of is
partially part of the nondominated frontier .......................................... 29

Figure 3.11 – z(xlI ,x
l
C) is far away from the orthogonal sides of the triangle .............. 31

Figure 3.12 – The exact nondominated frontier of the example.................................. 36

Figure 3.13 – The partial nondominated frontier of the example generated under each
setting .............................................................................................. 37

Figure 3.14 – Time ratio boxplot for enhancement techniques ................................... 43

Figure 3.15 – #MILPs ratio boxplot for enhancement techniques .............................. 44

Figure 3.16 – Relative optimality gap obtained in each iteration................................ 45

Figure 3.17 – Time ratio for different optimality tolerances ....................................... 46

v



Figure 3.18 – Real optimality ratio for different optimality tolerances ........................ 47

Figure 3.19 – Relative Optimality Gap (Ratio) for different time limits...................... 47

Figure 3.20 – Real optimality ratio for different time limits....................................... 48

Figure 3.21 – Splitting directions on the criterion space using three threads ............... 50

Figure 3.22 – Horizontal splitting of the criterion space using three threads................ 51

Figure 3.23 – Diagonal splitting of the criterion space using three threads.................. 52

Figure 3.24 – The performance of using different solvers ........................................... 56

Figure 3.25 – Performance of GUROBI when using multiple threads ............................ 57

Figure 3.26 – Performance of GUROBI when using multiple threads under different
parallelization techniques.................................................................... 58

Figure 3.27 – The Performance of SCIP when employing PriorityQueue ..................... 59

Figure 4.1 – An illustration of a Pareto-optimal frontier with two objective functions
and three possible solutions/points. ..................................................... 65

Figure 4.2 – An example of MPT-SCP .................................................................. 69

Figure 4.3 – An illustration of the Pareto-optimal frontier of a MPT-SCP problem ... 71

Figure 4.4 – An illustration of the Nash bargaining solution for a MPT-SCP ............ 74

Figure 4.5 – Initial state of conservation for the example ........................................ 79

Figure 4.6 – Nash bargaining solution for the example under the first scenario.......... 79

Figure 4.7 – The Nash bargaining solution and the initial state of the example for
the first scenario................................................................................ 80

Figure 4.8 – Nash bargaining solution of the example for the second scenario............ 81

Figure 5.1 – An illustration of the performance of the proposed approach for select-
ing the best subset of features on the complete training set ................... 102

Figure 5.2 – An illustration of the performance of the proposed approach for the
best subset selection of features on the complete testing set................... 103

vi



Figure 5.3 – An illustration of the performance of the proposed approach for select-
ing the best subset of features on the reduced training set ..................... 106

Figure 5.4 – An illustration of the performance of the proposed approach for the
best subset selection of features on the reduced testing set .................... 107

vii



Abstract

This thesis presents a total of 3 groups of contributions related to multi-objective

optimization. The first group includes the development of a new algorithm and an open-

source user-friendly package for optimization over the efficient set for bi-objective mixed

integer linear programs. The second group includes an application of a special case of

optimization over the efficient on conservation planning problems modeled with modern

portfolio theory. Finally, the third group presents a machine learning framework to enhance

criterion space search algorithms for multi-objective binary linear programming.

In the first group of contributions, this thesis presents the first (criterion space search)

algorithm for optimizing a linear function over the set of efficient solutions of bi-objective

mixed integer linear programs. The proposed algorithm is developed based on the triangle

splitting method (Boland et al. [1]), which can find a full representation of the nondominated

frontier of any bi-objective mixed integer linear program. The proposed algorithm is easy

to understand and implement, and converges quickly to an optimal solution. An extensive

computational study shows the efficacy of the algorithm. Is numerically shown in this thesis

that the proposed algorithm can be used to quickly generate a provably high-quality approx-

imate solution because it maintains a lower and an upper bound on the optimal value of the

linear function at any point in time. Additionally, this thesis presents OOESAlgorithm.jl,

a comprehensive julia package based on the proposed algorithm. The proposed package ex-

tends the first implementation of the algorithm by adding two main features: (a) in addition

to CPLEX, the package allows employing any single-objective solver supported by Math-

ProgBase.jl, for example, GLPK, CPLEX, and SCIP; (b) the package supports execution

viii



on multiple processors and is compatible with the JuMP modeling language. An extensive

computational study shows the efficacy of the package and its features.

In the second group of contributions, this thesis presents a Nash bargaining solu-

tion approach for spatial conservation planning problems modeled with modern portfolio

theory. The proposed modern portfolio optimization formulation corresponds to a spatial

conservation planning problem involving two conflicting objectives: maximizing return and

minimizing risk. A Nash bargaining solution approach is presented in this thesis to directly

compute a desirable Pareto-optimal (nondominated) solution for the proposed bi-objective

optimization formulation in natural resource management problems. Numerical examples in

this thesis show that to directly compute a Nash bargaining solution, a Binary Quadratically

Constrained Quadratic Program (BQCQP) can be solved. This thesis also shows that the

proposed approach (implementable with commercial solvers such as CPLEX) can effectively

solve the proposed BQCQP for much larger problems than previous approaches published in

the ecological literature. The new approach expands considerably the applicability of such

optimization methods to address real spatial conservation planning problems.

In the third group of contributions, this thesis investigates the possibility of improving

the performance of multi-objective optimization solution approaches using machine learning

techniques. Specifically, this thesis focus on multi-objective binary linear programs and

employs one of the most effective and recently developed criterion space search algorithms,

the so-called KSA, during our study. This algorithm computes all nondominated points

of a problem with p objectives by searching on a projected criterion space, i.e., a (p − 1)-

dimensional criterion space. This thesis presents an effective and fast learning approach to

identify on which projected space the KSA should work, and also presents several generic

features that can be used in machine learning techniques for identifying the best projected

space. Finally, a bi-objective optimization based heuristic for selecting the best subset of the

features to overcome the issue of overfitting in learning is presented. Through an extensive

computational study, the performance of the proposed learning approach is tested.

ix



Chapter 1: Introduction

In this chapter, we present the research questions that will be answered through

the contributions of this thesis. The research questions formulated in this chapter are all

related to multi-objective mixed integer linear and nonlinear programming and optimization

over the efficient set. These can be categorized as (1) algorithms questions (design and

enhancement), (2) software question (package development), and (3) application question

(in spatial conservation planning problems). The content of this chapter is organized as

follows: In Section 1.1 we motivate and formulate our research questions. In Section 1.2 we

present a list with our contributions, including published and submitted papers. It is worth

mentioning that all the papers that represent a contribution to this thesis are co-authored,

however, I am the first author in all of them. Finally, in Section 1.3 we briefly describe the

content of this thesis.

1.1 Motivation

One of the focuses of this thesis is on Multi-Objective Mixed Integer Linear Program-

ming (MOMILP) problems. It is well documented that problems which involve multiple

objective and some (if not all) of their decision variables are integer are NP-hard, e.g., there

is currently no algorithm that can solve any instance of this problem in polynomial time.

Therefore, finding many or all efficient solutions, i.e., solutions in which improve the value

of one objective is only possible if the value of at least another objective deteriorates, can

take a considerable amount of time even for small instances. Moreover, even if many efficient

solutions are found, the collection of them can be overwhelming for decision-makers.

1



Many studies in the literature of MOMILP mainly focus on computing a representa-

tion of the so-called nondominated (Pareto) frontier, e.g., a collection of the projections of

the efficient solutions in the criterion space. However, the problem of choosing a preferred

solution among the set of efficient solutions, even tho it has been documented for decades,

has been lightly explored in integer programming. To the best of our knowledge, there are

only a few studies related to optimization over the efficient set for multi-objective pure inte-

ger linear programming. Moreover, until the publication of one of the contributions of this

thesis, there was no algorithm (exact or approximate) for optimization over the efficient set

for MOMILP, not even for the special case of 2 objective functions. In lights of the above,

we find the motivation to formulate our first research question based on the simplest case of

MOMILP with 2 objective functions:

• Q1: How to design a new exact algorithm for the problem of optimization over the

efficient set for bi-objective mixed integer linear programming?

Once an optimization algorithm is developed, its main purpose is to be used by any

community (operations research, economy, geology, ecology, transportation science, etc.)

in real-world applications. However, many of the available exact algorithms are not used

because there are not open-source user-friendly implementations, available software often rely

on commercial solvers, or they perform poorly in terms of computational time. In contrast,

one of the most successful (approximate) algorithms for multi-objective optimization is the

NSGA-II (Deb et al. [2]) because it is fast, easy to understand, easy to implement, and do

not rely on commercial solvers, even tho it cannot guarantee that the solutions found are

efficient solutions. In lights of the above, we find the motivation to formulate our second

research question:

• Q2: How to develop an open-source user-friendly fast and flexible implementation

for the algorithm that solves the problem of optimization over the efficient set for

bi-objective mixed integer linear programming?

2



We mentioned above the ecological as an example of the multiple communities that

can benefit from optimization algorithm implementations. One of the specific problems in

ecology that draw our attention is spatial conservation planning. Many studies that formulate

and solve spatial conservation planning problems as integer programs can be found in the

literature. However, most of them fail to address the inherent uncertainty of these problems.

An approach that alleviates this issue is to formulate the problem based on modern portfolio

theory that propose 2 objective functions, maximizing the return, and minimizing the risk.

But this formulation includes a quadratic objective function (the risk) with several bi-linear

terms, i.e., multiplication of 2 decision variables.

To the best of our knowledge, there is only one study that models spatial conservation

planning problems using modern portfolio theory (Eaton et al. [3]). This study relaxes the bi-

linear terms using a McCormick Envelope, which creates at least 1 new decision variable and

3 new constraints for each bi-linear term. Evidently, this generates a series of memory issues

and poor computational time performance when solving large scale conservation planning

problems. Finally, they approximate the so-called Nash bargaining solution, which is a

special case of optimization over the efficient set, to select their preferred solution. We

formulate our third research question as a continuation of this research:

• Q3: How to formulate a Nash bargaining solution approach for the spatial conserva-

tion planning problem based on modern portfolio theory capable of handle large scale

problems with minimal memory requirements?

Up to this point, our research questions are directly and indirectly related to the

problem of optimization over the efficient set. However, for the fourth and final research

question, we focus on finding the entire nondominated frontier of Multi-Objective Binary

Linear Programming (MOBLP) problems. Moreover, we focus on exact criterion space search

algorithms for MOBLP. Usually, these algorithms reduce the dimension of the criterion space

by projecting one of the objective functions. How to select the objective function to project

and how to do the projection are still open questions in MOBLP problems. Finally, we

3



believe that both questions can be addressed by implementing machine learning techniques.

In lights of the above, we find the motivation to formulate our last research question:

• Q4: How to develop a machine-learning-based framework that learns the best selection

of objective function to project in MOBLP?

1.2 Contributions of the Thesis

We give answer to the formulated research questions throughout the body of this

thesis. Our answers led to 4 major contributions: the publication of 2 journal articles, the

submission of 1 journal article, and a final journal article in preparation (at the time of

writing this thesis). Our contributions are listed below:

• P1: Sierra-Altamiranda, A., & Charkhgard, H. (2019). A New Exact Algorithm to

Optimize a Linear Function over the Set of Efficient Solutions for Biobjective Mixed

Integer Linear Programs. INFORMS Journal on Computing.

https://doi.org/10.1287/ijoc.2018.0851.

• P2: Sierra-Altamiranda, A., & Charkhgard, H. (2019). OOESAlgorithm. jl: a julia

package for optimizing a linear function over the set of efficient solutions for biob-

jective mixed integer linear programming. International Transactions in Operational

Research. https://doi.org/10.1111/itor.12692.

• P3: Sierra-Altamiranda, A., Charkhgard, H., Eaton, M., Martin, J., Yurek, S., Udell,

B., (2019). Spatial Conservation Planning Under Uncertainty Using Modern Portfolio

Theory and Nash Bargaining Solution (Submitted to Ecological Modelling).

• P4: Sierra-Altamiranda, A., Charkhgard, H., Dayarian, I., Eshragh, A., Javadi, S.

(2019). Learning to Project in Multi-Objective Binary Linear Programming (Sub-

mitted to INFORMS Journal on Computing).

– Available at: http://www.optimization-online.org/DB_FILE/2019/01/7051.pdf.

4

https://doi.org/10.1287/ijoc.2018.0851
https://doi.org/10.1111/itor.12692
http://www.optimization-online.org/DB_FILE/2019/01/7051.pdf


1.2.1 Related Publications and Preprints

We present our paper P1 in Chapter 3, Section 3.3. In paper P1 we answer question

Q1. We present a new criterion space search algorithm for optimize a linear function over the

set of efficient solutions for bi-objective mixed integer linear programming. Our algorithm

is easy to understand and easy to implement and can be used to generate a provably high-

quality approximate solution. We detail the algorithm and its operations, and evaluate its

performance in a comprehensive computational study.

We present our paper P2 in Chapter 3, Section 3.4. In paper P2 we answer question

Q2. We develop OOESAlgorithm.jl, a comprehensive open-source user-friendly julia package

for optimizing a linear function over the set of efficient solutions for bi-objective mixed integer

linear programming. Our package supports several commercial and non-commercial solvers,

multi-processing environments, and can be tuned to return the exact nondominated frontier

of the original problem. All the features of the packages are evaluated in a comprehensive

computational study.

We present our paper P3 in Chapter 4. In paper P3 we answer question Q3. We

present a Nash bargaining solution approach for the spatial conservation planning problem

based on modern portfolio theory. Our approach includes a transformation from the modern

portfolio formulation which is a bi-objective binary quadratic problem to a single-objective

quadratically constrained binary linear problem. Such transformation allows the use of

second order cone programming (available in most commercial solvers) to solve the problem.

A computational study shows that our formulation can generate (almost) optimal solutions

for large scale spatial conservation planning problems.

We finally present our paper P4 in Chapter 5. In paper P4 we answer question Q4.

We develop a machine learning approach to emulate the best selection of objective function

to project in multi-objective binary linear programming. We create features describing an

instance, and labels to classify the objective functions. Our approach learns a function

from the features map of a training set and returns the label of the best objective function

5



to project. We present a ordering approach for the objective functions and a bi-objective

approach for the best subset selection of features. Finally, we present the efficiency of our

approach enhancing the so-called KSA, i.e., a new exact algorithm for multi-objective binary

linear programming, on a comprehensive computational study.

1.3 Outline of the Thesis

The remaining content of this thesis is organized as follows:

• In Chapter 2 we provide some important definitions and notation related to the gen-

eral multi-objective optimization problems and single-objective nonlinear optimiza-

tion problems.

• In Chapter 3 we present a new exact criterion space search algorithm for optimiz-

ing a linear function over the set of efficient solutions for bi-objective mixed integer

linear programming. We present a comprehensive literature review of this problem,

some preliminaries to understand the specifics of the problem, a detailed explanation

of the algorithm, and a comprehensive computational experiment. We also present

OOESAlgorithm.jl, a comprehensive open-source user–friendly julia package for solv-

ing the same problem. We evaluate the performance of the package with a second

computational study. We finalize the chapter with some concluding remarks.

• In Chapter 4 we present a Nash bargaining solution approach for the spatial conserva-

tion planning problem based on modern portfolio theory. We present a comprehensive

literature review on operations research applications in ecology, and specifically in

spatial conservation planning. We present a modern portfolio theory formulation for

spatial conservation planning. We present a Nash bargaining solution approach for

this problem and apply some transformations to fit the formulation to a second order

cone programming formulation. We present a computational study with simulated

data and finalize with some concluding remarks.

6



• In Chapter 5 we present a machine learning approach that learns a function which

emulates the best selection of objective function for projection in a reduced dimen-

sion of the criterion space of multi-objective binary linear programming problems. We

highlight the features that describe a multi-objective binary linear programming in-

stance. We present an ordering approach for the objective functions and a bi-objective

optimization over the efficient set approach for the best subset selection of features.

We present a comprehensive computational study using Assignment and Knapsack

problems, and the KSA to solve the instances. We finalize with some concluding

remarks.

• In Chapter 6 we provide a summary with the results of this thesis, give concluding

remarks, and establish some paths for future research.

7



Chapter 2: Preliminaries

In this chapter, we present some preliminaries of the general problems that form the

basis of the specific problems that are the focus of this thesis. From this point through

the entire thesis, any array of variables or coefficients are column vectors and the labels for

vectors are bolded.

2.1 Mixed-Integer Linear Programming

Many real world problems such as scheduling, supply chain management, and pro-

duction planning can be formulated as Mixed Integer Programs (MIP). Moreover, if the

objective function and constraints of the problem are linear functions, then the formulation

is known as a Mixed Integer Linear Program (MILP). In a MILP, the feasible decision space

is described by a set of affine constraints where some (if not all) decision variables are integer.

Therefore, a MILP can be stated as follows:

min
(xI ,xC)∈X

z(xI ,xC), (2.1)

where X :=
{

(xI ,xC) ∈ Zn1
≥ × Rn2

≥ : A1xI + A2xC ≤ b
}
represents the feasible set in the

decision space, Zn1
≥ := {s ∈ Zn1 : s ≥ 0}, Rn2

≥ := {s ∈ Rn2 : s ≥ 0}, A1 ∈ Rm×n1 , A2 ∈

Rm×n2 , and b ∈ Rm. It is assumed that X is bounded and z(xI ,xC) = cᵀIxI + cᵀCxC where

cI ∈ Rn1 and cC ∈ Rn2 represents a linear objective function. The image Y of X represents

the feasible set in the objective/criterion space, that is Y := {o ∈ R : o = z(xI ,xC) for all

(xI ,xC) ∈ X}. Clearly, xI is a vector representing the integer decision variables and xC is

a vector representing the continuous decision variables.

8



2.2 Multi-Objective Mixed Integer Linear Programming

We now extend a MILP formulation by considering multiple objectives. This new

formulation is known as Multi-Objective Mixed Integer Linear Programming and it can be

stated as follows:

min
(xI ,xC)∈X

{z1(xI ,xC), z2(xI ,xC), . . . , zp(xI ,xC)}, (2.2)

where X is bounded and zi(xI ,xC) = cᵀi,IxI +cᵀi,CxC where ci,I ∈ Rn1 and ci,C ∈ Rn2 for i =

1, 2, . . . , p represents a vector of p linear objective functions. The image Y of X under vector-

valued function z := (z1, z2, . . . , zp)
ᵀ represents the feasible set in the objective/criterion

space, that is Y := {o ∈ Rp : o = z(xI ,xC) for all (xI ,xC) ∈ X}.

Definition 1. A feasible solution (xI ,xC) ∈ X is called efficient, if there is no other

(x′I ,x
′
C) ∈ X such that zi(x′I ,x′C) < zi(xI ,xC) for at least one i where i = 1, 2, . . . , p, and

zj(x
′
I ,x

′
C) ≤ zj(xI ,xC) for all j where j = 1, 2, . . . , p such that j 6= i. If (xI ,xC) is efficient,

then z(xI ,xC) is called a nondominated point. The set of all efficient solutions is denoted

by XE. The set of all nondominated points z(xI ,xC) for (xI ,xC) ∈ XE is denoted by YN

and referred to as the nondominated frontier.

Definition 2. If there exists a vector (λ1, λ2, . . . , λp)
ᵀ ∈ Rp

> := {s ∈ Rp : s >

0} such that (x∗I ,x
∗
C) ∈ arg min(xI ,xC)∈X λ1z1(xI ,xC) + λ2z2(xI ,xC) + · · · + λpzp(xI ,xC),

then (x∗I ,x
∗
C) is called a supported efficient solution and z(x∗I ,x

∗
C) is called a supported

nondominated point.

Definition 3. Let Ye be the set of extreme points of the convex hull of Y , that

is the smallest convex set containing the set Y . A point z(xI ,xC) ∈ Y is called an ex-

treme supported nondominated point, if z(xI ,xC) is a supported nondominated point and

z(xI ,xC) ∈ Ye.

9



2.3 Single-Objective Binary Quadratically Constrained Linear Programming

A single-objective binary quadratically constrained linear programming can be stated

as follows:

min
(xI ,xC)∈X

z(xI ,xC), (2.3)

where X :=
{

(xI ,xC) ∈ Zn1
≥ × Rn2

≥ : (xI _ x)ᵀQi(xI _ x) + aᵀ
i1xI + aᵀ

i2xC ≤ bi for i =

1, 2, . . . ,m
}

represents the feasible set in the decision space, Zn1
≥ := {s ∈ Zn1 : s ≥ 0},

Rn2
≥ := {s ∈ Rn2 : s ≥ 0}, Qi ∈ Rm×(n1+n2), ai1 ∈ Rn1 , ai2 ∈ Rn2 , and bi ∈ R for

i = 1, 2, . . . ,m. Note that (xI _ x) is equivalent to the concatenation of the vectors xI and

xC and m is the number of constraints.

This formulation is the basis for the Second Order Cone Programming (SOCP) for-

mulation used in one of our contributions that considers a transformation of the Nash bar-

gaining problem. An optimal solution for any SOCP formulation can be found using the

most popular commercial solvers such as CPLEX, Gurobi annd Xpress.

10



Chapter 3: Optimization Over the Efficient Set of Bi-Objective Mixed Integer

Linear Programs

In this chapter, we present the first two main contributions of this thesis. We first

present some relevant literature and preliminaries for the problem of optimization over the

efficient set of BOMILPs. Afterward, we introduce the first exact criterion space search

algorithm for optimizing a linear function over the set of efficient solutions for BOMILPs.

Finally, we develop a comprehensive open-source user-friendly package for BOMILPs. The

copyright permissions for reuse previously published material in this chapter can be found

in Appendix A1 and Appendix A2.

3.1 Introduction

Many real-world optimization problems involve multiple competing objectives, i.e., it

is impossible to find a feasible solution that simultaneously optimizes all objectives. Con-

sequently, it is not surprising that the focus of multi-objective optimization community has

been primarily on developing effective techniques for generating some (if not all) efficient

solutions, i.e., solutions in which it is impossible to improve the value of one objective

without a deterioration in the value of at least one other objective, of multi-objective opti-

mization problems. This is mainly because understanding the trade-offs between objectives

can help decision makers select their preferred solutions. Interested readers may refer to

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 15] for recent advances on exact solution approaches for

multi-objective optimization problems.

Although understanding the trade-offs between objectives can be valuable, some re-

searchers argue (see for instance Jorge [16]) that presenting too many efficient solutions can

11



confuse a decision maker, and so may make selecting a preferred solution almost impossible.

An approach that alleviates this issue is finding a preferred solution among the set of efficient

solutions directly and is known as optimizing over the efficient set, which is a global opti-

mization problem (Benson [17]). In this approach, the goal is to directly optimize a function

over the set of efficient solutions (preferably without enumerating all of them).

It is worth mentioning that developing (effective) solution approaches for optimizing

over the efficient set has two other benefits in addition to the fact that it can help decision

makers find their perfected solutions:

1. It can help us solve one of the classical problems in the field of multi-objective op-

timization: computing the nadir point, i.e., the point in criterion space given by the

worst value of each of the objective functions over the set of efficient solutions. Ob-

viously, to compute each component of the nadir point, a special case of the problem

of optimizing over the efficient set can be solved [18, 19, 20, 21].

2. It may help us solve certain single-objective optimization problems effectively. In

other words, there are certain single-objective optimization problems that can be

viewed as the problem of optimizing over the efficient set and can be solved faster in

practice [22, 23, 24]. For example, maxx∈X
∏p

i=1 zi(x) when zi(x) ≥ 0 for all x ∈ X

and i = 1, . . . , p is equivalent to the problem of maximizing
∏p

i=1 zi(x) over the set of

efficient solutions of maxx∈X{z1(x), . . . , zp(x)}.

It is worth mentioning there exist many studies about solving the problem of optimiz-

ing a linear function over the efficient set of multi-objective linear programs, see for instance

Benson [17, 25, 26, 27], Dauer [28], Ecker and Song [29], Dayın [30] and Yamamoto [31].

Moreover, there are a few studies on optimizing a linear function over the set of efficient so-

lutions of multi-objective pure integer linear programs, see for instance Abbas and Chaabane

[32], Jorge [16], Chabaane and Pirlot [33], Chaabane et al. [34] and Boland et al. [18].

12



However, no exact algorithm is known for optimizing a linear function over the set

of efficient solutions of multi-objective mixed integer linear programs (with an arbitrary

number of objective functions). This is partly because, to this date, no exact algorithm has

been developed for finding a full representation of the nondominated frontier, i.e., the set

of points in criterion space corresponding to the set of efficient solutions, of multi-objective

mixed integer linear programs with an arbitrary number of objective functions. If such an

algorithm exists then they can be possibly modified for optimizing a linear function over the

set of efficient solutions. However, fortunately, since a few algorithms have been recently

developed for finding a full representation of the nondominated frontier of bi-objective mixed

integer linear programs (see for instance Boland et al. [1], Fattahi and Turkay [35], Soylu and

Yıldız [12], and Vincent et al. [36]), generating an exact algorithm for optimizing a linear

function over the efficient set of bi-objective mixed integer linear programs should now be

possible.

In light of the above, the main contribution of our research is to develop the first

algorithm for optimizing a linear function over the set of efficient solutions of bi-objective

mixed integer linear programs. Our algorithm employs the main components of the triangle

splitting method which is one of the fastest exact criterion space search algorithms, i.e.,

methods that search in the space of objective function values, for computing a full represen-

tation of the nondominated frontier of a bi-objective mixed integer linear programs [1]. By

conducting an extensive computational study, we demonstrate the efficacy of the proposed

algorithm. The new algorithm has the following desirable characteristics:

• It is both easy to understand and easy to implement.

• It maintains a global lower bound and a global upper bound for the linear function

at any point in time. So the algorithm is inherently good for quickly generating a

provably high-quality approximate solution.

• The algorithm has minimal requirements in terms of information storage.

13



• The algorithm relies on solving single-objective mixed integer linear programs, and so

it automatically benefits from any advances on single-objective mixed integer linear

programming solvers.

The rest of this chapter is organized as follows. In Section 3.2, we explain the main

concepts in bi-objective mixed integer linear programming and also provide a high-level de-

scription of the triangle splitting method and some necessary mathematical operations. We

also describe the problem of optimizing over the efficient set and sketch the basis of our

proposed algorithm. In Section 3.3, we present our proposed algorithm in detail, show an

example of how the algorithm works, and evaluate its performance with a computational

experiment. In Section 3.4, we present OOESAllgorithm.jl, an implementation of our algo-

rithm in a comprehensive open-source user-friendly julia package. Finally, in Section 3.5, we

provide some concluding remarks.

3.2 Preliminaries

In this section, we provide some preliminaries that are essential for explaining the

contents of other sections.

3.2.1 Bi-Objective Mixed Integer Linear Programming

A Bi-Objective Mixed Integer Linear Program (BOMILP) can be stated as follows:

min
(xI ,xC)∈X

{z1(xI ,xC), z2(xI ,xC)}, (3.1)

where X :=
{

(xI ,xC) ∈ Zn1
≥ × Rn2

≥ : A1xI + A2xC ≤ b
}

represents the feasible set in

the decision space, Zn1
≥ := {s ∈ Zn1 : s ≥ 0}, Rn2

≥ := {s ∈ Rn2 : s ≥ 0}, A1 ∈ Rm×n1 ,

A2 ∈ Rm×n2 , and b ∈ Rm. It is assumed that X is bounded and zi(xI ,xC) = cᵀi,IxI + cᵀi,CxC

where ci,I ∈ Rn1 and ci,C ∈ Rn2 for i = 1, 2 represents a linear objective function. The

14



image Y of X under vector-valued function z := (z1, z2)ᵀ represents the feasible set in the

objective/criterion space, that is Y := {o ∈ R2 : o = z(xI ,xC) for all (xI ,xC) ∈ X}.

We now adapt some definitions from Section 2.2 to consider the special case of a

MOMILP with 2 objectives functions.

Definition 4. A feasible solution (xI ,xC) ∈ X is called efficient or, if there is

no other (x′I ,x
′
C) ∈ X such that z1(x′I ,x

′
C) ≤ z1(xI ,xC) and z2(x′I ,x

′
C) < z2(xI ,xC) or

z1(x′I ,x
′
C) < z1(xI ,xC) and z2(x′I ,x

′
C) ≤ z2(xI ,xC). If (xI ,xC) is efficient, then z(xI ,xC)

is called a nondominated point. The set of all efficient solutions is denoted by XE. The set

of all nondominated points z(xI ,xC) for (xI ,xC) ∈ XE is denoted by YN and referred to as

the nondominated frontier.

Definition 5. If there exists a vector (λ1, λ2)ᵀ ∈ R2
> := {s ∈ R2 : s > 0} such that

(x∗I ,x
∗
C) ∈ arg min(xI ,xC)∈X λ1z1(xI ,xC) + λ2z2(xI ,xC), then (x∗I ,x

∗
C) is called a supported

efficient solution and z(x∗I ,x
∗
C) is called a supported nondominated point.

The convex hull of Y

Non-extreme supported nondominated point

Extreme supported nondominated point

Unsupported nondominated point

Dominated point

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

Figure 3.1 – An illustration of different types of (feasible) points in the criterion space

In summary, based on Definition 4, the elements of Y can be divided into two groups

including dominated and nondominated points. Furthermore, based on Definitions 3 and

5, the nondominated points can be divided into unsupported nondominated points, non-

extreme supported nondominated points and extreme supported nondominated points. Over-

all, bi-objective optimization problems are concerned with finding an exact representation

of the elements of YN , i.e., all nondominated points including supported and unsupported

nondominated points. An illustration of the set Y when n2 = 0, i.e., there is no continuous

variable, and its corresponding categories are shown in Figure 3.1.

15



Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

Figure 3.2 – An example of the nondominated frontier of a BOMILP

Note that if n1 > 0 and n2 > 0, the nondominated frontier of a BOMILP can

be more complicated since some continuous segments may appear in the nondominated

frontier. A typical example of a nondominated frontier of a BOMILP is shown in Figure 3.2.

Observe that isolated points as well as closed, half-open, and open segments may exist in the

nondominated frontier. So, although we assumed that X is bounded, we observe that the

nondominated frontier of a BOMILP may still contain an infinite number of nondominated

points (because of the existence of continuous segments) and so computing a (finite) exact

representation of the nondominated frontier is quite challenging. So, that is one of the main

reasons that only very few exact algorithms are developed for BOMILPs.

3.2.2 The Triangle Splitting Method

One of the effective (criterion space search) algorithms for BOMILPs is the Triangle

Splitting Method (TSM) [1]. Since this algorithm provides the basis for the development of

our algorithm, we next explain a high-level description of TSM.

TSM maintains a list of rectangles and right-angled triangles (in the criterion space)

that need to be explored. At the beginning, this list is empty. So, TSM first computes the

endpoints of the nondominated frontier. These two points are then used to define the first

rectangle containing all the “not yet found” nondominated points, as shown in Figure 3.3a.

The algorithm explores a rectangle by finding the locally extreme supported nondominated

points within the rectangle. Now it can be shown that by finding these points, the rectangle

16



(a) Finding endpoints (b) Generated triangles (c) Generated rectangles

Figure 3.3 – Progression of TSM in terms of the discovery of nondominated points

can be split into a set of right-angled triangles containing all “not yet found” nondominated

points, as shown in Figure 3.3b. The algorithm explores a triangle by first checking whether

its hypotenuse is part of the nondominated frontier. If that is the case, then the triangle is

removed from the list, otherwise it is split into at most two other rectangles. This operation

is further illustrated in Figure 3.3c, where the hypotenuse of the top triangle in Figure 3.3b

is not part of the nondominated frontier and so it is split into two new rectangles. The

algorithm repeats these procedures until finding a full representation of the nondominated

frontier, i.e., the list of rectangles and triangles becomes empty.

In light of the above, we now explain the notation and operations that are used

in TSM and are necessary for the development of our algorithm. Let z1 = (z1
1 , z

1
2) and

z2 = (z2
1 , z

2
2) be two points in the criterion space with z1

1 ≤ z2
1 and z1

2 ≥ z2
2 . We denote by

R(z1, z2) the rectangle in the criterion space defined by the points z1 and z2. Furthermore,

we denote by T (z1, z2) the right-angled triangle in the criterion space defined by the points

z1, (z2
1 , z

1
2), and z2. Finally, we denote by H(z1, z2) the line segment in the criterion space

defined by the points z1 and z2, i.e., the hypotenuse of triangle T (z1, z2).

17



3.2.2.1 Lexicographic Operation

The top endpoint, denoted by zT , of the nondominated frontier can be found by solv-

ing two (single-objective) Mixed Integer Linear Programs (MILPs) in sequence, as follows:

zT1 = min
(xI ,xC)∈X

z1(xI ,xC),

(if feasible) followed by

zT2 = min
(xI ,xC)∈X

{z2(xI ,xC) : z1(xI ,xC) ≤ zT1 }.

As this is an operation will be called frequently in our algorithm, we introduce the

following notation to represent the process:

zT = lex min
(xI ,xC)∈X

{z1(xI ,xC), z2(xI ,xC)},

similarly, the bottom endpoint, denoted by zB, of the nondominated frontier can be found

by solving:

zB = lex min
(xI ,xC)∈X

{z2(xI ,xC), z1(xI ,xC)}.

3.2.2.2 Weighted Sum Method Operation

Another frequently used operation is the weighted sum method ([37]). We denote

this operation by Weighted-Sum-Method(z1, z2) where z1, z2 ∈ YN . This operation uses the

following optimization problem to find all locally extreme supported nondominated points

of a given rectangle R(z1, z2):

z∗ = min
(xI ,xC)∈X

λ1z1(xI ,xC) + λ2z2(xI ,xC)

subject to z(xI ,xC) ∈ R(z1, z2),

18



where λ1, λ2 > 0. We note that only the value of λ1 and λ2 will be iteratively updated

during the course of the weighted sum method (and not the set of constraints). In other

words, in each iteration, for a given pair of nondominated points (z′, z′′) with z′1 < z′′1 and

z′2 > z′′2 , we set λ1 = z′2 − z′′2 and λ2 = z′′1 − z′1. The first pair of points that will be used is

(z1, z2). It is not hard to see that using this pair, the value of objective function is parallel

to the line that connects the points z1 and z2 in the criterion space as shown in Figure 3.4.

We note that by Definition 5, the corresponding optimization problem always returns a new

locally supported nondominated point z∗. However, this point can be an extreme point only

if λ1z
∗
1+λ2z

∗
2 < λ1z

1
1+λ2z

1
2 . So, if this condition holds, the process will be repeated recursively

for pairs (z1, z∗) and (z∗, z2). Overall, at the end of the weighted sum method, the list of

points that we have discovered contains all locally extreme supported nondominated points

as well as (possibly) some non-extreme supported nondominated points.

z1

z2

Objective function Next nondominated point

Figure 3.4 – Weighted sum optimization problem

3.2.2.3 Line Detector Operation

This operation is a (single-objective) MILP that determines whether some or all

points on the hypotenuse of a given triangle T (z1, z2) are nondominated points based on the

following theorem, and it is denoted by Line-Detector(z1, z2).

Theorem 1. Let z1 and z2 be two nondominated points in the criterion space. If

(H(z1, z2) − R2
>) ∩ YN = ∅ and there exists an xI ∈ XI and x1

C and x2
C ∈ Rm such that

19



(xI ,x
1
C), (xI ,x

2
C) ∈ X , z1(xI ,x

1
C) ≤ z1

1 , z2(xI ,x
1
C) ≤ z1

2 , z1(xI ,x
2
C) ≤ z2

1 , and z2(xI ,x
2
C) ≤

z2
2 , then H(z1, z2) ⊆ YN . Boland et al. [1]

Specifically, suppose that for a given triangle T (z1, z2) generated during the course

of TSM, we simultaneously find two feasible solutions (xI ,x
1
C), (xI ,x

2
C) ∈ X such that the

following three conditions hold:

• If there is a difference between solutions, it is only because of the values of continuous

decision variables.

• For the first solution, we must have that z(xI ,x
1
C) = z1.

• For the second solution, we must have that z(xI ,x
2
C) ∈ H(z1, z2).

If these conditions hold at the same time then the line segment between the point

z1 and z(xI ,x
2
C) is part of the nondominated frontier. Obviously, such a line segment is

a subset of H(z1, z2), so the goal would be to maximize the length of the line segment to

hopefully cover the entire hypotenuse. This can be achieved by solving the following MILP:

max z1(xI ,x
2
C)

subject to z1(xI ,x
1
C) ≤ z1

1

z2(xI ,x
1
C) ≤ z1

2

λ1z1(xI ,x
2
C) + λ2z2(xI ,x

2
C) = λ1z

1
1 + λ2z

1
2

(xI ,x
1
C) ∈ X , (xI ,x2

C) ∈ X

where λ1 = z1
2−z2

2 and λ2 = z2
1−z1

1 . Note that the first and second constraints can be written

in the form of equality as well but since z1 is a nondominated point it is computationally

better to use inequalities. An illustration of this optimization problem can be found in

Figure 3.5.

20



z(xI ,x
1
C)

z(x
I ,x 2

C )

z1

z2

Feasible region for z(xI ,x
1
C) Objective function

Feasible region for z(xI ,x
2
C)

Figure 3.5 – Line detector operation

z1

z2Cut Line

(a)

z1

z2

z(x′I ,x
′
C)

(b)

z1

z2

z(x′I ,x
′
C)

z(x′′I ,x
′′
C)

(c)
Figure 3.6 – Horizontal splitting of triangle T(z1, z2)

3.2.2.4 Triangle Split Operation

This operation splits a given triangle T (z1, z2). We denote this operation by

Split-Triangle(z1, z2, horizontal) or Split-Triangle(z1, z2, vertical) when we split a triangle

first horizontally (and then possibly vertically) or first vertically (and then possibly horizon-

tally), respectively. We now explain Split-Triangle(z1, z2, horizontal) graphically as shown

in Figure 3.6.

In this operation, as shown in Figure 3.6a, we first cut the triangle into two parts

horizontally and then explore the bottom part of the triangle to compute the top (local)

endpoint of the nondominated frontier in the search region. This can be done using the

following lexicographic operation:

(x′I ,x
′
C) ∈ arg lex min

(xI ,xC)∈X
{z1(xI ,xC), z2(xI ,xC) : z2(xI ,xC) ≤ z1

2 + z2
2

2
, z(xI ,xC) ∈ T (z1, z2)},

21



and next, as shown in Figure 3.6b, we cut the triangle vertically based on the position of

z(x′I ,x
′
C) and explore the left part of the triangle to compute the bottom (local) endpoint

of the nondominated frontier in that search region. This can be done using the following

lexicographic operation:

(x′′I ,x
′′
C) ∈ arg lex min

(xI ,xC)∈X
{z2(xI ,xC), z1(xI ,xC) :z1(xI ,xC) < z1(x′I ,x

′
C),

z(xI ,xC) ∈ T (z1, z2)}.

Finally, as shown in Figure 3.6c, after computing these two new nondominated

points, the triangle can be changed to (at most) two new rectangles R
(
z1, z(x′′I ,x

′′
C)
)
and

R
(
z(x′I ,x

′
C), z2

)
. Obviously, there is no need to consider R

(
z1, z(x′′I ,x

′′
C)
)
for further in-

vestigation if z1 = z(x′′I ,x
′′
C). Similarly, there is no need to consider R

(
z(x′I ,x

′
C), z2

)
for

further investigation if z(x′I ,x
′
C) = z2. As an aside, to avoid spending the valuable com-

putational time on (potential) redundant calculations, we set (x′′I ,x
′′
C) = (x′I ,x

′
C) and skip

solving the second lexicographic operation if the image of (x′I ,x
′
C) in the criterion space is

on the horizontal cut line, i.e., z2(x′I ,x
′
C) =

z1
2 + z2

2

2
.

We note that Split-Triangle(z1, z2, vertical) can be defined similarly. In other words,

we first need to compute:

(x′′I ,x
′′
C) ∈ arg lex min

(xI ,xC)∈X
{z2(xI ,xC), z1(xI ,xC) : z1(xI ,xC) ≤ z1

1 + z2
1

2
, z(xI ,xC) ∈ T (z1, z2)},

and then follow it by:

(x′I ,x
′
C) ∈ arg lex min

(xI ,xC)∈X
{z1(xI ,xC), z2(xI ,xC) :z2(xI ,xC) < z2(x′′I ,x

′′
C),

z(xI ,xC) ∈ T (z1, z2)}.

It is worth mentioning that TSM (and our proposed algorithm in this study) alternates

between Split-Triangle(z1, z2, horizontal) and Split-Triangle(z1, z2, vertical) to be able to

discover both horizontal and vertical gaps in the nondominated frontier.

22



3.2.3 Optimization Over the Efficient Set of a BOMILP

The problem of optimizing a linear function over the set of efficient solutions of a

BOMILP can be stated as follows:

min
(xI ,xC)∈XE

f(xI ,xC) (3.2)

where XE is the set of efficient solutions of Problem (3.1) and f(xI ,xC) = cᵀf,IxI + cᵀf,CxC

where cf,I ∈ Rn1 and cf,C ∈ Rn2 represents a linear function. To ensure that the problem

cannot be solved straightforwardly, we assume that X 6= XE and f(x) is not a strictly

positive linear combination of z1(x) and z2(x).

(x1
I ,x

1
C)

z1 (x2
I ,x

2
C)

(x3
I ,x

3
C)

Nondominated point

Figure 3.7 – Image of some efficient solutions in the criterion space

3.3 A New Exact Algorithm for Optimizing a Linear Function Over the Efficient

Set of BOMILPs

In this section, we explain in detail the key operations and the details of the proposed

algorithm.

3.3.1 Key Operations

First, we provide some notation and operations that form the basis for the new

algorithm. However, before that we make two important observations.

Observation 1. There may exist one or more efficient solutions with the same image

in the criterion space. So, after discovering a nondominated point, we often need to find a

23



solution among all feasible solutions corresponding to that point which has the minimum

value for f(xI ,xC). For example, in Figure 3.7, it is observed that (x1
I ,x

1
C), (x2

I ,x
2
C) and

(x3
I ,x

3
C) return the same nondominated point. Now, if we have that f(x1

I ,x
1
C) < f(x2

I ,x
2
C) <

f(x3
I ,x

3
C) then (x1

I ,x
1
C) provides the best upper (or primal) bound for the optimal value of

Problem (3.2).

Observation 2. Let f l := min(xI ,xC)∈X f(xI ,xC) and f ∗ = min(xI ,xC)∈XE
f(xI ,xC).

We must have that f l ≤ f ∗, i.e., f l is a lower (or dual) bound.

Overall, we use the notation (xlI ,x
l
C) ∈ X for a local lower bound solution and

(xuI ,x
u
C) ∈ XE for a local upper bound solution. We now describe a few necessary operations

to compute (xlI ,x
l
C) and (xuI ,x

u
C).

3.3.1.1 Computing Local Upper Bound Solutions

During the course of the new algorithm, e.g., when splitting a triangle, we often

discover a nondominated point z1 ∈ YN . In that case, based on Observation 1, we solve

the following optimization problem to obtain a local upper bound solution. We denote this

operation by UB-Finder-Point(z1):

(xuI ,x
u
C) ∈ arg min

x∈X
{f(x) : z(x) ≤ z1}.

When we are exploring a right-angeled triangle T (z1, z2) during the course of the

proposed algorithm, we may discover that the hypotenuse of the triangle is part of the

nondominated frontier, i.e., H(z1, z2) ∈ YN . So, in this case, based on Observation 1, we

solve the following optimization problem to obtain a local upper bound solution. We denote

this operation by UB-Finder-Line(z1, z2):

(xuI ,x
u
C) ∈ arg min

(xI ,xC)∈X
{f(xI ,xC) : z(xI ,xC) ∈ H(z1, z2)}.

24



3.3.1.2 Computing Local Lower Bound Solutions

Before exploring a rectangle R(z1, z2) during the course of the proposed algorithm,

based on Observation 2, we solve the following optimization problem to obtain a local lower

bound solution. We denote this operation by LB-Finder-Rectangle(z1, z2):

(xlI ,x
l
C) ∈ arg min

(xI ,xC)∈X
{f(xI ,xC) : z(xI ,xC) ∈ R(z1, z2)}.

Similarly, before exploring a triangle T (z1, z2) during the course of the proposed

algorithm, based on Observation 2, we solve the following optimization problem to obtain a

local lower bound solution. We denote this operation by LB-Finder-Triangle(z1, z2):

(xlI ,x
l
C) ∈ arg min

x∈X
{f(xI ,xC) : z(xI ,xC) ∈ T (z1, z2)}.

3.3.1.3 Computing an Efficient Solution Based on a Local Lower Solution

After computing a local lower bound solution (xlI ,x
l
C) by using

LB-Finder-Triangle(z1, z2), we often try to compute an efficient solution in T (z1, z2) where

z1, z2 ∈ YN , based on (xlI ,x
l
C). In order to do so, we solve the following optimization

problem. We denote this operation by Find-NDP(z(xlI ,x
l
C)):

(x′I ,x
′
C) ∈ arg min

(xI ,xC)∈X
{z1(x) + z2(x) : z(xI ,xC) ≤ z(xlI ,x

l
C)}.

Note that showing that this operation returns an efficient solution within the search

region defined by T (z1, z2) where z1, z2 ∈ YN is straightforward, and so we have omitted

the proof. Note too that computing (x′I ,x
′
C) is useful since we often use it as an alternative

to split T (z1, z2). This implies that after computing (x′I ,x
′
C), we often immediately change

T (z1, z2) into two new rectangles, i.e., R(z1, z(x′I ,x
′
C)) and R(z(x′I ,x

′
C), z2).

25



3.3.2 The Algorithm

The new algorithm maintains a priority queue of rectangles and triangles. Specifi-

cally, each element of the priority queue is denoted by (z1, z2, shape, direction, LB) where

‘shape’ is either triangle or rectangle; ‘z1’ and ‘z2’ are the corner points of the corresponding

rectangle or triangle; ‘direction’ is either horizontal or vertical and it indicates that if the

shape is a triangle and we want to split it then how this process should be done; and ‘LB’

is the (local) lower bound corresponding to this element (obtained by using the techniques

developed in subsection 3.3.1.2).

zT

zB

LB = −∞

Figure 3.8 – Initial rectangle

At the first iteration of the algorithm, the priority queue is initialized with (zT , zB,

rectangle, horizontal,−∞). An illustration of the initial rectangle can be found in Fig-

ure 3.8. The algorithm also maintains a global upper bound and global lower bound for

Problem (3.2) denoted by GUB and GLB, respectively. Let (x∗I ,x
∗
C) ∈ XE be the best

efficient solution that has been found at any point during the course of the algorithm. Obvi-

ously, GUB = f(x∗I ,x
∗
C). Note that we set GUB = +∞ at the beginning of the algorithm.

Also, the GLB is equal to the minimum value of LB in all elements of the priority queue.

We assume that the priority queue is sorted in nondecreasing order of the value of LB at

any point in time. Consequently, the local lower bound corresponding to the first element of

the list is always GLB. It is worth mentioning that the algorithm terminates as soon as the

priority queue is empty or the optimality gap is below a certain threshold. Note that if the

26



priority queue becomes empty then the optimality gap is naturally zero. Next, we explain

how the algorithm works in each iteration.

In each iteration, the algorithm pops out the first element of the priority queue and

denote it by (z1, z2, shape, direction, LB). Note that when an element is popped out from

the priority queue then that element does not exist in the priority queue anymore. The

algorithm first sets GUB = LB and then computes both the relative and absolute optimality

gaps. Let ε1, ε2 > 0 be small positive values that are defined by users. If |GUB−GLB||GUB|+ε1 ≤ ε2

or GUB ≤ GLB + ε2 then the algorithm terminates and reports (x∗I ,x
∗
C) as an optimal

solution. Note that ε1 is just introduced to modify the denominator of the relative gap for

cases with GUB = 0. So, in this study, we simply assume that ε1 = 10−5.

So, in the remaining, we assume that |GUB−GLB||GUB|+ε1 > ε2 and GUB > GLB + ε2.

In this case, the algorithm first checks whether z1 = z2. If that is the case then the

algorithm calls UB-Finder-Point(z1) to compute an upper bound solution (xuI ,x
u
C) and then

the new iteration starts after updating GUB and (x∗I ,x
∗
C). Note that, from now on, updating

GUB and (x∗I ,x
∗
C) means that if GUB > f(xuI ,x

u
C) then we set GUB = f(xuI ,x

u
C) and

(x∗I ,x
∗
C) = (xuI ,x

u
C).

z1

z2

(a)

ẑ1 = z1

ẑ3 = z2

LB = GLB

LB = GLB

ẑ2

(b)
Figure 3.9 – Changing rectangle R(z1, z2) into smaller triangles

So, in the remaining, we assume that z1 6= z2. Now, if the shape is rectangle then the

algorithm simply applies the weighted sum method in the rectangle to find all locally extreme

supported nondominated points. We denote the outcome of the weighted sum operation by

27



ẑ1, ẑ2, . . . , ẑk such that ẑv1 < ẑv+1
1 and ẑv2 > ẑv+1

2 for each v = 1, . . . , k − 1. After finding

these points, the algorithm adds k − 1 new elements to the priority queue that are all

triangles. Specifically, it adds (ẑv, ẑv+1, triangle, direction,GLB) to the priority queue for

each v = 1, . . . , k − 1. Note that the direction and the local global lower bound of the new

elements are as same the direction and the local global lower bound of the rectangle that

is explored (we know that, by construction, GLB = LB). It is worth mentioning that the

algorithm does not attempt to find better lower bounds for the new triangles simply because

we have observed that this is computationally expensive (in practice). An illustration of

generated triangles after exploring R(z1, z2) can be found in Figure 3.9.

Now, if the shape is triangle, i.e., T (z1, z2), then the algorithm checks whether

H(z1, z2) is partially or entirely part of the nondominated frontier. In other words, the algo-

rithm calls Line-Detector(z1, z2) and denotes its corresponding optimal solution by (x̂I , x̂C).

From the theory of the line detector operation (presented in subsection 3.2.2), we know that

the line segment between z1 and (x̂I , x̂C) should be part of the nondominated frontier. So,

now one of the two possible cases may arise:

• Case I: z1 6= z(x̂I , x̂C) (which is equivalent to z1(x̂I , x̂C) > z1
1 based on the construc-

tion of the line detector operation)

• Case II: z1 = z(x̂I , x̂C) (which is equivalent to z1(x̂I , x̂C) = z1
1 based on the con-

struction of the line detector operation)

If Case I arises then the algorithm calls UB-Finder-Line
(
z1, z(x̂I , x̂C)

)
to compute

an upper bound solution (xuI ,x
u
C) and then updates GUB and (x∗I ,x

∗
C). Finally, if the

hypotenuse is not entirely part of the nondominated frontier, i.e., z1(x̂I , x̂C) < z2
1 , then the

algorithm adds (z(x̂I , x̂C), z2, triangle, direction,GLB) to the priority. Note that the new

element is a smaller version of the initial triangle, i.e., T (z1, z2). An illustration of such a

triangle can be found in Figure 3.10.

28



z1

z2

(a)

z1

z2

LB = GLB

z(x̂I , x̂C)

(b)
Figure 3.10 – Generating a smaller triangle after observing that the hypotenuse of is

partially part of the nondominated frontier

If Case II arises then the algorithm first calls LB-Finder-Triangle(z1, z2) to find a

lower bound solution (xlI ,x
l
C) within the search region defined by the triangle. Obviously,

if f(xlI ,x
l
C) ≥ GUB then there is no need to explore the triangle and so the algorithm

starts a new iteration. Otherwise, we need to split the triangle, i.e., T (z1, z2), into two new

rectangles, denoted by R(z1,
¯
z) and R(z̄, z2) where z̄,

¯
z ∈ YN and z̄,

¯
z ∈ T (z1, z2). We also

denoted by
¯
L and L̄ a (local) lower bound corresponding to rectangles R(z1,

¯
z) and R(z̄, z2)

respectively. In order to compute z̄,
¯
z,

¯
L and L̄, we have developed an operation denoted

by Explore-Triangle
(
(xlI ,x

l
C), z1, z2, direction

)
. This operation, in addition to z̄,

¯
z,

¯
L and

L̄, returns a new ‘direction’ and a new upper bound solution (xuI ,x
u
C) as well. Later in this

section, we explain this operation in detail.

In light of the above, after calling Explore-Triangle
(
(xlI ,x

l
C), z1, z2, direction

)
, the

algorithm first updates GUB and (x∗I ,x
∗
C) using the new upper bound solution (xuI ,x

u
C).

The algorithm then adds the element (z1,
¯
z, rectangle, direction,

¯
L) to the priority queue if

z1 6=
¯
z (since otherwise the shape is a single point and not a rectangle) and

¯
L < GUB (since

otherwise such a rectangle cannot contain a better solution). Similarly, the algorithm adds

(z̄, z2, rectangle, direction, L̄) to the priority queue if z2 6= z̄ and L̄ < GUB.

A detailed description of the proposed algorithm can be found in Algorithm 3.

29



Algorithm 1: The new algorithm
1 GLB ← −∞; GUB ← +∞; PQ.create(P ); PQ.add(P, (zT , zB , rectangle, horizontal,−∞))

2 Search_Done← False

3 while not PQ.empty(P ) and Search_Done = False do
4 PQ.pop(P, (z1, z2, shape, direction, LB))

5 GLB ← LB

6 if |GUB−GLB|
|GUB|+ε1

≤ ε2 or GUB ≤ GLB + ε2 then
7 Search_Done← True

8 else
9 if z1 = z2 then

10 (xu
I ,x

u
C)← UB-Finder-Point(z1)

11 if f(xu
I ,x

u
C) < GUB then

12 GUB ← f(xu
I ,x

u
C)

13 (x∗I ,x
∗
C)← (xu

I ,x
u
C)

14 else
15 if shape = rectangle then
16 {ẑ1, ẑ2, ..., ẑk} ←Weighted-Sum-Method(z1, z2)

17 i← 1

18 while i < k do
19 PQ.add(P, (ẑi, ẑi+1, triangle, direction,GLB)

20 i← i+ 1

21 else
22 (x̂I , x̂C)← Line-Detector(z1, z2)

23 if z1(x̂I , x̂C) > z11 then
24 (xu

I ,x
u
C)← UB-Finder-Line

(
z1, z(x̂I , x̂C)

)
25 if f(xu

I ,x
u
C) < GUB then

26 GUB ← f(xu
I ,x

u
C)

27 (x∗I ,x
∗
C)← (xu

I ,x
u
C)

28 if z1(x̂I , x̂C) < z21 then
29 PQ.add(P, (z(x̂I , x̂C), z2, triangle, direction,GLB))

30 else
31 (xl

I ,x
l
C)← LB-Finder-Triangle(z1, z2)

32 if f(xl
I ,x

l
C) < GUB then

33
(
(xu

I ,x
u
C), (

¯
z,

¯
L), (z̄, L̄), direction

)
←

Explore-Triangle
(
(xl

I ,x
l
C), z1, z2, direction

)
34 if f(xu

I ,x
u
C) < GUB then

35 GUB ← f(xu
I ,x

u
C)

36 (x∗I ,x
∗
C)← (xu

I ,x
u
C)

37 if
¯
L < GUB and z1 6=

¯
z then

38 PQ.add(P, (z1,
¯
z, rectangle, direction,

¯
L))

39 if L̄ < GUB and z2 6= z̄ then
40 PQ.add(P, (z̄, z2, rectangle, direction, L̄))

41 return (x∗I ,x
∗
C) and f(x∗I ,x

∗
C)

30



3.3.2.1 Operation Explore Triangle

We now explain the details of Explore-Triangle
(
(xlI ,x

l
C), z1, z2, direction

)
. Evi-

dently, the inputs of this operation are (xlI ,x
l
C), z1, z2 and direction. The outputs of

this operation are (xuI ,x
u
C), (

¯
z,

¯
L), (z̄, L̄) and direction.

As discussed previously, the operation provides the necessary components for splitting

the right-angeled triangle T (z1, z2) into (at most) two new rectangles. This operation first

checks whether the image of (xlI ,x
l
C) in the criterion space is (reasonably) far away from

the orthogonal sides of the right-angeled triangle T (z1, z2) (the reason for checking this will

become clear in the upcoming paragraphs). In other words, it checks whether z1(xlI ,x
l
C) <

z2
1 − (z2

1 − z1
1)ε3 and z2(xlI ,x

l
C) < z1

2 − (z1
2 − z2

2)ε3 where ε3 ∈ (0, 1) is a user defined

parameter. The default value of ε3 is 0.15 in our implementation of the algorithm since this

value performs the best for all our computational experiments. So, two possible cases may

arise:

• Case A: z1(xlI ,x
l
C) < z2

1 − (z2
1 − z1

1)ε3 and z2(xlI ,x
l
C) < z1

2 − (z1
2 − z2

2)ε3.

• Case B: z1(xlI ,x
l
C) ≥ z2

1 − (z2
1 − z1

1)ε3 or z2(xlI ,x
l
C) ≥ z1

2 − (z1
2 − z2

2)ε3 (or both).

z(xlI ,x
l
C)

z1

z2

(a)

z(xuI ,x
u
C)

z1

z2

(b)

z̄ =
¯
z = z(xuI ,x

u
C)

z1

z2

(c)
Figure 3.11 – z(xlI ,x

l
C) is far away from the orthogonal sides of the triangle

We first explain Case A. An illustration of this case is shown in Figure 3.11. For

Case A, the operation first calls Find-NDP
(
z(xlI ,x

l
C)
)
to find an efficient solution based on

(xlI ,x
l
C). We denote this efficient solution by (xuI ,x

u
C) since f(xuI ,x

u
C) is an upper bound

31



for the optimal objective value of Problem (3.2). An illustration of (xuI ,x
u
C) in the criterion

space can be found in Figure 3.11b. Obviously, z(xuI ,x
u
C) ∈ T (z1, z2). However, we must

have that z(xuI ,x
u
C) 6= z1 and z(xuI ,x

u
C) 6= z2 and this is exactly the consequence of the fact

that z1(xlI ,x
l
C) < z2

1 − (z2
1 − z1

1)ε3 and z2(xlI ,x
l
C) < z1

2 − (z1
2 − z2

2)ε3. The operation then

sets z̄ =
¯
z = z(xuI ,x

u
C). Note that this implies that Algorithm 3 will later split the triangle

from the point z(xuI ,x
u
C) (see Figure 3.11c). So, there is no need to split the triangle in the

standard way that TSM employs (see subsection 3.2.2).

Finally, we note that the operation also needs to compute lower bounds (for the new

rectangles). Obviously, z(xuI ,x
u
C) 6= z(xlI ,x

l
C) then the operation immediately calls

LB-Finder-Rectangle (z1,
¯
z) and LB-Finder-Rectangle (z̄, z2) to compute

¯
L and L̄, respec-

tively. Otherwise, there is no need to call them since by definition (xlI ,x
l
C) is a lower bound

solution which is happened to be an efficient solution as well. So, there is no need to split

the triangle for further investigation because (xlI ,x
l
C) is an optimal solution of Problem (3.2)

when its search is restricted to the search region defined by T (z1, z1). Consequently, in this

case, the operation simply sets L̄ = f(xlI ,x
l
C),

¯
L = f(xlI ,x

l
C) and (xuI ,x

u
C) = (xlI ,x

l
C). Note

that by doing so, Algorithm 3 will not add new rectangles to the priority queue (see Lines

34-40).

We now explain Case B. In this case, the operation attempts to split the triangle

using the standard way that TSM employs (see subsection 3.2.2). This implies that if

direction = horizontal then the operation calls Split-Triangle(z1, z2, horizontal) to compute

(x′I ,x
′
C) and (x′′I ,x

′′
C), and then it changes the direction to ‘vertical’ (since as we explained

in subsection 3.2.2, the direction should alternate in TSM). Similarly, if direction = vertical

then the operation calls Split-Triangle(z1, z2, vertical) to compute (x′I ,x
′
C) and (x′′I ,x

′′
C),

and then it changes the direction to ‘horizontal’.

Note that (x′I ,x
′
C) and (x′′I ,x

′′
C) are efficient solutions. So, next the operation calls

UB-Finder-Point
(
z(x′I ,x

′
C)
)
to compute an upper solution denoted by (x̄I , x̄C). Also,

it calls UB-Finder-Point
(
z(x′′I ,x

′′
C)
)
to compute an upper solution denoted by (

¯
xI ,

¯
xC) if

32



z(x′I ,x
′
C) 6= z(x′′I ,x

′′
C). Otherwise, it simply sets (

¯
xI ,

¯
xC) = (x̄I , x̄C). After computing

(
¯
xI ,

¯
xC) and (x̄I , x̄C), the operation sets z̄ = z(x̄I , x̄C) and

¯
z = z(

¯
xI ,

¯
xC). The operation

then computes the best upper bound solution as follows:

(xuI ,x
u
C) ∈ arg min{f(

¯
xI ,

¯
xC), f(x̄I , x̄C)}.

Finally, we again note that the operation also needs to compute lower bounds (for the

new rectangles). If
¯
z 6= z1 then the operation immediately calls LB-Finder-Rectangle (z1,

¯
z)

to compute
¯
L. Otherwise, it sets

¯
L = f(

¯
xI ,

¯
xC) since, by construction, (

¯
xI ,

¯
xC) should pro-

vide a lower bound. Similarly, if z̄ 6= z2 then the operation calls LB-Finder-Rectangle (z̄, z2)

to compute L̄. Otherwise, it sets L̄ = f(x̄I , x̄C).

A detailed description of Explore-Triangle
(
(xlI ,x

l
C), z1, z2, direction

)
is shown in Al-

gorithm 2. We now make one final comment to avoid redundant calculations:

• For Case B, before calling LB-Finder-Rectangle (z1,
¯
z), we first need to check whether

z(xlI ,x
l
C) ∈ R(z1,

¯
z). If that is the case then we know that

¯
L = f(xlI ,x

l
C). Similarly,

before calling LB-Finder-Rectangle (z̄, z2), we first need to check whether z(xlI ,x
l
C) ∈

R(z̄, z2). If that is the case then we know that L̄ = f(xlI ,x
l
C).

3.3.3 Performance of the Algorithm: A Small Example

In this section, we use the example introduced by Belotti et al. [38] to show the per-

formance of the algorithm in terms of the proportion of the nondominated frontier explored

33



Algorithm 2: Explore-Triangle
(
(xlI ,x

l
C), z1, z2, direction

)
1 if z1(xl

I ,x
l
C) < z21 − (z21 − z11)ε3 and z2(xl

I ,x
l
C) < z12 − (z12 − z22)ε3 then

2 (xu
I ,x

u
C)← Find-NDP

(
z(xl

I ,x
l
C)
)

3 z̄ ← z(xu
I ,x

u
C);

¯
z ← z(xu

I ,x
u
C)

4 if z(xu
I ,x

u
C) = z(xl

I ,x
l
C) then

5 L̄← f(xl
I ,x

l
C);

¯
L← f(xl

I ,x
l
C); (xu

I ,x
u
C)← (xl

I ,x
l
C)

6 else

7
¯
L← LB-Finder-Rectangle (z1,

¯
z)

8 L̄← LB-Finder-Rectangle (z̄, z2)

9 else

10 if direction = horizontal then

11
(
(x′I ,x

′
C), (x′′I ,x

′′
C)
)
← Split-Triangle(z1, z2, horizontal)

12 direction← vertical

13 else

14
(
(x′I ,x

′
C), (x′′I ,x

′′
C)
)
← Split-Triangle(z1, z2, vertical)

15 direction← horizontal

16 (x̄I , x̄C)← UB-Finder-Point
(
z(x′I ,x

′
C)
)

17 if z(x′I ,x
′
C) 6= z(x′′I ,x

′′
C) then

18 (
¯
xI ,

¯
xC)← UB-Finder-Point

(
z(x′′I ,x

′′
C)
)

19 else

20 (
¯
xI ,

¯
xC)← (x̄I , x̄C)

21 z̄ ← z(x̄I , x̄C)

22
¯
z ← z(

¯
xI ,

¯
xC)

23 (xu
I ,x

u
C)← arg min {f(x̄I , x̄C), f(

¯
xI ,

¯
xC)}

24 if
¯
z = z1 then

25
¯
L← f(

¯
xI ,

¯
xC)

26 else

27
¯
L← LB-Finder-Rectangle

(
z1,

¯
z
)

28 if z̄ = z2 then

29 L̄← f(x̄I , x̄C)

30 else

31 L̄← LB-Finder-Rectangle
(
z̄, z2)

32 return (xu
I ,x

u
C), (

¯
z,

¯
L), (z̄, L̄), direction

34



at the moment an optimal solution was returned:

max z1(xI ,xC) = −3x1 − 6x2 + 3x3 + 5x4

max z2(xI ,xC) = 15x1 + 4x2 + x3 + 2x4

s.t. −x1 + 3x5 ≤ 0

x1 − 6x5 ≤ 0

−x2 + 3x5 ≤ 0

x2 − 6x5 ≤ 0

−x3 + 4x6 ≤ 0

x3 − 4.5x6 ≤ 0

−x4 + 4x6 ≤ 0

x4 − 4.5x6 ≤ 0

x5 + x6 ≤ 5

x1, x2, x3, x4 ∈ R+

x5, x6 ∈ Z+.

Note that because the proposed algorithm works with z1(xI ,xC) and z2(xI ,xC) in

minimization form, the coefficients of the objective functions are multiplied by −1 during

the course of the algorithm. However, for consistency with Belotti et al. [38], we report their

values as if we are solving the maximization form in all figures in this section.

The (exact) nondominated frontier of the presented BOMILP is shown in Figure 3.12.

Now suppose that we want to solve min(xI ,xC)∈XE
f(xI ,xC) where XE is the set of efficient

solutions of the presented BOMILP. We constructed four different settings in which the only

difference between them is the linear function, i.e., f(xI ,xC).

For the first three settings, the coefficients of f(xI ,xC) are drawn randomly from the

discrete uniform distribution from the interval [−100, 100] for both continuous and integer

35



0

100

200

300

400

500

600

-300 -200 -100 0 100 200

z
2
(x

I
,x

C
)

z1(xI ,xC)

Figure 3.12 – The exact nondominated frontier of the example

variables. For the fourth setting, we set f(xI ,xC) = z1(xI ,xC) + z2(xI ,xC). Note that

we considered this linear function since minimizing f(xI ,xC) becomes contradictory to the

nature of problem (in which z1(xI ,xC) and z2(xI ,xC) should be maximized). So, we expect

that such a problem to be harder to solve. The partial nondominated frontiers generated

during the course of the proposed algorithm for Settings 1 to 4 are shown in Figures 3.13a

to 3.13d, respectively. In these figures, we also report f(xI ,xC), its optimal value (denoted

by f ∗), and the image of the obtained optimal solution in the criterion space. The latter is

shown by a triangle symbol.

Observe that in all settings, only a proportion of the true nondominated frontier is

explored during the course of algorithm. Of course, this is precisely what we hoped to achieve

(in practice) by the proposed algorithm. Also, not surprisingly, for Setting 4, we see that

the a larger proportion of the nondominated frontier is explored since the algorithm obtains

weak lower/dual bounds when f(xI ,xC) = z1(xI ,xC) + z2(xI ,xC).

3.3.4 Implementation Issues and Enhancements

Since our proposed algorithm is based on TSM, the implementation tips described

in Boland et al. [1] should be employed. We now introduce the most important ones, but

interested readers may refer to Boland et al. [1] for further details.

• Tip 1: Adding as few objective function based constraints as possible to the (single-

objective) MILP formulations (arising during the course of the algorithm) often

36



f(x) = −44x1 + 65x2 + 93x3 − 28x4 − 71x5 + 85x6

0

100

200

300

400

500

600

-300 -200 -100 0 100 200

Optimal Solution

= (−180.000, 510.000)

f ∗ = −700.000

z
2
(x

I
,x

C
)

z1(xI ,xC)

(a)

f(x) = −90x1 − 52x2 + 11x3 + 41x4 − 13x5 − 99x6

0

100

200

300

400

500

600

-300 -200 -100 0 100 200

Optimal Solution

= (−270.000, 570.000)

f ∗ = −4, 324.995

z
2
(x

I
,x

C
)

z1(xI ,xC)

(b)

f(x) = 82x1 − 26x2 − 90x3 + 94x4 + 9x5 − 43x6

0

100

200

300

400

500

600

-300 -200 -100 0 100 200

Optimal Solution

= (180.000, 67.500)

f ∗ = 125.003

z
2
(x

I
,x

C
)

z1(xI ,xC)

(c)

f(x) = 12x1 − 2x2 + 4x3 + 7x4

0

100

200

300

400

500

600

-300 -200 -100 0 100 200

Optimal Solution

= (51.299, 168.003)

f ∗ = 219.302

z
2
(x

I
,x

C
)

z1(xI ,xC)

(d)
Figure 3.13 – The partial nondominated frontier of the example generated under each

setting

reduces the numerical issues and improves the performance of the proposed algo-

rithm in practice. So, in the proposed algorithm, we can replace any instance of

z(xI ,xC) ∈ R(z1, z2) or z(xI ,xC) ∈ T (z1, z2) by:

z1(xI ,xC) ≤ z2
1

z2(xI ,xC) ≤ z1
2 .

37



This is possible since we always have that z1, z2 ∈ YN . Similarly, z(xI ,xC) ∈

H(z1, z2) can be simplified to:

z1(xI ,xC) ≤ z2
1

z2(xI ,xC) ≤ z1
2

λ1z1(xI ,xC) + λ2z2(xI ,xC) ≤ λ1z
1
1 + λ2z

1
2

• Tip 2: Providing (high-quality) initial feasible solutions to a MILP solver (whenever

possible) often improves the performance of the proposed algorithm in practice. One

of the feature of the TSM is that it naturally can provide a feasible solution for solving

any (single-objective) MILP (after finding zT and zB) that arises during its course.

The same feature is also true for the proposed algorithm. While exploring T (z1, z2)

or R(z1, z2), the solution corresponding to z1 or z2 (or both) are feasible and so they

can be provided. In general, all operations defined in this study take some points in

the criterion space as inputs. So, we can provide the solutions corresponding to those

points to (single-objective) MILP solvers.

Next, we present some enhancements and we later in subsection 3.3.5 show their

effectiveness in practice.

Enhancement 1 (E1): When calling the operations Split-Triangle(z1, z2, horizontal)

and Split-Triangle(z1, z2, vertical), we can sometimes avoid solving some of the optimization

problems. Specifically, we know that the first step of Split-Triangle(z1, z2, horizontal) is to

solve the following lexicographic operation:

(x′I ,x
′
C) ∈ arg lex min

(xI ,xC)∈X
{z1(xI ,xC), z2(xI ,xC) : z2(xI ,xC) ≤ z1

2 + z2
2

2
, z(xI ,xC) ∈ T (z1, z2)}.

Note that during the course of the algorithm, we are always in the situation that

z1 are z2 are nondominated points. Consequently, if after solving the first optimization

problem in the above lexicographic operation, the optimal objective value is equal to z2
1

38



then we do not need to solve the second optimization problem since we must have that

z(x′I ,x
′
C) = z2. Also, we know that the second step of Split-Triangle(z1, z2, horizontal) is

to solve the following lexicographic operation:

(x′′I ,x
′′
C) ∈ arg lex min

(xI ,xC)∈X
{z2(xI ,xC), z1(xI ,xC) :z1(xI ,xC) < z1(x′I ,x

′
C),

z(xI ,xC) ∈ T (z1, z2)}.

Consequently, if after solving the first optimization problem in the above lexicographic

operation, the value of the optimal objective value is equal to z1
2 then we do not need to

solve the second optimization problem since we must have that z(x′′I ,x
′′
C) = z1. The above

observations are also valid for Split-Triangle(z1, z2, vertical).

Enhancement 2 (E2): Observe that the intersection of any two elements (which are

either triangles or rectangles) in the priority is either empty or a corner point, i.e., z1 or z2.

Consequently, for a given corner point, e.g., z1, calling the operation UB-Finder-Point(z1)

may be redundant (if such an operation should be called at all). Consequently, before calling

UB-Finder-Point(z1), we propose to check whether such an operation has been called before.

If the answer is “yes” then we can simply avoid calling UB-Finder-Point(z1).

Enhancement 3 (E3): Right before calling Line-Detector(z1, z2), we propose to always

check whether all integer variables in the corresponding solutions to z1 and z2 (that the

algorithm maintains in the memory) have the same value. If that is the case then H(z1, z2)

is entirely part of the nondominated frontier. So, we can avoid solving Line-Detector(z1, z2).

Enhancement 4 (E4): Our numerical experiments show that Line-Detector(z1, z2) is

an expensive operation, and so it is better to postpone it. Let nI be the number of integer

variables with same values in the corresponding solutions to z1 and z2 (that the algorithm

maintains in the memory). We propose to call Line-Detector(z1, z2) only if nI ≥ 0.9n1. Note

that if we do not call this operation, we simply assume that H(z1, z2) does not partially or

entirely belong to the nondominated frontier.

39



3.3.5 A Computational Study for the First Implementation of the Algorithm

We conduct a comprehensive computational study to evaluate the performance of

the new algorithm. We use the C++ programming language to implement the proposed

approach, and employ CPLEX 12.7 as the single-objective mixed integer linear programming

solver. All computational experiments are carried out on a Dell PowerEdge R630 with two

Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB RAM, and the RedHat

Enterprise Linux 6.8 operating system. We only use a single thread for all experiments.

To test the performance of the proposed algorithm, we modify 25 BOMILPs used in

[1] to generate instances for Problem (3.2). It is worth mentioning that these 25 BOMILPs

are divided into 5 classes (each contains 5 BOMILPs). Each class is denoted by Cm where

m is the number of constraints of each BOMILP in that class. The number of variables and

the number of constraints of each instance are equal, i.e., (n1 + n2 = m), and half of the

variables are binary while the remaining variables are continuous.

From each BOMILP, we generate 10 different instances for Problem (3.2). The only

difference between these 10 instances is the linear function, i.e., f(xI ,xC). The coefficients of

the linear function are randomly drawn from the discrete uniform distribution in the interval

[−100, 100] for both continuous and integer variables. Note that for each BOMILP, the

generated linear functions can be different. Consequently, in total, 25× 10 = 250 instances

are tested during this comprehensive study.

The code and instances used in this study can all be found at https://goo.gl/dixCCi

and https://goo.gl/DzcCgQ, respectively. It is worth mentioning that our code is generic

and user-friendly in a sense that users only have to provide an input file with a specific

format to use our code.

3.3.5.1 Overall Performance

In this section, we show the overall performance of the proposed algorithm. We

note that in all results’ tables in this section, all enhancements discussed in subsection 3.3.5

40

https://goo.gl/dixCCi
https://goo.gl/DzcCgQ


are active. Moreover, for each BOMILP/row, averages over the generated 10 instances are

reported.

A direct way for optimizing a linear function over the set of efficient solutions of a

BOMILP is to first generate the entire nondominated frontier and then applying a post-

processing technique to compute an optimal solution. Note that such a post-processing

technique is (of course) computationally expensive since multiple optimization problems

have to be solved. In light of this observation, we first compare the performance of the our

algorithm with TSM in this section. It is clear that if we show that our approach is faster

than TSM then the proposed algorithm is of practical value. Note that, in this study, we do

not consider the time that has to be added to the time of TSM because of the post-processing.

In Table 3.1, we present a comparison between the proposed algorithm and TSM

where ‘Time (sec.)’ is the solution time in seconds and ‘#MILP’ is the number of (single-

objective) MILPs solved. The last two columns of the table show the percentage of decrease

in the solution time and the number of (single-objective) MILPs solved by the proposed

algorithm in comparison to TSM. Bold numbers in the last two columns show the instances

that our algorithm has a better performance on them. It is also worth mentioning that the

C++ implementation of TSM used in this study is exactly the one that is used in Boland et

al. [1].

It is observed that the proposed algorithm clearly outperforms TSM in terms of

solution time for most instances. Only for small size instances, the solution time of TSM

is better. For large size instances, the solution time of the proposed algorithm is around

22% less than the solution time of TSM on average. Overall, in terms of the number of

(single-objective) MILPs solved, the proposed algorithm is better. For the largest class of

instances, we see around 11% reduction in the number of (single-objective) MILPs solved.

Table 3.2 provides more details about the main operations of the new algorithm,

i.e., Algorithm 3. We observe that Line-Detector operation takes the most time to solve a

(single-objective) MILP with the overall average of 0.77 sec.
#MILPs . That is the main reason that

41



Table 3.1 – Performance of the new algorithm in comparison to TSM
Class New algorithm TSM % Decrease

Time (sec.) #MILP Time (sec.) #MILP Time #MILP

C20

0.15 86.3 0.18 70.0 15.0% -23.3%
0.59 188.8 0.52 171.0 -12.5% -10.4%
0.56 170.9 0.51 151.0 -10.0% -13.2%
0.82 220.3 0.76 200.0 -7.5% -10.2%
0.17 87.1 0.18 74.0 7.2% -17.7%

Avg. 0.46 150.7 0.43 133.2 -6.2% -13.1%

C40

5.71 710.9 6.99 763.0 18.3% 6.8%
1.49 283.9 1.98 318.0 24.8% 10.7%
2.24 327.6 2.80 351.0 19.9% 6.7%
2.50 397.5 2.55 392.0 1.9% -1.4%
2.58 386.5 2.35 319.0 -9.8% -21.2%

Avg. 2.91 421.3 3.33 428.6 12.8% 1.7%

C80

41.76 1,760.5 48.41 1,700.0 13.7% -3.6%
20.98 1,028.7 31.75 1,245.0 33.9% 17.4%
34.47 1,538.7 49.97 1,920.0 31.0% 19.9%
45.27 1,881.2 52.01 1,841.0 13.0% -2.2%
29.40 1,480.7 35.70 1,342.0 17.7% -10.3%

Avg. 34.38 1,538.0 43.57 1,609.6 21.1% 4.5%

C160

249.68 2,448.2 294.68 2,470.0 15.3% 0.9%
256.88 2,143.8 340.96 2,334.0 24.7% 8.1%
234.42 2,197.5 312.30 2,260.0 24.9% 2.8%
549.73 4,299.2 766.72 4,593.0 28.3% 6.4%
267.27 2,521.5 324.97 2,541.0 17.8% 0.8%

Avg. 311.60 2,722.0 407.93 2,839.6 23.6% 4.1%

C320

3,621.63 4,041.5 4,594.85 4,490.0 21.2% 10.0%
5,790.73 6,341.2 6,448.02 6,404.0 10.2% 1.0%
3,992.90 4,448.0 5,519.19 5,167.0 27.7% 13.9%
4,757.52 4,967.3 6,652.65 6,016.0 28.5% 17.4%
3,449.56 4,117.5 4,611.47 4,865.0 25.2% 15.4%

Avg. 4,322.47 4,783.1 5,565.24 5,388.4 22.3% 11.2%

we develop enhancements E3 and E4 in subsection 3.3.5. We also note that the second most

expensive operation is the Explore-Triangle with the overall average of 0.65 sec.
#MILPs .

3.3.5.2 Performance of Enhancements

In subsection 3.3.4, we described a total of four enhancements to improve the per-

formance of the proposed algorithm. Let ‘time ratio’ of A (for a particular instance) be

the ratio of the solution time of A (for that instance) to the maximum solution time of the

new algorithm observed during the entire set of experiments (for that instance). Figure 3.14

shows a comparison between time ratios (for all 250 instances) when a particular enhance-

ment is disabled. The first box, i.e., ’All’, refers to a configuration that all enhancements are

disabled. In the second box, i.e., ’None’, no enhancement is disabled. Boxes labeled E1, E2,

42



Table 3.2 – Basic performance statistics of the operations of the new algorithm
Total Weighted-Sum-Method Line-Detector UB-Finder-Line LB-Finder-Triangle Explore-Triangle

Time (sec.) #MILP Time (sec.) #MILP Time (sec.) #MILP Time (sec.) #MILP Time (sec.) #MILP Time (sec.) #MILP

C20

0.15 86.30 0.07 32.70 0.00 0.00 0.02 14.20 0.01 5.50 0.06 29.90
0.59 188.80 0.23 77.00 0.00 0.00 0.10 32.80 0.04 12.00 0.22 63.00
0.56 170.90 0.12 39.50 0.00 0.10 0.04 10.30 0.07 16.00 0.32 101.00
0.82 220.30 0.30 88.90 0.00 0.00 0.12 38.30 0.06 14.80 0.34 74.30
0.17 87.10 0.08 41.40 0.00 0.00 0.02 18.80 0.01 4.00 0.06 18.90

Avg. 0.46 150.68 0.16 55.90 0.00 0.02 0.06 22.88 0.04 10.46 0.20 57.42

C40

5.71 710.90 2.14 330.30 0.03 2.30 1.25 146.00 0.39 39.40 1.91 188.90
1.49 283.90 0.57 119.60 0.00 0.00 0.22 50.70 0.14 17.30 0.57 92.30
2.24 327.60 0.81 134.40 0.02 3.60 0.36 55.90 0.19 20.20 0.85 109.50
2.50 397.50 1.01 198.00 0.00 0.00 0.49 89.90 0.21 18.20 0.79 87.40
2.58 386.50 0.89 156.10 0.00 0.00 0.39 65.30 0.21 26.20 1.08 134.90

Avg. 2.91 421.28 1.08 187.68 0.01 1.18 0.54 81.56 0.23 24.26 1.04 122.60

C80

41.76 1,760.50 15.94 872.30 1.32 55.40 10.54 412.40 2.50 75.90 11.45 340.50
20.98 1,028.70 7.74 497.50 0.59 34.00 4.65 230.90 1.32 44.30 6.68 218.00
34.47 1,538.70 11.16 640.10 1.38 74.40 5.75 269.70 3.12 104.30 13.05 446.20
45.27 1,881.20 15.73 871.00 1.73 68.90 10.37 403.40 3.03 95.20 14.39 438.70
29.40 1,480.70 10.62 701.10 1.01 60.10 6.32 331.20 2.06 67.60 9.37 316.70

Avg. 34.38 1,537.96 12.24 716.40 1.20 58.56 7.52 329.52 2.40 77.46 10.99 352.02

C160

249.68 2,448.20 67.87 949.90 19.13 169.00 43.60 434.10 22.21 170.00 96.78 721.20
256.88 2,143.80 70.18 842.70 20.61 141.30 44.25 384.20 23.54 149.30 98.25 622.30
234.42 2,197.50 70.89 889.00 16.44 148.10 41.73 401.30 20.13 148.10 85.16 607.00
549.73 4,299.20 172.91 1,742.10 47.82 266.30 104.47 816.30 41.20 275.70 183.25 1,194.80
267.27 2,521.50 81.68 1,109.60 19.49 137.30 61.77 509.40 20.17 142.70 84.09 618.50

Avg. 311.60 2,722.04 92.71 1,106.66 24.70 172.40 59.16 509.06 25.45 177.16 109.51 752.76

C320

3,621.63 4,041.50 879.89 1,325.70 381.81 340.30 529.98 626.50 342.79 340.10 1,486.74 1,404.90
5,790.73 6,341.20 1,401.19 2,115.90 640.13 520.80 880.67 1,014.80 518.21 519.20 2,350.11 2,166.50
3,992.90 4,448.00 1,042.73 1,514.10 390.98 373.10 574.35 695.20 368.35 372.40 1,616.28 1,489.20
4,757.52 4,967.30 1,113.97 1,536.10 586.55 457.40 618.36 708.90 461.80 456.70 1,976.49 1,804.20
3,449.56 4,117.50 778.94 1,334.10 349.39 364.50 497.77 613.10 360.68 363.30 1,462.23 1,438.50

Avg. 4,322.47 4,783.10 1,043.34 1,565.18 469.77 411.22 620.23 731.70 410.37 410.34 1,778.37 1,660.66

E3, and E4 refer to configurations that only enhancements E1, E2, E3, and E4 are disabled,

respectively.

0.75

0.8

0.85

0.9

0.95

1

All None E1 E2 E3 E4

T
im

e
R
at
io

Disabled Enhancement

Figure 3.14 – Time ratio boxplot for enhancement techniques

Observe that, on average, the algorithm performs faster when all enhancements are

enabled. Also, E3 is the most effective enhancement for improving the performance of the

algorithm. Moreover, disabling all enhancements almost always result in the worst perfor-

mance of the proposed algorithm. Finally, it seems that enhancements E1 and E2 are not

43



contributing much in the performance of the proposed algorithm. To better understand the

latter, we next compare ‘#MILPs ratios’. Let #MILPs ratio of A (for a particular instance)

be the ratio of the #MILPs solved by A (for that instance) to the maximum #MILPs solved

by the new algorithm (for that instance) during the entire set of experiments.

Figure 3.15 compares #MILPs ratios (for all 250 instances) when a particular en-

hancement is disabled. Observe that boxes corresponding to None, and E1 and E2 are almost

identical (‘None’ is slightly better). That is mainly because that (for our test instances) the

algorithm rarely faces a situation that it has to return a corner point of a triangle while

splitting it. Overall, from Figures 3.14 and 3.15, we observe that when all enhancements are

enabled, both ‘Time’ and ‘#MILP’ are improved more than 15% compared to the setting

that all enhancements are disabled.

0.8

0.85

0.9

0.95

1

All None E1 E2 E3 E4

#
M
IL
P
s
R
at
io

Disabled Enhancement

Figure 3.15 – #MILPs ratio boxplot for enhancement techniques

3.3.5.3 Approximate Solutions

We start this section, by showing how the relative optimality gap ratio is changing for

an instance of C320 during the course of the algorithm. In Figure 3.16, the horizontal axis

shows the iterations of Algorithm 3 and the vertical axis shows the relative optimality gap

ratio for an instance of C320. Note that the vertical axis shows ratios, and so, for example,

‘2’ means ‘200%’ (in terms of percentage). We observe that the optimality gap is decreasing

44



reasonably fast during the course of the algorithm. More importantly, the algorithm has

found an optimal solution when the gap is approximately 50%. So, basically around half

of the iterations of the algorithm are just for proving that the obtained solution is actually

optimal.

This particular example indicates that the proposed algorithm probably performs well

if the goal is to just generate an approximate solution rather than an optimal solution. In

the remaining of this section, we present the results of a series of experiments to indicate

that this is actually the case. Note that since our focus is on approximations, we only use

the largest class of instances, i.e., C320, in this section.

0

0.5

1

1.5

2

0 150 300 450 600 750 900 1050

R
el
at
iv
e
O
pt
im

al
ity

G
ap

(R
at
io
)

Iteration

Found Optimal

Figure 3.16 – Relative optimality gap obtained in each iteration

3.3.5.3.1 Increasing the Optimality Gap Tolerance

One way to generate an approximate solution is to increase the optimality gap tol-

erance, i.e., ε2. The default value for ε2 is 10−5 (which is equivalent to 0.001%). We now

test the performance of the algorithm when ε2 ∈ {10−3, 10−2, 10−1, 5−1}. Note that 5−1 is

equivalent to 20%. Figure 3.17 shows time ratios (see the definition in subsection 3.3.4) for

different values of ε2.

Observe that there is not much difference between the boxes corresponding to ε2 =

10−5 and ε2 = 10−3. In fact, we see that for very few cases, the solution time of ε2 = 10−5

45



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10−5 10−3 10−2 10−1 5−1

T
im

e
R
at
io

Optimality Tolerance (ε2)

Figure 3.17 – Time ratio for different optimality tolerances

is actually smaller than ε2 = 10−3, and that is natural since the solution time can fluctuate

(when we are running an experiment on a server). Overall, we observe that the solution time

improves by around 2% on average by setting ε2 = 10−2. The improvement percentage in

the solution time is around 15% and 30% on average for ε2 = 10−1 and ε2 = 5−1.

Let (x̃I , x̃C) be an approximate solution and (x∗I ,x
∗
C) be an optimal solution. Note

that we treat the solution generated when ε2 = 10−5 as an optimal solution. We define

‘real optimality ratio’ as f(x∗I ,x
∗
C)

f(x̃I ,x̃C)
. The real optimality ratio of the generated approximate

solutions for different values of ε2 can be found in Figure 3.18. Observe that the quality of

the approximate solution is very close to an optimal solution for all cases. In particular, we

observe that even when ε2 = 5−1, the generated optimal solution is always almost optimal

since the real optimality ratio is over 0.995. In fact, there are only very few instances that

the approximate solution is up to 3% worse than an optimal solution. Overall, we observe

from Figures 3.17 and 3.18 that we can reduce the solution time by 30% and still obtaining

an almost optimal solution in practice when ε2 = 5−1.

3.3.5.3.2 Imposing a Time Limit

Another way of obtaining an approximate solution is to impose a time limit for the

proposed algorithm. Let t∗ be the time required to compute an optimal solution (i.e., when

46



0.97

0.975

0.98

0.985

0.99

0.995

1

10−5 10−3 10−2 10−1 5−1

R
ea
lO

pt
im

al
ity

R
at
io

Optimality Tolerance (ε2)

Figure 3.18 – Real optimality ratio for different optimality tolerances

ε2 = 10−5) for a particular instance. In this section, we study the consequence of imposing

a time limit of αt∗ where α ∈ {0.05, 0.1, 0.2, 0.4, 0.8} for each instance.

The relative optimality gap ratio that the algorithm is able to reach for different time

limits can be found in Figure 3.19. Observe that by just spending around 40% of the total

time limit, the relative optimality gap reaches to around 50% on average. Observe too that

by spending around 80% of the total time limit, the relative optimality gap reaches to around

10% on average.

0

0.5

1

1.5

2

5% 10% 20% 40% 80%

R
el
at
iv
e
O
pt
im

al
ity

G
ap

(R
at
io
)

Time Limit

Figure 3.19 – Relative Optimality Gap (Ratio) for different time limits

The real optimality ratio for different time limits can be found in Figure 3.20. Observe

that even with the time limit of 5% of the total time, the quality of generated approximate

47



solutions is only around 20% worse than the quality of optimal solutions on average. Observe

too that the quality of approximate solutions quickly improves as the time limit increase.

In fact, with the time limit of 20% of the total time, the quality of generated approximate

solutions is almost equal to the quality of optimal solutions on average. Overall, we observe

from Figures 3.19 and 3.20 that by imposing a time limit of 20% of the total time (required

to compute an optimal solution), the proposed algorithm reaches to the relative optimality

gap of 100%. However, the generated approximate solutions are almost optimal in practice.

−1

−0.5

0

0.5

1

5% 10% 20% 40% 80%

R
ea
lO

pt
im

al
ity

R
at
io

Time Limit

Figure 3.20 – Real optimality ratio for different time limits

3.4 OOESAlgorithm.jl: A Julia Package for Optimizing Over the Efficient Set of

BOMILP

In this section, we present an extension of our previous work by creating a user-

friendly open-source julia package which has the following additional desirable characteristics

(compared to its original C++ implementation):

• The package is compatible with the popular JuMP modeling language presented in

Dunning et al. [39] and supports input in LP and MPS file formats.

• The package supports execution on multiple processors and allows users to choose

different parallelization techniques by just tuning a parameter. It is worth mention-

48



ing that several studies have been conducted about parallelization for evolutionary

algorithms in multi-objective optimization (see for instance Pal and Charkhgard [40],

and Yu et al. [41]). However, unfortunately, this topic has been almost untouched in

the literature of exact algorithms. The recent study conducted by Özlen et al. [42] is

one of the few papers (if not the only one) in this scope.

• The package allows to choose between different single-objective optimization solvers

by just tuning a parameter. The default solvers include GLPK, CPLEX, Gurobi,

Xpress, and SCIP, but it works for all other solvers supported by MathProgBase.jl

as well.

• The package can be modified by users to return the entire nondominated frontier of

a BOMILP.

To the best of our knowledge, there are currently only two documented and supported

implementations of multi-objective optimization algorithms in julia (see Gandibleux et al.

[43] and Pal and Charkhgard [44]). So, our package contributes to increasing the visibility

of multi-objective optimization solvers in julia. In the remaining of this section, our package

is referred to as OOESAlgorithm.jl and its underlying algorithm as OOES_Algorithm.

3.4.1 Main Characteristics of the Package

In this section, we detail the main additional characteristics of OOESAlgorithm.jl

compared to our previous C++ implementation of OOES_Algorithm (A comprehensive doc-

umentation of the package can be found at Appendix B1).

3.4.1.1 Parallelization Techniques

OOESAlgorithm.jl benefits from the recent advances in modern computers, in terms

of the number of processors, by exploiting parallelization. The package explores four different

49



parallelization techniques, one of them is based on the priority queue, and the other three

are based on decomposing the criterion space.

The simplest and most natural parallelization technique explores elements of the

priority queue in parallel using different threads. Suppose that t is the number of available

threads for parallelization and q is the number of elements in the priority queue. The first

element of the priority queue is assigned to the first available thread to be explored, the

second element to the second thread, and this procedure continues until t elements are

assigned. We will later show in our numerical experiments that this technique maximizes

the utilization of the available threads, i.e., improves the performance of the algorithm

significantly.

The criterion space parallelization techniques are based on splitting the unexplored

nondominated frontier between the endpoints by adding cuts. We consider three types of

cuts to split the criterion space based on their directions including horizontal, vertical, and

diagonal. An illustration of these cuts can be found in Figure 3.21 when t = 3 (note that

the number of cuts is t− 1).

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

(a) Horizontal split

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

(b) Vertical split

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

(c) Diagonal split (origin:
(zB1 , zT2 ))

Figure 3.21 – Splitting directions on the criterion space using three threads

For horizontal splitting, the height of the nondominated frontier is divided by the

number of threads that are available for parallelization, i.e., the distance between consecutive

cuts is zT2 −zB2
t

. The following optimization problems are solved to find a nondominated point

50



for each cut v ∈ {1, 2, ..., t− 1}:

(x̃vI , x̃
v
C) ∈ arg min

(xI ,xC)∈X
{z1(xI ,xC) : z2(xI ,xC) ≤ zB2 +

v(zT2 − zB2 )

t
},

followed by,

(xvI ,x
v
C) ∈ arg min

(xI ,xC)∈X
{z1(xI ,xC) + z2(xI ,xC) : z(xI ,xC) ≤ z(x̃vI , x̃

v
C)}.

Observe that, z̃v := z(x̃vI , x̃
v
C) may not be a nondominated point, therefore, the

second operation is performed to find a nondominated point zv := z(xvI ,x
v
C). Finally, the

unexplored nondominated frontier is split into rectangles defined by every pair of consecutive

nondominated points. An illustration of this technique using three threads can be found in

Figure 3.22.

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

(a) The endpoints

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

(b) Horizontal cuts

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

z1

z2

(c) The generated rectangles

Figure 3.22 – Horizontal splitting of the criterion space using three threads

The vertical splitting technique divides the width of the nondominated frontier by

the number of available threads, i.e., the distance between consecutive cuts is zB1 −zT1
t

. The

following optimization problems are solved to find a nondominated point for each cut v ∈

{1, 2, ..., t− 1}:

(x̃vI , x̃
v
C) ∈ arg min

(xI ,xC)∈X
{z2(xI ,xC) : z1(xI ,xC) ≤ zT1 +

v(zB1 − zT1 )

t
},

51



followed by,

(xvI ,x
v
C) ∈ arg min

(xI ,xC)∈X
{z1(xI ,xC) + z2(xI ,xC) : z(xI ,xC) ≤ z(x̃vI , x̃

v
C)}.

Finally, in the diagonal splitting, the algorithm attempts to divide the criterion space

by adding cuts in which their angles are from the set α ∈ { π
2t
, ..., (t−1)π

2t
} and originated from

the point (zB1 , zT2 ). The following optimization problems are solved to find a nondominated

point for each cut v ∈ {1, 2, ..., t− 1}:

(x̃vI , x̃
v
C) ∈ arg min

(xI ,xC)∈X
{z2(xI ,xC) : z2(xI ,xC)− zT2 ≥ tan(

vπ

2t
)(z1(xI ,xC)− zB1 )},

followed by,

(xvI ,x
v
C) ∈ arg min

(xI ,xC)∈X
{z1(xI ,xC) + z2(xI ,xC) : z(xI ,xC) ≤ z(x̃vI , x̃

v
C)}.

The first optimization problem finds a feasible solution that minimize the second

objective function above the line z2(xI ,xC) − zT2 = tan(vπ
2t

)(z1(xI ,xC) − zB1 ). An example

of this technique using three threads can be observed in Figure 3.23.

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

(a) The endpoints

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

(b) Diagonal cuts

Se
co

nd
ob

je
ct

iv
e

va
lu

e

First objective value

zT

zB

z1

z2

(c) The generated rectangles

Figure 3.23 – Diagonal splitting of the criterion space using three threads

It is worth mentioning that splitting the criterion space results in at most t inde-

pendent unexplored rectangles. However, it is possible that different cuts return the same

52



nondominated point, i.e., there may exist v, w ∈ {1, 2, ..., t − 1} with v 6= w such that

zv = zw. If that is the case then OOESAlgorithm.jl is only able to employ less than t

processors. Overall, employing any of the criterion space parallelization techniques will lead

to the exploration of at most t independent rectangles. Thus, OOESAlgorithm.jl will re-

turn at most t independent solutions for Problem (3.2). So, at the time of termination,

OOESAlgorithm.jl chooses the one that has minimum value for f(x).

3.4.1.2 Single-Objective Solvers Supported

Our package benefits from the flexibility of working with julia and the well-known

optimization library MathProgBase.jl that allows users to choose between different single-

objective optimization solvers. The default solvers are GLPK, CPLEX, Gurobi, Xpress, and

SCIP, but any solver supported by MathProgBase.jl can be employed. Note that, GLPK

and SCIP are non-commercial solvers, which means that our package is not limited by license

availability.

3.4.2 A Computational Study for the Package

We conduct a comprehensive computational study to evaluate the performance of

OOESAlgorithm.jl. In the remaining, OOESAlgorithm.jl is referred to by the name of

the single-objective solver (GLPK 4.61, CPLEX 12.7, Gurobi 8.1, SCIP 6.0.0, and Xpress

8.5) employed in an experiment (by the package). This implies that GLPK, CPLEX, GUROBI,

SCIP, and XPRESS refer to OOESAlgorithm.jl when GLPK 4.61, CPLEX 12.7, Gurobi 8.1,

SCIP 6.0.0, and Xpress 8.5 are employed as the single-objective solver, respectively. All

computational experiments are carried out on a Dell PowerEdge R630 with two Intel Xeon

E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB RAM, and the RedHat Enterprise

Linux 6.8 operating system. The user manual of our open-source julia package can be

found at http://eng.usf.edu/~amsierra/documents/Documentation_OOESAlg.pdf. We

note that our package is available in METADATA.jl, so users can easily install and use it

53

http://eng.usf.edu/~amsierra/documents/Documentation_OOESAlg.pdf


after reading the user manual. To test the performance of the package, we use the 250

(random) instances employed in subsection 3.3.5.

3.4.2.1 OOESAlgorithm.jl Versus C++ Implementation

The goal of this subsection is to only provide some numerical evidences that a julia

implementation can be as good as a C++ implementation in terms of the solution time. So,

in this subsection, we show the overall performance of OOESAlgorithm.jl compared to our

previous C++ implementation of OOES_Algorithm (see subsection 3.3.5). Since the C++

implementation works with CPLEX, we use CPLEX (which is basically OOESAlgorithm.jl

when CPLEX is employed) for comparison in this section. In Table 3.3, we present a com-

parison between CPLEX and the C++ implementation where ‘Time (sec.)’ is the solution

time in seconds and ‘#MILP’ is the number of (single-objective) mixed integer linear pro-

grams solved. The last two columns of the table show the percentage of decrease in the

solution time and the number of (single-objective) MILPs solved by CPLEX compared to the

C++ implementation. Numbers are averages over 10 instances and bold numbers show the

instances for which CPLEX has a better performance.

Note that CPLEX solves slightly less single-objective mixed integer linear programs.

This is due to some very minor enhancements in the implementation of CPLEX (that remove

some redundant calculations). Overall, we observe that CPLEX outperforms C++ implemen-

tation for classes C20 and C40 and C80. However, the solution time of these three classes are

small to make any meaningful conclusion. We observe that C++ is slightly faster (no more

than 3%) than CPLEX for larger classes, i.e., C160 and C320, while solving almost the same

number of single-objective optimization problems. One possible explanation for this observa-

tion could be the fact that the C++ implementation uses the ILOG Concert Technology but

CPLEX uses MathProgBase.jl. To solve an instance of optimization over frontier, multiple

single-objective optimization problems should be generated and solved (by our algorithm).

54



Table 3.3 – Performance of the new algorithm in comparison to C++ implementation
Class CPLEX C++ % Decrease

Time (sec.) #MILPs Time (sec.) #MILPs Time (sec.) #MILPs

C20

0.17 85.40 0.21 85.50 26.12% 0.12%
0.55 187.50 0.59 188.30 5.89% 0.43%
0.60 167.00 0.66 171.60 10.16% 2.75%
0.76 223.00 0.84 224.10 10.54% 0.49%
0.17 87.80 0.20 87.80 21.94% 0.00%

Avg. C20 0.45 150.14 0.50 151.46 11.30% 0.88%

C40

6.06 724.70 6.64 726.00 9.54% 0.18%
1.46 280.20 1.61 280.00 10.42% -0.07%
2.05 311.70 2.33 312.60 13.69% 0.29%
2.41 394.60 2.68 395.20 11.18% 0.15%
2.64 382.90 2.92 383.50 10.63% 0.16%

Avg. C40 2.92 418.82 3.24 419.46 10.68% 0.15%

C80

46.52 1,757.60 47.01 1,757.30 1.06% -0.02%
22.34 1,017.40 23.51 1,017.40 5.22% 0.00%
36.82 1,538.60 38.19 1,537.40 3.72% -0.08%
46.95 1,862.40 49.92 1,863.80 6.33% 0.08%
30.88 1,471.80 33.39 1,472.00 8.11% 0.01%

Avg. C80 36.70 1,529.56 38.40 1,529.58 4.63% 0.00%

C160

281.70 2,457.30 282.50 2,459.00 0.28% 0.07%
293.41 2,145.90 290.57 2,145.50 -0.97% -0.02%
265.44 2,213.30 266.93 2,213.00 0.56% -0.01%
632.37 4,290.00 612.31 4,291.20 -3.17% 0.03%
298.77 2,500.30 299.54 2,498.10 0.26% -0.09%

Avg. C160 354.34 2,721.36 350.37 2,721.36 -1.12% 0.00%

C320

4,083.94 4,022.30 4,009.40 4,016.70 -1.83% -0.14%
6,587.88 6,363.90 6,425.72 6,363.90 -2.46% 0.00%
4,440.33 4,329.60 4,308.11 4,332.00 -2.98% 0.06%
5,394.15 4,956.80 5,238.20 4,956.90 -2.89% 0.00%
3,770.92 4,096.30 3,748.88 4,110.50 -0.58% 0.35%

Avg. C320 4,855.44 4,753.78 4,746.06 4,756.00 -2.25% 0.05%

So, ILOG Concert Technology can be possibly faster in doing so because it has been in the

market for a longer period of time and has been improved over time.

3.4.2.2 Comparison Between Different Solvers

In this subsection, we compare the performance of OOESAlgorithm.jl under different

single-objective optimization solvers. Figure 3.24 shows the solution time ratios of different

solvers on different classes of instances. The solution time ratio is the ratio of the solution

time to the maximum solution time among all settings in a given figure.

In Figure 3.24a, the time ratios for instances in classes C20, C40 and C80 are reported.

Observe that GLPK outperforms other solvers even commercial solvers such as CPLEX, GUROBI,

and XPRESS. However, as mentioned before, those are small instances in which each single-

55



objective optimization problem takes less than 0.01 to be solved on average. Figures 3.24b

and 3.24c show the time ratios for instances in classes C160 and C320, respectively. Note that

GLPK is not included in these figures since the solver went out of memory when solving such

large instances. Observe that SCIP performs better than XPRESS. However, overall, GUROBI

seems to be the best solver for solving large instances. From Figure 3.24c, we observe that

GUROBI is around 60% faster than CPLEX for instances of C320. In other words, each single-

objective optimization problem is solved around 60% faster on average by Gurobi optimizer.

One reason for this observation could be the fact that we have used CPLEX 12.7 which is

two years older than Gurobi 8.1.

0

0.2

0.4

0.6

0.8

1

CPLEX GLPK GUROBI SCIP XPRESS

T
im

e
R
at
io

Solvers

(a) Instances C20, C40 and C80

0

0.2

0.4

0.6

0.8

1

CPLEX GUROBI SCIP XPRESS

T
im

e
R
at
io

Solvers

(b) Instances C160

0

0.2

0.4

0.6

0.8

1

CPLEX GUROBI SCIP XPRESS

T
im

e
R
at
io

Solvers

(c) Instances C320

Figure 3.24 – The performance of using different solvers

3.4.2.3 Parallelization

In this subsection, we compare the performance of GUROBI when multiple threads are

available under different parallelization techniques, i.e., PriorityQueue, Horizontal, Vertical,

and Diagonal. To show the value of parallelization, in this section, only the largest instances,

56



i.e., those in C320, are used. Also, only GUROBI is employed in this section because it was

shown to perform the best for instances of C320 in the previous section. All our experiments

are based on strong scaling, i.e., we compare the results of different number of threads by

using fixed size instances.

Figure 3.25 shows a comparison between solution time ratios when t ∈ {1, 2, 3, 4, 5, 6}

threads are employed. Specifically, in Figure 3.25a, the box plots of averages of the solution

time ratios over all parallelization techniques are reported. Observe that the median of the

average time ratios decreases by employing more number of threads in all our experiments.

By comparing the medians of the box plot corresponding to 1 and 6 threads, it is evident

that the improvement percentage is around 40%. This implies that the median of speedups

is almost 1
1−0.4

≈ 1.67 when using 6 threads, i.e., half of the instances are solved at least 1.67

times faster when employing 6 threads.

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

T
im

e
R
at
io

Number of available threads

(a) Average of all parallelization
techniques

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

T
im

e
R
at
io

Number of available threads

(b) For only PriorityQueue

Figure 3.25 – Performance of GUROBI when using multiple threads

In subsection 3.4.1, we mentioned that PriorityQueue maximizes the utilization of

the available threads. This can be observed from Figure 3.25b in which it illustrates the

box plot of the solution time ratios for different threads when only PriorityQueue is used.

Observe that the time ratio decreases significantly when more threads are employed. In fact,

by comparing the medians of the box plot corresponding to 1 and 6 threads, it is evident that

the improvement percentage is around 60%. To highlight the effect of PriorityQueue even

further, in Figure 3.26, we compare the solution time ratios under different parallelization

57



techniques when t ∈ {2, 3, 4, 5, 6} threads are available. Observe that PriorityQueue per-

forms the best and the percentage decrease of the median is between 20% and 50%. This is

mainly because in other parallelization techniques, the solution time depends directly on the

most difficult rectangle generated after splitting the nondominated frontier. So, the usage

of threads can be more unbalanced compared to PriorityQueue.

0.2

0.4

0.6

0.8

1

Priority
Queue

Horizontal Vertical Diagonal

T
im

e
R
at
io

Type of parallelization

(a) 2 threads available

0.2

0.4

0.6

0.8

1

Priority
Queue

Horizontal Vertical Diagonal

T
im

e
R
at
io

Type of parallelization

(b) 3 threads available

0.2

0.4

0.6

0.8

1

Priority
Queue

Horizontal Vertical Diagonal

T
im

e
R
at
io

Type of parallelization

(c) 4 threads available

0.2

0.4

0.6

0.8

1

Priority
Queue

Horizontal Vertical Diagonal

T
im

e
R
at
io

Type of parallelization

(d) 5 threads available

0.2

0.4

0.6

0.8

1

Priority
Queue

Horizontal Vertical Diagonal

T
im

e
R
at
io

Type of parallelization

(e) 6 threads available

Figure 3.26 – Performance of GUROBI when using multiple threads under different
parallelization techniques

58



To show that our numerical results are not limited to just GUROBI, we conducted a set

of experiments with SCIP. Figure 3.27 shows the time ratios (for all instances) for SCIP when

multiple threads are available and PriorityQueue is employed. Observe that the time ratio

decreases significantly when more threads are available. In fact, by comparing the medians of

the box plot corresponding to 1 and 6 threads, it is evident that the improvement percentage

is around 57%.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

T
im

e
R
at
io

Number of available threads

Figure 3.27 – The Performance of SCIP when employing PriorityQueue

3.5 Conclusion

We presented the first criterion space search algorithm for optimizing a linear function

over the set of efficient solutions of BOMILPs. The algorithm is based on TSM and it is easy

to implement. We showed that the algorithm is fast and may explore only a small fraction

of the nondominated frontier of a BOMILP to compute an optimal solution in practice. We

numerically showed that the algorithm converges quickly to an optimal solution and so it is

naturally good for computing high-quality approximate solutions.

We also developed OOESAlgorithm.jl, a comprehensive open-source user-friendly ju-

lia package for optimizing a linear function over the set of efficient solutions for BOMILPs.

OOESAlgorithm.jl supports execution on multiple processors and exploits different paral-

lelization techniques. It was numerically shown that parallelization helps to improve the

solution time significantly. Another desirable characteristic of the package is that it allows

users to employ different commercial and non-commercial solvers for solving single-objective

59



optimization problems arising during the course of the algorithm. The computational study

showed that even non-commercial solvers can perform quite well. Finally, it was numerically

shown that a julia package can be competitive with a C++ package.

60



Chapter 4: Nash Bargaining Solution: Application of a Special Case of

Optimization Over the Efficient Set for Spatial Conservation Planning

Problems

In this chapter, we present the third main contribution of this thesis, an application

of a special case of optimization over the efficient set, the so-called Nash bargaining solu-

tion, for spatial conservation planning problems. We first focus on the ecological motivation

behind the spatial conservation planning problem, and the role of operations research in the

development of solution approaches. Afterward, we present a bi-objective binary quadratic

formulation for the problem that captures the return of investment and the risk in conserva-

tion terms. Finally, we introduce a Nash bargaining solution approach for the problem and

evaluate its performance.

4.1 Spatial Conservation Planning and the Role of Operations Research

The design of effective protected areas from an ecological and economical point of

view is important due to observed declines in biodiversity worldwide (Wand and Önal [45]).

Impacts to biodiversity are occurring as a result of habitat loss, fragmentation, species

invasions and other threats. These losses are likely to be exacerbated by climate change and

the failure of long-term conservation planning to consider the effects of risk and uncertainty

(Pressey et al. [46], Reside et al. [47], Eaton et al. [3]). Despite an increase in attention

to conservation issues both domestically and internationally, further scientific developments

are necessary to support decision making related to the conservation of species and their

habitats (Kingsland [48], Boyd et al. [49]). The development of strategies used in the design

of nature reserves is often referred to as Spatial Conservation Planning (SCP; Pressey et al.

61



[46]). SCP can be defined as the process by which conservation programs identify where

and how to implement conservation actions (e.g., which unprotected land parcels should be

added to a protected reserve based on specific quantifiable criterion to evaluate the value

(return) of the parcel as a function of the management objectives) (Schwartz et al. [50],

Beyer et al. [51]).

Some of the challenges associated with SCP include: the difficulty of incorporating

both our scientific understanding of natural systems and also the values of stakeholders in the

decision making process in a way that can be communicated to the non-expert community.

To alleviate this problem, SCP has been explored jointly by interdisciplinary teams that

involved biologists, economists, and operations researchers, to achieve practical outcomes

for the nature reserve design problem (Kingsland [48]). Mathematical models that have

been applied to address the SCP problems include network theory (Zamborain-Mason et

al. [52]), simulation (Ramage et al. [53]), Markov decision processes (Costello and Polasky

[54], Schapaugh and Tyre [55]), and spatial optimization algorithms such as integer (linear)

programming and simulated annealing (Önal and Wang [56], Ball et al. [57]). Spatial

optimization for SCP uses a mathematical representation of a set of parcels in which the

creation of a reserve is desired, and maximizes (or minimizes) one or more objectives, each

represented by an equation. When multiple conflicting objectives are available, computing

the trade-offs between them (also known as the Pareto-optimal frontier) can be helpful for

identifying sub-optimal alternatives and focus the trade-off negotiation among the set of

optimal reserve designs.

Solving a multi-objective optimization problem is computationally much more time

consuming than solving single-objective optimization problems. Consequently, most SCP

studies have considered only one objective function with some constraints, often by weighting

multiple objectives in a single function. For example, a typical objective is to minimize the

total reserve cost subject to one or more conservation goals (see for instance [58, 59, 45, 60,

61, 62, 63, 64]). Some other studies used the return of investment or profit as the objective

62



function and employed some budget constraints (see for instance [65, 66, 67]). Finally, some

other authors have used objective functions that consider coverage, connectivity, or distance

between parcels as additional evaluation criteria (see for instance [68, 69, 70]).

SCP problems are often modeled as integer programs because the decision of whether

a parcel must be added to the reserve requires a binary decision variable. Such optimization

problems are often challenging to solve (Beyer et al. [51]) because integer programming

is generally NP-hard, i.e., currently there exists no algorithm that can solve any integer

programming problem in polynomial time (Garey and Johnson [71]). Despite this limita-

tion, researchers prefer to develop linear integer programs for SCP problems because of the

existence of powerful commercial solvers such as IBM ILOG CPLEX, Gurobi, and FICO

Xpress, as well as recent advances in the development of exact and heuristic/metaheuristic

algorithms. For example, the most widely used software for SCP problems is Marxan, based

on a metaheuristic algorithm known as Simulated Annealing (Watts et al. [72]). Marxan

uses a standard objective function that aims to minimize the sum of the site-specific and con-

nectivity costs of the selected parcels while reaching objective specific targets (e.g. habitat

area targets) in the reserve.

One issue that is often ignored when implementing SCP is the existence of uncertainty

in the parameters of the optimization model. A typical approach used to model uncertainty

is by replacing unknown parameters with probabilistic estimates. For example the approach

described by Tulloch et al. [73], is to determine the number of species protected under

different risk tolerance scenarios by defining survival probabilities for the species. Udell et

al. [74] used a similar approach for considering collision risk between watercraft and ma-

rine wildlife, but they defined scenarios with different survival probabilities for the species

using a Bayesian belief network. In a recent study, Haider et al. [75] advised that applying

deterministic or stochastic approaches to model SCP problems may either ignore or inaccu-

rately describe uncertainty when the data is not reliable. The authors therefore proposed a

robust optimization approach for solving SCP problems to address the issue of uncertainty.

63



An alternative approach for considering uncertainty in SCP problems is based on Modern

Portfolio Theory (MPT), used to assess the trade-off between correlated risk (variance) and

expected return. In MPT, the risk function captures the uncertainty inherent in the data.

Functionally, MPT is a bi-objective optimization approach in which the first objective is

to maximize the return and the second one is to minimize risk. However, there are two

challenges when applying MPT:

• Computing the trade-off is computationally expensive for SCP problems involving

many parcels. Eaton et al. [3] found it computationally impractical to compute the

entire Pareto-optimal frontier for SCPs with more than 50 parcels.

• Even after determining the Pareto-optimal frontier, it is not clear how one should

select a desirable solution based on the trade-off.

One of the early applications of MPT for formulating SCP problems was implemented

by Halpern et al. [76]. To address the challenges mentioned above, the authors simply

combined both objectives into a single objective using a weighted sum function, λ1f1 +λ2f2,

where f1 and f2 are the two objective functions, and λ1 and λ2 are some (positive) scalars

(weights). Solving the single-objective weighted sum problem is convenient because it returns

a point on the Pareto-optimal frontier of the two objective functions as long as the weights

are positive (Aneja and Nair [37]). However, aggregating objective functions is known to

have two significant downsides: (1) It is not obvious how λ1 and λ2 should be determined,

and (2) the number of points on the Pareto-optimal frontier that can be obtained by only

using weighted sum and adjusting the weights is often limited, i.e., there are many solutions

located on the Pareto-optimal frontier that cannot be obtained by any combination of values

for λ1 and λ2 (Boland et al. [13]). To illustrate this, observe in Figure 4.1 a Pareto-optimal

frontier of two functions f1 and f2 with three points P1, P2, and P3. Without loss of generality,

we assume that f1 and f2 are two minimization functions. Imaginary lines l1 and l2 make

reference to the (linear) function λ1f1 + λ2f2 for two different combinations of weights λ1

64



and λ2. Note that, for both l1 and l2, the values of λ1 and λ2 are positive. In the case of l1,

λ1 � λ2, and for l2, λ2 � λ1. The arrows perpendicular to the imaginary lines indicate the

direction in which l1 and l2 are minimized. Clearly, when l1 is minimized, P1 is obtained.

Similarly, when l2 is minimized, P3 is obtained. However, it is impossible to obtain P2 from

the weighted sum of any combination of positive values for λ1 and λ2.

f2

f1

l1

l2

P1

P2

P3

Figure 4.1 – An illustration of a Pareto-optimal frontier with two objective functions and
three possible solutions/points.

Recently, Mallory and Ando [77] and Alvarez et al. [78] proposed to only minimize

the risk function and include the return function in the set of constraints by imposing some

acceptable bounds for it. While promising, this approach has similar weaknesses: (1) It is

not obvious how the bounds should be defined, and (2) this approach may return an inferior

(i.e., not Pareto-optimal) solution (Boland et al. [13]). More recently, Eaton et al. [3]

proposed to first compute the entire trade-off (i.e., the exact Pareto-optimal frontier) and

then utilized the concept of cooperative game theory to develop a Nash bargaining solution

(Nash [79]) to select a desirable solution from the Pareto-optimal frontier.

A bargaining problem is a cooperative game in which all players agree to create a

grand coalition, instead of competing, to realize a higher collective payoff (Saghand et al.

[80]). To create this grand coalition, an agreement among all players is necessary. Therefore,

a critical question to be answered is: What should the payoff of each player be in a grand

coalition? One of the solutions to this question was proposed by Nash, now known as the

Nash bargaining solution (Nash [79]). Eaton et al. [3] proposed to create a “game” with two

imaginary players in which one of the players wants to minimize the risk and the other one

65



wants to maximize the return. Then, they proposed to create a coalition between these two

imaginary players by using the concept of Nash bargaining solution.

The approach proposed by Eaton et al. [3] resolves the second challenge mentioned

above regarding MPT. However, the first challenge remains in place. The primary limitation

of their approach is that the Pareto-optimal frontier needs to be computed first before ap-

plying the Nash bargaining solution. Here, we extend the work proposed by Eaton et al. [3]

and show that the Nash bargaining solution can be computed directly without computing

the entire Pareto-optimal frontier first. Specifically, we formulate the problem of selecting a

Nash bargaining solution in MPT as a Binary Quadratically Constrained Quadratic Program

(BQCQP). Through an extensive computational study we show that our approach, able to

be implemented with commercial solvers such as CPLEX, Gurobi, and Xpress, can solve

problems of up to 800 parcels to approximate optimality in a reasonable time (≤ 8 hours)

instead of 50 parcels with the previous approaches. Thus, our extension should considerably

increase the applicability of spatial optimization algorithms that consider multi-objective

problems. Unlike existing studies in the literature of SCP that mainly focus on linear in-

teger programming approaches, we do not attempt to linearize our proposed BQCQP. We

will show that if one wants to linearize the proposed formulation then a significant number

of new constraints and decision variables need to be introduced. However, in that case,

commercial linear integer programming solvers may struggle to solve problems with such

formulation. Because our proposed approach is a mathematical programming formulation,

we can estimate how far the best solution obtained from the solver algorithm is relative to

a possible optimal solution. The ability to report an optimality gap represents a further

another benefit of our method over the one proposed by Eaton et al. [3].

The remainder of the chapter is organized as follows. In Section 4.2, we describe the

mathematical formulation of SCP when employing MPT (henceforth referred to as MPT-

SCP). In Section 4.3 we detail our proposed BQCQP for solving the MPT-SCP problem

using the Nash bargaining solution approach and apply it using a numerical example and

66



a comprehensive computational study. In the last section we provide some conclusions and

perspectives.

4.2 Mathematical Formulation of an MPT-SCP Problem

In this section, we present the bi-objective binary quadratic formulation for an MPT-

SCP problem and the issues related to such formulation.

4.2.1 Return and Risk Functions

The challenge under consideration is a generic SCP problem that we approach using

the principles of MPT (Markowitz [81, 82]), which attempts to maximize the expected return

of investment in conservation design while minimizing the risk. The SCP problem is derived

from the so-called “reserved selection problem” (Beyer et al. [51]). Specially, the problem

assumes that there are two sets of parcels that define the initial state of the system. One

is denoted by S and represents the parcels that are already under protection. The other

set is denoted by B and represents the parcels that are not already under protection. For

any already protected parcel j ∈ S, the decision is whether it should be selected for sell

(or divestment) to be removed from the protected set of parcels. For any already unpro-

tected parcel j ∈ B, the decision is whether the parcel should be selected for purchase (or

investment) to be added to the set of protected parcels.

MPT seeks to identify decisions by maximizing the total return for a given level of

risk or, alternatively, minimize the risk for a desired level of return. However, the return

for each parcel is assumed to be uncertain due to changing conditions, an incomplete un-

derstanding of the dynamics of the system being conserved, or for other reasons. Therefore,

an uncertain return includes some risk that any decision regarding a reserve design will not

achieve its intended outcome. Economic theory suggests that downside risk increases posi-

tively with expected value, thus representing an important trade-off for decision makers to

consider (Eaton et al. [3]). MPT recognizes this trade-off and seeks to maximize overall

67



expected return while minimizing the total risk (meaning the total variance) at the same

time. Moreover, it assumes that there is a correlation between the return obtained from all

protected parcels and the risk incurred in their protection. The total expected return of a

protected area is computed by adding the expected return of each parcel under protection.

We denote the expected return of parcel j by µj. To compute the total risk we account

for the variance of each parcel being considered for protection (denoted by σ2
j ) but we also

consider the correlation between all candidate pairs of parcels (dented by ρji). The total

expected return and risk can be stated by the following functions:

z1(x,y) =
∑
j∈B

xjµj +
∑
j∈S

(1− yj)µj (4.1)

z2(x,y) =
∑
j∈B

xjσ
2
j +

∑
j∈S

(1− yj)σ2
j +

∑
j∈B

∑
i∈B:i>j

2xjxiσjσiρji (4.2)

+
∑
j∈S

∑
i∈S:i>j

2(1− yj)(1− yi)σjσiρji +
∑
j∈B

∑
i∈S

2xj(1− yi)σjσiρji ,

where xj ∈ {0, 1} for each j ∈ B is a binary decision variable that indicates if a parcel j

from the set B is selected for investment (xj = 1) or not (xj = 0). Similarly, yj ∈ {0, 1} for

all j ∈ S is a binary decision variable that indicates if a parcel j from the set S is selected

for divestment (yj = 1) or not (yj = 0). Values z1(x,y) and z2(x,y) represent the total

expected return function and the total risk function, respectively. For z1(x,y), we observe

that for any j ∈ B, µj will be added to the total expected return only if xj = 1. However,

for any j ∈ S, µj will be added to the total expected return only if yj = 0. This is because

yj = 0 implies that parcel j ∈ S will remain protected. For z2(x,y), we observe that the

risk function has five parts. The first two parts capture the variance of unprotected and

protected parcels. The remaining three parts capture the covariance of each pair (i, j) of

parcels where both parcels can be unprotected, protected, or one of them is protected and

the other is unprotected. Additionally, the covariance implies that i 6= j.

68



We provide an example of the MPT-SCP problem in Figure 4.2. Figure 4.2a shows the

initial system state (current reserve design). A total of 6 parcels exists in this example and

only 2 of them are already under protection. The expected return for each parcel is shown

in the top-right corner of each parcel and it is assumed that the variance of the return for

each parcel is a positive value. Therefore, the current total expected return of the predefined

parcels is 4 + (−1) = 3 and the total risk is some positive number. First suppose that one is

interested in optimizing only the return function and ignoring the risk. In this case, some of

the unprotected parcels with positive return must be added for protection and the parcels

with negative return must be divested from protection, as shown in Figure 4.2b. Hence, the

expected maximum total return of the predefined parcels is 1 + 4 + 2 + 5 = 12. Additionally,

from Figure 4.2b, we observe that the parcel with the expected return equal to 0 is not added

to the final solution (portfolio). This is because by assumption each parcel has a positive

risk. So, adding this parcel does not improve the total expected return but just increases the

risk. Now suppose that one is interested in optimizing only the risk function and ignoring

the excepted return completely. In this case, again because we assumed that the risk of each

parcel is positive, the optimal decision is to divest all already protected parcels because the

risk will become zero in that case (and the total return will be zero too). This solution is

shown in Figure 4.2c.

1 0 4

−1 2 5

(a) Initial state of
conservation

1 0 4

−1 2 5

(b) Portfolio after optimizing the
return

1 0 4

−1 2 5

(c) Portfolio after optimizing
the risk

Unprotected parcels

Protected parcels

Parcels added for protection

Parcels divested from protection

Figure 4.2 – An example of MPT-SCP

69



4.2.2 A Bi-Objective Optimization Formulation

Using the proposed total return and risk functions, the bi-objective optimization

formulation corresponding to the MPT-SCP can be stated as follows:

max z1(x,y)

min z2(x,y)

subject to: (x,y) ∈ F ,

(4.3)

where F ⊆ {0, 1}|B|+|S| is the so-called feasible set of the problem, i.e., the set of all pos-

sible/feasible choices for (x,y). To define the feasible set, some constraints need to be

introduced (unless F = {0, 1}|B|+|S|). A finite budget is a common example of a constraint,

and one that we will use for this study. A budget constraint can be defined in several ways.

For example, a monetary budget can be imposed to define a bound on the amount of money

available to buy unprotected parcels. Similarly, one can define the maximum number of

transactions to bound the number of unprotected parcels that can be bought. In both cases,

the funds available and the number of transactions for parcel acquisition can be increased

when a currently protected parcel is sold. A generic mathematical representation of a budget

constraint can be stated as follows:

∑
j∈B

αjxj −
∑
j∈S

βjyj ≤ γ, (4.4)

where γ is a non-negative parameter showing the budget available, αj for j ∈ B is a parameter

that penalizes the budget when an unprotected parcel j is acquired. Finally, βj for j ∈ S is

a parameter that increments the budget when a protected parcel j is sold.

In addition to budget constraints, there are several other types of constraints that

can appear when dealing with SCP problems. In particular, Beyer et al. [51] formulated

constraints to consider the role of adjacent and neighboring parcels, a common concern for

70



the reserve selection problem to address the need for connectivity within a protected area.

A compendium of such constraints is provided in Appendix C1 and interested readers are

encouraged to refer to Beyer et al. [51] for further details.

Finally, it is worth mentioning that since Problem (4.3) has two competing objectives,

there often exists no feasible solution that can optimize both objectives simultaneously.

Hence, as mentioned above, a practical approach is to first compute the so-called Pareto-

optimal frontier, i.e., the set of feasible points in the objectives space that are not dominated

by any other feasible point. Next, decision makers select their desired Pareto-optimal point

and implement its corresponding reserve portfolio. An illustration of the Pareto-optimal

frontier for a MPT-SCP problem is indicated in Figure 4.3. Each point/asterisk in this figure

represents a feasible solution in the objectives space. However, asterisks are dominated by

at least one of the solid points, i.e., the objective values of at least one of the solid points

are better, i.e., the return is higher and risk is lower, than the asterisks. Hence, the solid

points describe the Pareto-optimal frontier.

R
is

k
fu

nc
ti

on
va

lu
e

Return function value

Pareto-optimal points

dominated points

Figure 4.3 – An illustration of the Pareto-optimal frontier of a MPT-SCP problem

4.2.3 Issues Related to the Bi-Objective Optimization Formulation

Although computing the entire Pareto-optimal frontier seems to be a plausible option,

there are many barriers and considerations when doing so for practical size SCPs. The

primary impediment is related to the nonlinearity of the risk function in Problem (4.3). A

common practice for managing nonlinear objectives is linearization (see for instance Eaton

71



et al. [3]). Since all decision variables of Problem (4.3) are binary, standard linearization

techniques can be applied easily. For example, we can replace any instance of xjxi with a

new binary variable denoted by bji and add the following three constraints,

bji ≤ xj

bji ≤ xi

bji ≥ xj + xi − 1.

Observe from these inequalities that because bji is a binary variable, it will take the

value of zero if xj = 0 or xi = 0. Otherwise, bji will take the value of one. A similar

approach can be used to linearize any other nonlinear term in the risk function. However,

the issue is that for any pair of parcels, there is a nonlinear term in the risk function. So, for

each of them, a new binary decision variable and three constraints should be defined. This

immediately implies that the size of Problem (4.3) after linearization will be very large for a

large number of parcels, e.g., 500 parcels. In this case, it can be expected that even finding

a small number of Pareto-optimal points may not be computationally possible.

Here, we propose to estimate and apply the nonlinear risk function directly rather than

linearize the objective functions. Overall, commercial linear integer programming solvers

are significantly more mature and faster than commercial nonlinear integer programming

solvers. However, a desirable feature of the risk function is that it is a quadratic function

and commercial nonlinear integer programming solvers have good techniques to deal with

such functions. From experience with the current technology and algorithms, it appears to

be impractical to compute the Pareto-optimal frontier of Problem (4.3) if |B|+ |S| ≥ 50. As

a result, the size of the problems that have been solved to date is quite small. Of course, for

larger problems one can divide the total number of parcels into some groups, each with a

smaller number of parcels, and compute the Pareto-optimal frontier for each of these groups

72



independently (e.g., Eaton et al. [3]). However, it is clear in that case, the obtained frontiers

will be sub-optimal with respect to the full problem.

Another major issue of computing the entire Pareto-optimal frontier is that it is

likely to generate a very large number of viable alternative portfolio options, which can be

overwhelming for decision makers. In other words, providing many Pareto-optimal points to

decision makers may be of limited assistance to guide real decision making (Jorge [16]). One

alternative approach is to select the desirable Pareto-optimal point directly for them. Hence,

Eaton et al. [3] proposed to automate this procedure and use the Nash bargaining procedure

for selecting desirable solution (Nash [79]). They demonstrated that their approach may

offer a reasonable starting place for negotiations among decision makers by identifying a

portfolio that balances risk and return. However, the main limitation of their approach

is that it relies on computing the entire Pareto-optimal frontier in advance, which is not

possible computationally for large problems. Hence, in this study, we propose a technique

that can find the Nash bargaining solution directly without having first to define the entire

Pareto frontier.

4.3 A Nash Bargaining Solution Approach for the MPT-SCP Problem

We begin by explaining the geometric interpretation of the Nash bargaining solution

for a MPT-SCP problem using an illustrative example (Figure 4.4). In this Figure, the

Pareto-optimal points are shown using solid (small and large) circles. The Nash solution

attempts to find a Pareto-optimal point, denoted by
(
z∗1 , z

∗
2

)
, that the area of the box between

this point and a (user-defined) reference point is maximized. The Nash solution is denoted

by a red circle and the reference point is shown by a triangle in Figure 4.4. The reference

point is sometimes referred to as the disagreement point and shows the status quo (of the

game) in Game Theory. A natural choice for the reference point is the so-called nadir point

(denoted by (zN1 , z
N
2 )) which is basically a point in the criterion space that shows the worst

value of each objective function in the Pareto-optimal frontier. This point can be computed

73



for cases with two objectives (such as MPT-SCP problems) by simply finding the endpoints

of the Pareto-optimal frontier. Let (zB1 , z
B
2 ) and (zT1 , z

T
2 ) be the bottom and top endpoints

of the Pareto-optimal frontier. The nadir point is (zN1 , z
N
2 ) := (zB1 , z

T
2 ).

z1(x,y)

z2(x,y)

zB1 zT1

zB2

zT2

z∗2

z∗1

Top and bottom end points

Disagreement point

Pareto-optimal points

Nash bargaining point

Box defined by the disagreement point
and the Nash bargaining solution

Figure 4.4 – An illustration of the Nash bargaining solution for a MPT-SCP

The Nash bargaining solution is interesting since it intuitively attempts to not only

maximizes the benefits of cooperation but also equally distribute it between players. In

MPT-SCP, one can consider two imaginary players. The first player attempts to maximize

the return and the second player attempts to minimize the risk. Observe that z∗1 − zN1 is

the benefit of cooperation for the first player and zN2 − z∗2 is the benefit of cooperation for

the second player. The Nash bargaining solution attempts to maximize the area of the box,

i.e., (z∗1 − zN1 )(zN2 − z∗2). This implies that it geometrically attempts to form a square in the

criterion space, i.e., (z∗1 − zN1 ) u (zN2 − z∗2).

Overall, the Nash bargaining solution of Problem (4.3) has the following desirable

characteristics. First, it is a Pareto-optimal point, and second, it exists if Problem (4.3)

is feasible. In light of this observation, our proposed approach for computing the Nash

74



bargaining solution has three steps. The first two steps are for calculating the reference point

(or the nadir point). Specifically, in the first one, the top endpoint should be computed. This

can be done by first solving the following optimization problem,

zT1 = max
(x,y)∈F

z1(x,y), (4.5)

and then solving the following optimization problem,

zT2 = min
(x,y)∈F

{z2(x,y) : z1(x,y) = zT1 }. (4.6)

In the second step, the bottom endpoint should be computed. This can be done by

first solving the following optimization problem,

zB2 = min
(x,y)∈F

z2(x,y), (4.7)

and then solving the following optimization problem,

zB1 = max
(x,y)∈F

{z1(x,y) : z2(x,y) = zB2 }. (4.8)

After computing the endpoints, the nadir point is obtained, i.e., (zN1 , z
N
2 ) := (zB1 , z

T
2 ).

So, in the third step, we can compute the Nash bargaining solution by solving the following

optimization problem,

max
(x,y)∈F

(
z1(x,y)− zN1

)(
zN2 − z2(x,y)

)
subject to z1(x,y) ≥ zN1

z2(x,y) ≤ zN2 .

(4.9)

The constraints of Problem (4.9) ensure that the Nash bargaining solution will be

on the Pareto-optimal frontier, i.e., it will dominate the reference point. In summary, in

75



our proposed approach, five optimization problem should be solved i.e., (4.5)-(4.9). All

these optimization problems can be solved using commercial solvers but there are some

implementation issues that should be considered.

4.3.1 Implementation Issues

Problem (4.5) is a binary linear program and commercial solvers can solve it. However,

Problem (4.6) is a binary quadratic program since its objective function is a risk function. In

order to use commercial solvers to solve Problem (4.6), one can use the following equivalent

formulation,

zT2 = min
r≥0, (x,y)∈F

{r : r ≥ z2(x,y), z1(x,y) = zT1 }, (4.10)

where r is a dummy non-negative variable for capturing the value of the risk in an optimal

solution. It is also worth mentioning that an optimal solution of (4.5) is feasible for Problem

(4.6). So, we can provide it to the commercial solvers as a warm start solution, i.e., initial

solution, to possibly reduce their computational time.

For the bottom endpoints, we propose to skip solving both Problems (4.7) and (4.8)

completely. This is because the bottom endpoint attempts to compute the point with the

minimum total risk. The minimum possible value for the risk is zero that can be obtained

by divesting all parcels that are already under protection. In this case, the total return will

be also zero. Hence, we can set (zB1 , z
B
2 ) = (0, 0).

Finally, we observe that the objective function of Problem (4.9) is a multiplication

between a linear function and a quadratic function. To solve this problem using commercial

solvers, we apply a transformation on Problem (4.9) to transform it into a Binary Quadrat-

ically Constrained Quadratic Program (BQCQP). In order to do so, we first observe that

76



Problem (4.9) is equivalent to the following problem,

max
ω≥0, (x,y)∈F

ω

subject to ω ≤
√(

z1(x,y)− zN1
)(
zN2 − z2(x,y)

)
z1(x,y) ≥ zN1

z2(x,y) ≤ zN2 .

where ω is a dummy non-negative variable capturing the value of the square root of the ob-

jective function of Problem (4.9) in an optimal solution. This formulation itself is equivalent

to the following formulation,

max
ω≥0, r≥0, (x,y)∈F

ω

subject to ω ≤
√(

z1(x,y)− zN1
)(
zN2 − r)

)
r ≥ z2(x,y)

z1(x,y) ≥ zN1

z2(x,y) ≤ zN2 .

The latter transformation is similar to the one we used in Problem (4.10). In other

words, r is a dummy non-negative variable for capturing the value of the risk in an opti-

77



mal solution. Finally, we observe that this formulation is also equivalent to the following

formulation,

max
ω≥0, Ω1≥0, Ω2≥0, r≥0, (x,y)∈F

ω

subject to ω2 ≤ Ω1Ω2

r ≥ z2(x,y)

Ω1 = z1(x,y)− zN1

Ω2 = zN2 − r

z1(x,y) ≥ zN1

z2(x,y) ≤ zN2 ,

(4.11)

where Ω1 and Ω2 are dummy non-negative variables to capture the value of z1(x,y)−zN1 and

zN2 − r, respectively. Overall, all constraints in Problem (4.11) are either linear or quadratic.

Therefore, this formulation is a BQCQP and can be solved using commercial solvers.

4.3.2 Performance of the Approach: A Numerical Example

We now present a numerical example for showing how the Nash bargaining solution

approach works over a predefined set of parcels of land. In this example, there exists a total

of 50 parcels in which only 15 of them are already under protection, i.e., |S| = 15, and

the remaining ones can be considered for investment, i.e., |B| = 35. Each parcel has an

associated return, variance, and size/area. Additionally, we consider a random correlation

between −1 and 1 for each pair of parcels. Interested readers may refer to Appendix C2 to

see the details of the data simulated for this numerical example.

The initial protection state of this example is shown in Figure 4.5 in which the total

return is 16.81 and the total risk is 0.04. We consider two scenarios to illustrate the perfor-

mance of our proposed approach. The first scenario imposes no constraint on the feasible set,

i.e., F = {0, 1}50. However, the second scenario limits the feasible set by imposing a budget

78



constraint of the form (4.4). We will use the size of parcels for defining the budget constraint

in the second scenario. Specifically, in Inequality (4.4), αj or βj represents the ratio of the

size of parcel j to the total size of unprotected land at the initial state. For example, because

the total size of unprotected land at the initial state is 2547.79 and the size of parcel 1 is

453.63 (based on Appendix C2), we have that α1 = 0.178. Similarly, because the size of

parcel 10 is 58.99, we have that β10 = 0.023. Note that parcel 1 is an element of B whereas

parcel 10 is an element of S. Finally, for defining the constraint, we also set the available

budget to 0.1, i.e., γ = 0.1 in this example.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Return: 16.81

Risk: 0.04

Unprotected parcels Protected parcels

Figure 4.5 – Initial state of conservation for the example

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Return: 26.44

Risk: 0.002

Ratio: 0.839

Unprotected parcels

Protected parcels

Parcels added for protection

Parcels divested from protection

Figure 4.6 – Nash bargaining solution for the example under the first scenario

We first implement the proposed Nash bargaining solution approach for the first

scenario. Figure 4.6 shows the obtained solution in which the total return is improved to 26.44

while the risk is reduced to 0.002. In this figure, ‘Ratio’ shows the ratio of the total size of land

79



added to the reserve to 2547.69 (which is the total size of the unprotected land at the initial

state). Intuitively, one can think of this ratio as the value of the mathematical expression on

the left-hand-side of Inequality (4.4). The ‘Ratio’ is 0.839 for the Nash bargaining solution

of the first scenario. This implies that although parcel 10 is divested in the solution, the

total size of land added to the reserve is 83.9% of the total size of the unprotected land at

the initial state. To better understand the significant amount of improvement obtained by

the Nash bargaining solution, the initial state and the Nash bargaining solution are shown

in the criterion space in Figure 4.7. We observe that the obtained Nash bargaining solution

significantly outperforms/dominates the initial state.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

R
is
k
fu
nc
ti
on

Return function
Top and bottom end points

Disagreement point

Initial state of conservation

Nash bargaining solution

Box defined by the disagreement point
and the Nash bargaining point

Figure 4.7 – The Nash bargaining solution and the initial state of the example for the first
scenario

We now implement the proposed Nash bargaining solution approach for the second

scenario. Figure 4.8 shows the obtained solution in which the total return is improved to

26.55 while the risk is reduced to 0.003 (compared to the initial state). The ‘Ratio’ is 0.0996

for the Nash bargaining solution of the second scenario and this makes sense because γ = 0.1

in the second scenario. This implies that although parcel 10 is divested in the solution, the

total size of land added to the reserve is 9.96% of the total size of the unprotected land at

the initial state.

80



1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Return: 26.55

Risk: 0.003

Ratio: 0.0996

Unprotected parcels

Protected parcels

Parcels added for protection

Parcels divested from protection

Figure 4.8 – Nash bargaining solution of the example for the second scenario

4.3.3 A Computational Study

In this section, we conduct a comprehensive computational study to show the perfor-

mance of our proposed Nash bargaining solution approach for MPT-SCP problems. We use

the C++ programming language to implement the proposed approach, and employ three

different solvers including CPLEX 12.7, Gurobi 8.1 and FICO Xpress 8.5 to solve the op-

timization problems in our proposed approach. All computational experiments are carried

out on a Dell PowerEdge R630 with two Intel Xeon E5-2650 2.2 GHz 12-Core Processors

(30MB), 128GB RAM, and the RedHat Enterprise Linux 7.0 operating system. We allow

optimization solvers to use up to 10 threads when solving each optimization problem. Also,

we impose a time limit of 8 hours for each experiment.

To evaluate the performance of the proposed approach, we randomly generate five

classes of instances that are different only in terms of the number of parcels that they have.

Specifically, our instances have 50 or 100 or 200 or 400 or 800 parcels. For each class, we

randomly generate 5 instances. So, in total, we have 25 instances. We run each instance

under 5 different scenarios. The scenarios are generated using the procedure explained in

subsection 4.3.2. Specifically, the first scenarios is unconstrained and scenarios 2-5 include

a budget constraint based on the size of parcels. The difference between scenarios 2 to 5 is

only on the value of γ (see Equation (4.4)). Specifically, γ is set to 0.1, 0.2, 0.35, and 0.5 for

scenarios 2-5, respectively.

81



Our instances are randomly generated based on the volcano data set, which is an

elevation model in R programming language that consists of the topographic information for

the volcano Maunga Whau (Mt Eden) in New Zealand (available at shorturl.at/gDMPZ).

The idea is to simulate spatially heterogeneous species distributions that mimic populations

mapping onto natural variation in nature (e.g. elevation), rather than assuming complete

spatial randomness in their distribution. In order to explore the overall performance of our

approach, we report the following pieces of information,

• Obj. Value (ratio): The ratio of the objective value of the solution obtained by each

commercial optimization solver for Problem (4.11) to the objective value of the best

solution obtained among the solvers, i.e., CPLEX, Gurobi, and Xpress. Hence, larger

values are better and ideally should be equal to one.

• Optimality Gap: Since we impose a time limit for our experiments, it is possible that

optimization solvers do not find an optimal solution within the time limit. However,

they can provide a certificate in percentage about how far they obtained solution is

possibly from an optimal solution (in terms of the objective value). This certificate

is called the optimality gap and ideally it should be zero. For example, an optimality

gap of 10% for a given solver shows that the objective value of Problem (4.11) for the

solution obtained by the solver is guaranteed not to be 10% smaller/worse than its

optimal objective value.

• Time (seconds): This is the actual solution time (in seconds) for an optimization

solver to solve an instance. Note that although we are imposing a time limit of 8

hours (28,800), some instances can be solved in a shorter period of time.

The results for the performance of our approach over the smallest class of instances,

i.e., instances with a landscape of 50 parcels, are shown in Table 4.1. The numbers are

averages over five instances in all the tables in this section. Also, the best values are bolded

in the tables (whenever appropriate). We observe from Table 4.1 that CPLEX outperforms

82

shorturl.at/gDMPZ


all other solvers. All instances with 50 parcels are solved to optimality in around one second

by CPLEX. Both Gurobi and Xpress performed poorly and could not solve many of the

instances to optimality within the time limit. This is highlighted by the fact that the average

optimality gap of Gurobi and Xpress are 1.53% and 0.04%, respectively. Moreover, there is

an increasing tendency in the solution time of Gurobi and Xpress as the budget available,

i.e., λ, increases.

Table 4.1 – Overall performance of the proposed approach on the class of instances with 50
parcels
Size Scenario Obj. Value (ratio) Optimality Gap Time (seconds)

CPLEX Gurobi Xpress CPLEX Gurobi Xpress CPLEX Gurobi Xpress

50

No Budget 1.00 0.95 0.94 0.00% 6.42% 0.00% 0.51 12,348.11 5,909.81
λ = 0.1 1.00 1.00 0.75 0.00% 0.00% 0.02% 0.19 0.13 1.00
λ = 0.2 1.00 1.00 1.00 0.00% 0.00% 0.04% 0.58 11.97 1.00
λ = 0.35 1.00 1.00 0.87 0.00% 0.00% 0.11% 0.86 982.14 31.40
λ = 0.5 1.00 1.00 0.83 0.00% 1.24% 0.05% 1.04 13,421.78 4,192.40

Average 1.00 0.99 0.88 0.00% 1.53% 0.04% 0.63 5,352.83 2,027.12

Table 4.2 – Overall performance of the proposed approach on the class of instances with 100
parcels

Size Scenario Obj. Value (ratio) Optimality Gap Time (seconds)
CPLEX Gurobi CPLEX Gurobi CPLEX Gurobi

100

No Budget 1.00 0.97 0.01% 26.18% 1.99 23,040.01
λ = 0.1 1.00 1.00 0.00% 0.00% 1.01 1,139.76
λ = 0.2 1.00 1.00 0.00% 13.28% 1.46 21,167.41
λ = 0.35 1.00 0.99 0.00% 18.09% 2.39 23,040.01
λ = 0.5 1.00 0.98 0.00% 21.24% 8.15 23,040.01

Average 1.00 0.99 0.00% 15.76% 3.00 18,285.44

Unfortunately, for classes of instances with more than 50 parcels, we were unable to

obtain any solution using Xpress because of the way that the solver handles the computer

memory. We observed a similar issue when using Gurobi but only for classes of instances with

more than 100 parcels. So, for the second classes of instances (which has 100 parcels), we

only report the results of CPLEX and Gurobi. Our results for the second class can be found

in Table 4.2. Again, we observe that CPLEX was able to solve all instances to optimality

within 10 seconds. However, Gurobi was not able to solve many instances to optimality and

has the optimality gap of around 15.76% on average.

83



Table 4.3 – Overall performance of the proposed approach on the classes of instances with
200, 400, and 800 parcels

Size Scenario Optimality Gap Time (seconds)

200

No Budget 0.00% 4.71
λ = 0.1 0.00% 1.32
λ = 0.2 0.00% 2.26
λ = 0.35 0.00% 3.17
λ = 0.5 0.00% 3.64

400

No Budget 0.18% 23,054.21
λ = 0.1 0.08% 6,150.20
λ = 0.2 0.04% 14,909.01
λ = 0.35 0.16% 17,403.79
λ = 0.5 0.18% 17,987.62

800

No Budget 0.06% 23,047.38
λ = 0.1 0.00% 19.53
λ = 0.2 0.03% 8,051.47
λ = 0.35 0.04% 13,327.63
λ = 0.5 0.11% 22,476.05

Finally, our results for the remaining classes of instances can be found in Table 4.3.

As mentioned earlier, both Gurobi and Xpress were not able to solve such instances and

hence their results are not reported. We again observe that CPLEX has performed very

well. For class of instances with 200 parcels, it was able to find optimal solutions within a

few seconds. For classes of instances with 400 and 800 parcels, it was not able to solve many

instances to optimality. However, it was able to find near optimal solutions for even such

large instances because the optimality gap is less 0.2% which is quite small.

4.4 Conclusion

We have developed a new approach that directly computes a desirable solution from

the Pareto-optimal frontier of large MPT-SCP problems. Our approach is based on the

concept of Nash bargaining solution which was first presented by [3], but it expands from

this original study in several important ways. Firstly, it overcomes the need to compute

the entire Pareto-optimal frontier. Secondly, we showed that we can solve large optimization

problems by simply implementing three smaller optimization problems that are either binary

84



linear programs or BQCQPs. Thirdly, we have defined the problem in such a way that it

can be solved using existing commercial solvers which should make the implementation of

these algorithms more accessible to users who are not experts with optimization algorithms.

Specifically, we showed among the commercial solvers CPLEX aligns significantly better

with our approach. The numerical results showed that CPLEX can solve instances with 200

parcels to optimality in a few seconds and can find almost optimal solutions for instances

with even 800 parcels within 8 hours.

85



Chapter 5: Learning to Project in Multi-Objective Binary Linear

Programming

In this chapter, we present the fourth (final) contribution of this thesis and the only

contribution that is not related to the problem of optimization over the efficient set. We

present a machine-learning-based solution approach to learn how to project in multi-objective

binary linear programming. We first present our motivation behind this study and some back-

ground in exact criterion space search algorithms for multi-objective binary linear problems

and how do they project on a criterion space with a lower dimension. Second, we show some

preliminaries about one of the new effective criterion space search algorithms, the so-called

KSA. Third, we present our machine learning framework with a detailed explanation of its

characteristics. Finally, we present some concluding remarks.

5.1 Introduction

The development of this study is focused on Multi-Objective Binary Linear Programs

(MOBLPs), i.e., multi-objective optimization problems in which all decision variables are

binary and all objective functions and constraints are linear. In the last few years, significant

advances have been made in the development of effective algorithms for solving MOBLPs

(see for instance [13, 1, 14, 15, 4, 5, 35, 6, 7, 8, 9, 10, 11, 12, 36]). Many of the recently

developed algorithms fall into the category of criterion space search algorithms, i.e., those

that work in the space of objective functions’ values. Hence, such algorithms are specifically

designed to find all nondominated points of a multi-objective optimization problem, i.e., the

image of an efficient solution in the criterion space is being referred to as a nondominated

point. After computing each nondominated point, criterion space search algorithms remove

86



the proportion of the criterion space dominated by the obtained nondominated point and

search for not-yet-found nondominated points in the remaining space.

In general, to solve a multi-objective optimization problem, criterion space search

algorithms solve a sequence of single-objective optimization problems. Specifically, when

solving a problem with p objective functions, many criterion space search algorithms first

attempt to transform the problem into a sequence of problems with (p−1) objectives (Boland

et al. [15]). In other words, they attempt to compute all nondominated points by discovering

their projections in a (p−1)-dimensional criterion space. Evidently, the same process can be

applied recursively until a sequence of single-objective optimization problems are generated.

For example, to solve each problem with (p − 1) objectives, a sequence of problems with

(p− 2) objectives can be solved.

Overall, there are at least two possible ways to apply the projection from a higher

dimensional criterion space (for example p) to a criterion space with one less dimension (for

example p− 1):

• Weighted Sum Projection: A typical approach used in the literature (see for instance

Özlen and Azizoğlu [83]) is to select one of the objective functions available in the

higher dimension (for example z1(x)) and remove it after adding it with some strictly

positive weight to the other objective functions. In this case, by imposing different

bounds for z1(x) and/or the value of the other objective functions, a sequence of

optimization problems with p− 1 objectives will be generated.

• Lexicographical Projection: We first note that a lexicographical optimization problem

is a two-stage optimization problem that attempts to optimize a set of objectives, the

so-called secondary objectives, over the set of solutions that are optimal for another

objective, the so-called primary objective. The first stage in the lexicographical

optimization problem is a single-objective optimization problem as it optimizes the

primary goal. The second stage, however, can be a multi-objective optimization

problem as it optimizes the secondary objectives. Based on this definition, another

87



typical approach (see for instance [9]) for projection is to select one of the objective

functions available in the higher dimension (for example z1(x)) and simply remove

it. In this case, by imposing different bounds for z1(x) and/or the value of the other

objective functions, a sequence of lexicographical optimization problems should be

solved in which z1(x) is the primary objective and the remaining p− 1 objectives are

secondary objectives.

In light of the above, which objective function should be selected for doing a projec-

tion and how to do a projection are two typical questions that can be asked when developing

a criterion space search algorithm. So, by this observation, there are many possible ways to

develop a criterion space search algorithm and some of which may perform better for some

instances. So, the underlying research question of this study is that whether Machine Learn-

ing (ML) techniques can help us answer the above questions for a given class of instances of

a multi-objective objective optimization problem?

It is worth mentioning that, in recent years, similar questions have been asked in the

field of single-objective optimization. For example, ML techniques have been successfully

implemented for the purpose of variable selection and node selection in branch-and-bound

algorithms (see for instance [84, 85, 86, 87, 88]). However, still the majority of the algorith-

mic/theoretical studies in the field of ML have been focused on using optimization models

and algorithms to enhance ML techniques and not the other way around (see for instance

[89, 90, 91, 92, 93, 94]).

It is evident that if one can show that ML is even valuable for such a high-level ques-

tion then deeper questions can be asked and explored that can possibly improve the solution

time significantly. In order to answer the above question, we employ one of the effective

state-of-the-art algorithms in the literature of multi-objective optimization, the so-called

KSA which is developed by Kirlik and Sayın [6]. This algorithm uses the lexicographical

projection for reducing the p-dimensional criterion space to p − 1, and then it recursively

88



reduces the dimension from p−1 to 1 by using a special case of the weighted sum projection

in which all the weights are equal to one.

Currently, the default objective function for conducting the projection from p to

(p− 1)-dimensional criterion space is the first objective function (or better say random be-

cause one can change the order of the objective functions in an input file). So, a natural

question is that does it really matter which objective function is selected for such a projec-

tion? To answer this question, we conducted a set of experiments by using a C++ imple-

mentation of the KSA which is publicly available in http://home.ku.edu.tr/~moolibrary

and recorded the number of ILPs solved (#ILPs) and the computational time (in seconds).

We generated 1000 instances (200 per class) of tri-objective Assignment Problem (AP) and

1000 instances (200 per class) of Knapsack Problem (KP) based on the procedure described

by Kirlik and Sayın [6]. Table 5.1 shows the impact of projecting based on the worst and

best objective function using the KSA where #ILPs is the number of single-objective integer

linear programs solved. Numbers reported in this table are averages over 200 instances.

Table 5.1 – Projecting based on different objectives using the KSA.
Type #Objectives #Variables Projecting worst objective Projecting best objective %Decrease

Run time (s.) #ILPs Run time (s.) #ILPs Run time (s.) #ILPs

AP 3

20× 20 351.56 5,122.67 337.03 5,015.39 4.31% 4.61%
25× 25 948.21 9,685.69 912.07 9,500.52 3.96% 4.40%
30× 30 2,064.34 16,294.37 1,988.64 16,019.64 3.81% 4.01%
35× 35 4,212.69 26,161.34 4,050.44 25,592.13 4.01% 4.27%
40× 40 6,888.45 35,737.21 6,636.79 35,061.41 3.79% 3.97%

KP 3

60 270.34 3,883.45 212.41 3,861.68 27.27% 1.05%
70 813.31 6,182.04 638.87 6,158.20 27.31% 0.82%
80 1,740.80 9,297.96 1,375.58 9,265.09 26.55% 0.74%
90 5,109.56 14,257.32 3,917.32 14,212.35 30.44% 0.63%
100 10,451.97 19,420.06 7,780.96 19,366.88 34.33% 0.57%

We observe that, on average, the running time can be reduced up to 34% while the

#ILPs can be improved up to 4%. This numerical study clearly shows the importance

of projection in the solution time. Hence, it is certainly worth studying ML techniques in

predicting the best objective function for projecting, the so-called learning to project. So, our

main contribution in this study is to introduce an ML framework to simulate the selection of

the best objective function to project. We collect data from each objective function and their

89

http://home.ku.edu.tr/~moolibrary


interactions with the decision space to create features. Based on the created features, an

easy-to-evaluate function is learned to emulate the classification of the projections. Another

contribution of this study is developing a simple but effective bi-objective optimization-based

heuristic approach to select the best subset of features to overcome the issue of overfitting.

We show that the accuracy of the proposed prediction model can reach up to around 72%,

which represents up to 12% improvement in solution time.

5.2 Preliminaries

A Multi-Objective Binary Linear Program (MOBLP) is a problem of the form:

min
x∈X
{z1(x), . . . , zp(x)}, (5.1)

in which X :=
{
x ∈ {0, 1}n : Ax ≤ b

}
represents the feasible set in the decision space,

A ∈ Rm×n, and b ∈ Rm. It is assumed that X is bounded and zi(x) = cᵀix where ci ∈ Rn for

i = 1, 2, . . . , p represents a linear objective function. The image Y of X under vector-valued

function z := (z1, z2, . . . , zp)
ᵀ represents the feasible set in the objective/criterion space, that

is Y := {o ∈ Rp : o = z(x) for all x ∈ X}.

Overall, multi-objective optimization is concerned with finding all nondominated

points, i.e., an exact representation of the elements of YN . The set of nondominated points

of a MOBLPs is finite (since by assumption X is bounded). However, due to the existence of

unsupported nondominated points, i.e., those nondominated points that cannot be obtained

by optimizing any positive weighted summation of the objective functions over the feasible

set, computing all nondominated points is challenging. One of the effective criterion space

search algorithms for MOBLPs is the KSA and its high-level description is provided next.

The KSA is basically a variation of the ε-constraint method for generating the entire

nondominated frontier of multi-objective integer linear programs. In each iteration, this

90



algorithm solves the following lexicographical optimization problem in which the first stage

is:

x̂ ∈ arg min
{
z1(x) : x ∈ X , zi(x) ≤ ui ∀i ∈ {2, . . . , p}

}
,

where u2, . . . , up are user-defined upper bounds. If x̂ exists, i.e., the first stage is feasible,

then the following second-stage problem will be solved:

x̂∗ ∈ arg min
{ p∑
i=2

zi(x) : x ∈ X , z1(x) ≤ z1(x̂), zi(x) ≤ ui ∀i ∈ {2, . . . , p}
}
.

The algorithm computes all nondominated points by imposing different values on

u2, . . . , up in each iteration. Interested readers may refer to Kirlik and Sayın [6] for further

details about how values of u2, . . . , up will be updated in each iteration. It is important to

note that in the first stage users can replace the objective function z1(x) with any other ar-

bitrary objective function, i.e., zj(x) where j ∈ {1, . . . .p}, and change the objective function

of the second stage accordingly, i.e.,
∑p

i=1:i 6=j zi(x). As shown in Introduction, on average,

the running time can decrease up to 34% by choosing the right objective function for the first

stage. So, the goal of the proposed machine learning technique in this study is to identify

the best choice.

As an aside, we note that to be consistent with our explanation of the lexicographic

and/or weighted sum projections in Introduction, the lexicographic optimization problem of

the KSA is presented slightly differently in this section. Specifically, Kirlik and Sayın [6] use

the following optimization problem instead of the second-stage problem (mentioned above):

x̂∗ ∈ arg min
{ p∑
i=1

zi(x) : x ∈ X , z1(x) = z1(x̂), zi(x) ≤ ui ∀i ∈ {2, . . . , p}
}
.

91



However, one can easily observe that these two formulations are equivalent. In other

words, the lexicographic optimization problem introduced in this section is a just different

representation of the one proposed by Kirlik and Sayın [6].

5.3 Machine Learning Framework

We now introduce our ML framework for learning to project in MOBLPs. Our pro-

posed framework is based on Multi-class Support Vector Machine (MSVM). In this appli-

cation, MSVM learns a function f : Φ → Ω from a training set to predict which objective

function will have the best performance in the first stage of the KSA (for a MOBLP instance),

where Φ is the feature map domain describing the MOBLP instance and Ω := {1, 2, . . . , p}

is the domain of the labels. A label y ∈ Ω indicates the index of the objective function

that should be selected. We do not explain MSVM in this study but interested read-

ers may refer to Crammer and Singer [95] and Tsochantaridis et al. [96] for details. We

used the publicly available implementation of MSVM in this study which can be found in

https://goo.gl/4hLjyq. It is worth mentioning that we have used MSVM mainly because

it was performing well during the course of this study. In subsection 5.3.4.4, we also report

results obtained by replacing MSVM with Random Forest (Breiman [97], Prinzie and Van

den Poel [98]) to show the performance of another learning technique in our proposed frame-

work. Also, we provide more reasons in subsection 5.3.4.4 about why MSVM is used in this

study. Overall, the proposed ML framework contains three main components:

• Component 1 : It is evident that by changing the order of the objective functions of

a MOBLP instance in an input file, the instance remains the same. Therefore, in

order to increase the stability of the prediction of MSVM, we propose an approach

to pre-order the objective functions of each MOBLP instance in an input file before

feeding it to MSVM (see subsection 5.3.1).

92

https://goo.gl/4hLjyq


• Component 2 : We propose several generic features that can be used to describe

each MOBLP instance. A high-level description of the features can be found in

subsection 5.3.2.1 and their detailed descriptions can be found in Appendix D1.

• Component 3 : We propose a bi-objective heuristic approach (see subsection 5.3.3)

for selecting the best subset of features for each class of MOBLP instances (which

are AP and KP in this study). Our numerical results show that our approach selects

around 15% of features based on the training set for each class of MOBLP instances in

practice. Note that identifying the best subset of features is helpful for overcoming the

issue of overfitting and improving the prediction accuracy (Charkhgard and Eshragh

[99], Tibshirani [100]).

The proposed ML framework uses the above components for training purposes. A

detailed discussion on the accuracy of the proposed framework on a testing set (for each

class of MOBLP instances) is given in subsection 5.3.4.

5.3.1 A Pre-Ordering Approach for Objective Functions

It is obvious that by changing the order of objective functions in an input file cor-

responding to an instance, a new instance will not be generated. In other words, only the

instance is represented differently in that case and hence its nondominated frontier will re-

main the same. This suggests that the vector of features that will be extracted for any

instance should be independent of the order of the objective functions. To address this is-

sue, we propose to perform a pre-ordering (heuristic) approach before giving an instance to

MSVM for training or testing purposes. That is, when users provide an instance, we first

change its input file by re-ordering the objective functions before feeding it to the MSVM.

Obviously, this somehow stabilizes the prediction accuracy of the proposed ML framework.

In light of the above, let

x̃ := (
1∑p

i=1 |ci1|+ 1
, . . . ,

1∑p
i=1 |cin|+ 1

).

93



In the proposed approach, we re-order the objective functions in an input file in a non-

decreasing order of cᵀ1x̃, c
ᵀ
2x̃, . . . , c

ᵀ
px̃. Intuitively, cᵀi x̃ can be viewed as the normalization

score for objective function i ∈ {1, . . . , p}. In the rest of this chapter, the vector ci for

i = 1, 2, . . . , p is assumed to be ordered according to the proposed approach.

5.3.2 Features and Labels Describing a MOBLP Instance

This section provides a high-level explanation of the features that we create to describe

a MOBLP instance and also how each instance is labeled. To the best of our knowledge,

there are no studies that introduce features to describe multi-objective instances, and hence

the proposed features are new.

5.3.2.1 Features

The efficiency of our proposed ML approach relies on the features describing a MOBLP

instance. In other words, the features should be easy to compute and effective. Based on

this observation, we create only static features, i.e., those that are computed once using

just the information provided by the MOBLP instance. Note that we only consider static

features because the learning process and the decision on which objective function to select

for projection (in the KSA) have to take place before solving the MOBLP instance. Over-

all, due to the nature of our research, most of our features describe the objective functions

of the instances. We understand that the objective functions by themselves are a limited

source of information to describe an instance. Therefore, we also consider establishing some

relationships between the objective functions and the other characteristics of the instance in

order to improve the reliability of our features.

In light of the above, a total of 5p2 + 106p− 50 features are introduced for describing

each instance of MOBLP. As an aside, because in our computational study p = 3, we have

313 features in total. Some of these features rely on the characteristics of the objective

functions such as the magnitude and the number of positive, negative and zero coefficients.

94



We also consider features that establish a relationship between the objective functions using

some normalization techniques, e.g., the pre-ordering approach used to order the objective

functions (see subsection 5.3.1). Other features are created based on some mathematical and

statistical computations that link the objective functions with the technological coefficients

and the right-hand-side values.

We also define features based on the area of the projected criterion space i.e., the

corresponding (p − 1)-dimensional criterion space, that needs to be explored when one of

the objectives is selected for conducting the projection. Note that, to compute such an area,

several single-objective binary linear programming problems need to be solved. However,

in order to reduce the complexity of the features extraction, we compute an approximation

of the area-to-explore by optimizing the linear relaxation of the problems. Additionally,

we create features in which the basic characteristics of an instance are described, e.g., size,

number of variables, and number of constraints.

The main idea of the features is to generate as much information as possible in a

simple way. We accomplish this by computing all the proposed features in polynomial time

for a given instance. The features are normalized using a t-statistic score. Normalization

is performed by aggregating subsets of features computed from a similar source. Finally,

the values of the normalized feature matrix are distributed approximately between -1 and 1.

Interested readers can find a detailed explanation of the features in Appendix D1.

5.3.2.2 Labels

Based on our research goal, i.e., simulating the selection of the best objective, we

propose a multi-class integer labeling scheme for each instance, where y ∈ Ω is the label of

the instance and Ω = {1, 2, . . . , p} is the domain of the labels. The value of yi classifies the

instance i with a label that indicates the index of the best objective function for projection

based on the running time of the KSA (when generating the entire nondominated frontier

95



of the instance). The label of each instance is assigned as follows:

yi ∈ arg min
j∈{1,...,p}

{RunningTimeij}, (5.2)

where RunningTimeij is the running time of the instance i when the objective function j is

used for projecting the criterion space.

5.3.3 Best Subset Selection of Features

It is easy to observe that by introducing more (linearly independent) features and

re-training an ML model (to optimality) its prediction error, i.e., error = 1− accuracy, on

the training set decreases and eventually it becomes zero. This is because in that case we

are providing a larger degree of freedom to the ML model. However, this is not necessarily

the case for the testing set. In other words, by introducing more features, the ML model

that will be obtained is often overfitted to the training set and does not perform well on the

testing set. So, the underlying idea of the best subset selection of features is to avoid the

issue of overfitting. However, the key point is that in a real-world scenario we do not have

access to the testing set. So, selecting the best subset of features should be done based the

information obtained from the training set.

In light of the above, studying the trade-off between the number of features and the

prediction error of an ML model on the training set is helpful for selecting the best subset

of features (Charkhgard and Eshragh [99]). However, computing such a tradeoff using exact

methods is difficult in practice since the total number of subsets (of features) is an exponential

function of the number of features. Therefore, in this section, we introduce a bi-objective

optimization-based heuristic for selecting the best subset of features. The proposed approach

has two phases:

• Phase I : In the first phase, the algorithm attempts to approximate the tradeoff. Specifi-

cally, the algorithm computes an approximated nondominated frontier of a bi-objective

96



optimization problem in which its conflicting objectives are minimizing the number of

features and minimizing the prediction error on the training set.

• Phase II : In the second phase, the algorithm selects one of the approximated non-

dominated point and its corresponding MSVM model to be used for prediction on the

testing set.

We first explain Phase I. To compute the approximated nondominated frontier, we

run MSVM iteratively on a training set. In each iteration, one approximated nondominated

point will be generated. The approximated nondominated point obtained in iteration t is

denoted by (kt, et) where kt is the number of features in the corresponding prediction model

(obtained by MSVM) and et is the prediction error of the corresponding model on the training

set.

To compute the first nondominated point, the proposed approach/algorithm assumes

that all features are available and it runs the MVSM to obtain the parameters of the pre-

diction model. We denote by W t the parameter of the prediction model obtained by MSVM

in iteration t. Note that W t is a p × kt matrix where p is the number of objectives. Now

consider an arbitrary iteration t. The algorithm will explore the parameters of the prediction

model obtained in the previous iteration by MSVM, i.e., W t−1, and will remove the least

important feature based on W t−1. Hence, because of removing one feature, we have that

kt = kt−1−1. Specifically, each column of matrix W t−1 is associated to a feature. Therefore,

the algorithm computes the standard deviation of each column independently. The feature

with the minimum standard deviation will be selected and removed in iteration t. Note that

MSVM creates a model for each objective function and that is the reason that matrix W t−1

has p rows. So, if the standard deviation of a column in the matrix is zero then we know

that the corresponding feature is contributing exactly the same in all p models and therefore

it can be removed. So, we observe that the standard deviation plays an important role in

identifying the least important feature.

97



Overall, after removing the least important feature, MSVM should be run again

for computing W t and et. The algorithm for computing the approximated nondominated

frontier terminates as soon as kt = 0. A detailed description of the algorithm for computing

the approximated nondominated frontier can be found in Algorithm 3.

Algorithm 3: Phase I: Computing an approximated nondominated frontier
input: Training set, The set of features

1 Queue.create(Q)
2 t← 1
3 kt ← The initial number of features
4 while kt 6= 0 do
5 if t ≥ 1 then
6 Find the least important feature from W t−1 and remove it from the set of features
7 kt ← kt−1 − 1

8 end
9 Compute W t by applying MSVM on the training set using the current set of features

10 Compute et by applying the obtained prediction model associated with W t on the
training set

11 Q.add
(
(kt, et)

)
12 t← t+ 1

13 end
14 return Q

In the second phase, we select an approximated nondominated point. However, before

doing so, it is worth mentioning that MSVM can take a long time to compute W t in each

iteration of Algorithm 3. So, to avoid this issue, users usually terminate MSVM before it

reaches to an optimal solution by imposing some termination conditions including a relative

optimality gap tolerance and adjusting the so-called regularization parameter (see Crammer

and Singer [95] and Tsochantaridis et al. [96] for details). In this study, we set the tolerance

to 0.1 and the regularization parameter to 5×104 (since we numerically observed that MSVM

performs better in this case). Such limitations obviously impact the prediction error that

will be obtained on the training set, i.e., et. So, some of the points that will be reported by

Algorithm 3 may dominate each other. Therefore, in Phase II, we first remove the dominated

points. In the remaining of this section we assume that there is no dominated point in the

approximated nondominated frontier.

98



Next, the proposed approach selects an approximated nondominated point that has

the minimum Euclidean distance from the (imaginary) ideal point, i.e., an imaginary point

in the criterion space that has the minimum number of features as well as the minimum

prediction error. Such a technique is a special case of optimization over the frontier. We

note that in bi-objective optimization, the ideal point can be computed easily based on the

endpoints of the (approximated) nondominated frontier. Let (k′, e′) and (k′′, e′′) be the two

endpoints in which k′ < k′′ and e′ > e′′. In this case, the ideal point is (k′, e′′). Note too that

because the first and second objectives have different scales, in this study, we first normalize

all approximated nondominated points before selecting a point. Let (k, e) be an arbitrary

approximated nondominated point. After normalization, this point will be as follows:

(
k − k′

k′′ − k′
,
e− e′′

e′ − e′′
).

Observe that the proposed normalization technique ensures that the value of each

component of a point will be between 0 and 1. As a consequence, in this case, the nominalized

ideal point will be always (0, 0). We will discuss about the effectiveness of our proposed best

subset selection approach in the next section.

5.3.4 A Computational Study

In this section, we conduct an extensive computational study to evaluate the perfor-

mance of the KSA when the proposed ML technique is used for learning to project. We

generate 1000 tri-objective AP instances and also 1000 tri-objective KP instances based

on the procedures described by Kirlik and Sayın [6]. Since there are three objectives, we

compute the entire representation of the nondominated frontier three times for each instance

using the KSA; In each time, a different objective function will be selected for projection. We

employ CPLEX 12.7 as the single-objective binary linear programming solver. All computa-

tional experiments are carried out on a Dell PowerEdge R630 with two Intel Xeon E5-2650

99



2.2 GHz 12-Core Processors (30MB), 128GB RAM, and the RedHat Enterprise Linux 6.8

operating system. We only use a single thread for all experiments.

Our experiments are divided into three parts. In the first part, we run our approach

over the entire set of instances using 80% of the data as the training set and 20% of the

data as the testing set. The second part evaluates the prediction models obtained in the

first part on a reduced testing set. In other words, the training set is as same as the one in

the first part but the testing set is smaller. Specifically, if it does not really matter which

objective function to be selected for projection (in terms of solution time) for an instance in

the testing set of the first part then we remove it. Obviously one can think of such instances

as tie cases. In the third part of our experiments, we extend the concept of reduced testing

set to the training set. That is, we remove not only the tie cases from the testing set but

also from the training set. In general, the goal of reducing testing set and/or training set is

to improve the overall accuracy of the prediction model.

At the end of the computational study, we replace MSVM by Random Forest in the

proposed ML framework to show the performance of another learning technique. We note

that in this computational study, we do not report any time for our proposed ML framework

because the aggregated time of generating the features, learning process, and predictions for

all 1000 instances of a class of optimization problem, i.e., AP and KP, is around 50 seconds.

This implies that on average almost 0.05 seconds are spent on each instance.

5.3.4.1 Complete Training and Testing Sets

The first part of our experiments are done on the entire training and testing sets. For

each class of optimization problems, i.e., KP and AP, the proposed subset selection approach

is run on its corresponding training set. The proposed approach obtains the best subset of

features and its corresponding prediction model for each class of instances. Before providing

detailed explanations about the accuracy of such a prediction model on the testing set, it

100



is necessary to show that the proposed bi-objective optimization approach for selecting the

best subset of features is indeed effective.

Figure 5.1 shows the approximated nondominated frontier (obtained during the course

of the proposed best subset selection approach) for each class of optimization problems. In

this figure, small (red) plus symbols are the outputs of Algorithm 3. The (black) square on

the vertical axis shows the ideal point and finally the (yellow) square on the approximated

nondominated frontier shows the selected point by the proposed method. First note that we

introduced 313 generic features in this study but the tail of the approximated nondominated

frontier in Figure 5.1 clearly shows that not all 313 features are used. This is because some

of the 313 features are not applicable to all classes and will be removed automatically before

running the proposed best subset selection approach.

We observe from Figure 5.1 that, overall, by introducing more features the prediction

error deceases for the training set. It is evident when all features are included the accuracy,

i.e., 1 − error, for the training set is around 59.5% and 70% for AP and KP instances,

respectively. Of course this is not surprising because the learning procedure will be done

based on the training set and introducing more features gives a larger degree of freedom to

the learning model. However, this is not necessarily the case for the testing set. Basically,

by introducing more features, we may raise the issue of overfitting, i.e., the prediction error

is small for the training set but large for the testing set.

To show this, for each of the points (other than the ideal point) in Figure 5.1, we

have plotted its corresponding point for the testing set in Figure 5.2. Specifically, for each

point in Figure 5.1, we run its corresponding model on the testing set to compute the error.

From Figure 5.2 we observe that the error highly fluctuates. In fact, it is evident that for

AP instances, the prediction model that has around 40 features is the best prediction model.

Similarly, from Figure 5.2, it is evident that for KP instances, the prediction model that has

around 25 features is the best prediction model.

101



0.38
0.4

0.42
0.44
0.46
0.48
0.5

0.52
0.54
0.56

0 50 100 150 200 250 300

E
rr
or

Number of features

(a) Training set of AP

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0 50 100 150 200 250 300

E
rr
or

Number of features

(b) Training set of KP

Figure 5.1 – An illustration of the performance of the proposed approach for selecting the
best subset of features on the complete training set

Note that in practice, we do not have access to the testing set. So, we should select the

best subset of features only based on the training set. Therefore, the goal of any best subset

selection technique is to identify the prediction model that is (almost) optimal for the testing

set based on the existing data set, i.e., the training set. From Figure 5.2, we observe that our

proposed best subset selection heuristic has such a desirable characteristic in practice. We

see that the selected model, i.e., the (yellow) square, is nearly optimal. In fact the proposed

approach has selected a prediction model with the accuracy of around 50% and 55% for

AP and KP instances, respectively. This implies that the absolute difference between the

accuracy of the model selected by the proposed subset selection approach and the accuracy

of the optimal model is almost 3% and 5% for AP and KP instances, respectively. We note

that for both classes of instances less than 50 features exist in the model selected by the

proposed approach. Overall, these results are promising due to the fact that the (expected)

probability of randomly picking the correct objective function to project is 1
p
, i.e., around

33.3% for the tri-objective instances.

We now discuss about the performance of the selected model in detail for each class

of optimization problems. Table 5.2 summarizes our findings. In this table, the column

labeled ‘Accuracy’ shows the average percentage of the prediction accuracy of the selected

102



0.47
0.48
0.49
0.5

0.51
0.52
0.53
0.54
0.55
0.56

0 50 100 150 200 250 300

E
rr
or

Number of features

(a) Testing set of AP

0.4

0.45

0.5

0.55

0.6

0.65

0 50 100 150 200 250 300

E
rr
or

Number of features

(b) Testing set of KP

Figure 5.2 – An illustration of the performance of the proposed approach for the best
subset selection of features on the complete testing set

model for different subclasses of instances. Note that as mentioned in Introduction, each

subclass has 200 instances. The column labeled ‘ML vs. Rand’ shows the average percentage

of decrease in solution time when ML technique is used compared to randomly picking an

objective function for projecting. The column labeled ‘Best vs. Rand’ shows the average

percentage of decrease in solution time when the best objective function is selected for pro-

jection compared to randomly picking an objective function for projecting. Finally, column

labeled ‘ ML vs. Rand
Best vs. Rand’ shows the percentage of ‘ML vs. Rand’ to ‘Best vs. Rand’.

Overall, we observe that our ML method improves the computational time in all

testing sets. For AP instances, the improvement is around 0.68% on average which is small.

However, we should note that in the ideal case, we could obtain around 1.74% improvement

in time on average for such instances. So, the improvement obtained with the proposed ML

technique is 38.9% of the ideal case. For largest subclass of AP instances, this number is

around 64.99%. For the KP instances, the results are even more promising since the amount

of improvement in solution time is around 5.67% on average. In the ideal case, we could

obtain an average improvement of 11.17% for such instances. So, the improvement obtained

with the proposed ML technique is 50.77% of the ideal case.

103



Table 5.2 – Accuracy and average time decrease of testing set when using the proposed ML
technique (for the case of the complete training and testing sets)

Time Decrease
Type Vars Accuracy ML vs. Rand Best vs. Rand ML vs. Rand

Best vs. Rand

AP

20× 20 55.56% 1.29% 2.33% 55.43%
25× 25 44.74% 0.67% 1.65% 40.57%
30× 30 41.30% 0.18% 1.48% 12.20%
35× 35 52.08% 0.44% 1.69% 25.81%
40× 40 56.25% 1.07% 1.65% 64.99%

Avg 49.50% 0.68% 1.74% 38.90%

KP

60 63.64% 9.12% 11.03% 82.68%
70 45.65% 2.01% 10.14% 19.79%
80 56.10% 4.59% 11.42% 40.22%
90 58.82% 8.05% 13.27% 60.68%
100 51.43% 5.09% 10.34% 49.24%

Avg 55.00% 5.67% 11.17% 50.77%

5.3.4.2 Complete Training Set and Reduced Testing Set

In this section, we test the performance of the model obtained in subsection 5.3.4.1

on a reduced testing set. Specifically, we remove the instances that can be considered as

tie cases, i.e., those in which the solution time does not change significantly (relative to

other instances) when different objective functions are selected for projection. To reduce the

testing set we apply the following steps:

• Step 1: We compute the time range of each instance, i.e., the difference between the

best and worst solution times that can be obtained for the instance when different

objective functions are considered for projection.

• Step 2: For each subclass of instances, i.e., those with the same number of decision

variables, we compute the standard deviation and the minimum of time ranges in

that subclass.

• Step 3: We eliminate an instance, i.e., consider it as a tie case, if its time range is

not greater than the sum of the minimum and standard deviation of time ranges in

its associated subclass.

104



As a result of the procedure explained above, the testing set was reduced by 35.5%

for AP instances and by 17.5% for KP instances. Table 5.3 summarizes our findings for the

reduced testing set.

Table 5.3 – Accuracy and average time decrease of testing set when using the proposed ML
technique (for the case of the complete training set and the reduced testing set)

Time Decrease
Type Vars Accuracy ML vs. Rand Best vs. Rand ML vs. Rand

Best vs. Rand

AP

20× 20 58.06% 1.48% 2.54% 58.10%
25× 25 60.00% 0.92% 2.23% 41.32%
30× 30 40.74% 0.12% 1.96% 6.02%
35× 35 57.89% 0.54% 1.97% 27.17%
40× 40 69.57% 1.64% 2.15% 76.09%

Avg 56.59% 0.90% 2.16% 41.73%

KP

60 71.05% 10.11% 11.96% 84.52%
70 45.95% 2.03% 11.48% 17.67%
80 57.58% 5.30% 13.48% 39.31%
90 62.96% 10.21% 15.57% 65.59%
100 60.00% 6.32% 11.33% 55.77%

Avg 59.39% 6.66% 12.63% 52.74%

Observe that the accuracy of the prediction models has increased significantly for the

reduced testing set. Specifically, it has reached to around 56.59% and 59.39% on overage for

AP and KP instances, respectively. Since the eliminated instances are considered as tie cases,

we can assume that they are also success cases for the prediction model. So, by considering

such success cases, the prediction accuracy will increase to 56.59× (1− 0.355) + 35.5 u 72%

and 59.39 × (1 − 0.175) + 17.5 u 66.5% for AP and KP instances, respectively. In terms

of computational time, we also observe (from Table 5.3) an improvement of around 0.90%

and 6.66% on average for AP and KP instances, respectively. This amount of improvement

is about 41.73% and 52.74% of the ideal scenarios (on average) for AP and KP instances,

respectively.

5.3.4.3 Reduced Training and Testing Sets

Due to promising results obtained in subsection 5.3.4.1, it is natural to ask whether

we can see even more improvement if we reduce not only the testing set but also the training

105



set. Therefore, in this section, we eliminate the tie cases using the same procedure discussed

in subsection 5.3.4.2 from both training and testing sets. By doing so, the size of the

training+testing set was reduced by 37% and 18% for AP and KP instances, respectively.

It is evident that due to the change in the training set, we need to apply our pro-

posed approach for best subset selection of features again. So, similar to subsection 5.3.4.1,

Figure 5.3 shows the approximated nondominated frontier for each class of optimization

problems based on the reduced training set. By comparing the ideal points in Figures 5.1

and 5.3, an immediate improvement in the (ideal) accuracy can be observed. In fact the

absolute difference between the error of the ideal points (in these figures) is around 12%

and 7% for AP and KP instances, respectively. Similar improvements can be observed by

comparing the selected approximated nondominated points in Figures 5.1 and 5.3.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 50 100 150 200 250 300

E
rr
or

Number of features

(a) Training set of AP

0.2
0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

0 50 100 150 200 250 300

E
rr
or

Number of features

(b) Training set of KP

Figure 5.3 – An illustration of the performance of the proposed approach for selecting the
best subset of features on the reduced training set

Similar to subsection 5.3.4.1, for each of the points (other than the ideal point) in

Figure 5.3, we have plotted its corresponding point for the testing set in Figure 5.4. We

again observe that the selected model, i.e., the (yellow) square, is nearly optimal for both

classes of optimization problems. In fact the proposed approach has selected a prediction

model with the accuracy of around 52% and 62% for AP and KP instances, respectively.

This implies that the absolute difference between the accuracy of the model selected by the

106



proposed approach and the accuracy of the optimal model is almost 5% and 3% for AP and

KP instances, respectively.

0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5

0.51
0.52
0.53

0 50 100 150 200 250 300

E
rr
or

Number of features

(a) Testing set of AP

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 50 100 150 200 250 300

E
rr
or

Number of features

(b) Testing set of KP

Figure 5.4 – An illustration of the performance of the proposed approach for the best
subset selection of features on the reduced testing set

Table 5.4 – Accuracy and average time decrease of testing set when using the proposed ML
technique (for the case of the reduced training and testing sets)

Time Decrease
Type Vars Accuracy ML vs. Rand Best vs. Rand ML vs. Rand

Best vs. Rand

AP

20× 20 58.33% 0.82% 2.14% 38.41%
25× 25 52.38% 1.17% 2.39% 48.76%
30× 30 55.17% 0.67% 1.93% 34.46%
35× 35 45.45% 1.10% 2.53% 43.35%
40× 40 52.63% 1.60% 2.87% 55.61%

Avg 52.38% 1.03% 2.35% 43.99%

KP

60 60.61% 6.75% 12.16% 55.51%
70 55.56% 6.79% 12.03% 56.43%
80 60.00% 12.14% 16.91% 71.79%
90 72.73% 9.22% 12.26% 75.17%
100 62.50% 4.70% 10.56% 44.50%

Avg 61.59% 7.61% 12.64% 60.18%

A summary of the results of this last experiment can be found in Table 5.4. Observe

that the average prediction accuracy on the testing set for the experimental setting in this

section, i.e., reduced training and testing sets, has improved significantly for KP instances

compared to the results given in subsections 5.3.4.1 and 5.3.4.2. However for the instances of

AP problem, the average prediction accuracy in this section is only better than the one pre-

107



sented in subsection 5.3.4.1. Overall, the average prediction accuracy is 52.38% and 61.59%

for AP and KP instances when using reduced training and testing sets. By considering the

tie cases as success events, the projected accuracy increases up to 70% and 68.5% for AP and

KP instances, respectively. The importance of such an increase in the accuracy is highlighted

by the time decrease percentages given in Table 5.4, which is over 1% for AP instances and

is near 8% for KP instances. In fact, for the largest subclass of AP instances, the average

time improvement of 1.6% is equivalent to almost 110 seconds on average. Similarly, for the

largest subclass of KP instances, the time improvement of 4.7% is around 490 seconds on

average.

5.3.4.4 Replacing MSVM by Random Forest

One main reason that we used MSVM in this study is that (as shown in the previous

sections) it performs well in practice for the purpose of this study. However, another critical

reason is the fact that MSVM creates a matrix of parameters denoted byW t in each iteration.

This matrix has p rows where p is the number of objective functions. In other words, for

each objective function, MSVM creates a specific model for predicting which one should be

used for projection in KSA. This characteristic is desirable because it allowed us to develop

a custom-built bi-objective heuristic for selecting the best subset of features. Specifically, as

discussed in subsection 5.3.3, this characteristic is essential for identifying the least important

feature in each iteration of Algorithm 3. However, applying such a procedure on other ML

techniques is not trivial.

In light of the above, in this section we replace MSVM by Random Forest within the

proposed machine learning framework. However, we simply use the best subset of features

selected by MSVM and then feed it to Random Forest for training and predicting. To

implement Random Forest we use scikit-learn library in Python (Pedregosa et al. [101]).

Table 5.5 shows a comparison between the prediction accuracy of MSVM and Random Forest

under three experimental settings described in subsections 5.3.4.1-5.3.4.3. In other words,

108



Setting 1 corresponds to the complete training and testing sets; Setting 2 corresponds to

the complete training set and reduced testing sets; Finally, Setting 3 refers to the reduced

training and testing sets.

In this table, columns labeled ‘Increase’ show the average percentage of increase

in the prediction accuracy of the Random Forest compared to MSVM. Observe from these

columns that the reported numbers are mostly negative. This implies that, in general, MSVM

outperforms Random Forest in terms of prediction accuracy. For example, in Setting 3, we

observe that the accuracy of Random Forest is around 18.63% and 22.88% worse than the

accuracy of MSVM on average. This experiment clearly shows the advantage of using MSVM

in the proposed ML framework.

Table 5.5 – A performance comparison between MSVM and Random Forest on a testing set
Setting 1 Setting 2 Setting 3

Type Vars Accuracy Increase Accuracy Increase Accuracy Increase

AP

20× 20 61.11% 9.99% 64.52% 11.12% 36.36% -37.66%
25× 25 42.11% -5.89% 50.00% -16.67% 26.67% -49.09%
30× 30 45.65% 10.54% 37.04% -9.09% 52.63% -4.60%
35× 35 62.50% 20.01% 65.79% 13.65% 70.59% 55.31%
40× 40 50.00% -11.11% 73.91% 6.24% 50.00% -5.00%

Avg 52.50% 6.06% 59.69% 5.48% 42.62% -18.63%

KP

60 47.73% -25.00% 47.37% -33.33% 41.18% -32.06%
70 50.00% 9.53% 56.76% 23.52% 50.00% -10.01%
80 48.78% -13.06% 54.55% -5.27% 61.90% 3.17%
90 44.12% -25.00% 55.56% -11.76% 47.06% -35.30%
100 37.14% -27.78% 43.33% -27.78% 45.95% -26.49%

Avg 46.00% -16.36% 51.52% -13.26% 47.50% -22.88%

5.4 Conclusion

We presented a multi-class support vector machine based approach to enhance exact

multi-objective binary linear programming algorithms. Our approach simulates the best

selection of objective function to be used for projection in the KSA in order to improve its

computational time. We introduced a pre-ordering approach for the objective functions in the

input file for the purpose of standardizing the vector of features. Moreover, we introduced

a bi-objective optimization approach for selecting the best subset of features in order to

109



overcome overfitting. By conducting an extensive computational , we showed that reaching

to the prediction accuracy of around 70% is possible for instances of tri-objective AP and

KP. It was shown that such a prediction accuracy results in a decrease of over 12% in the

computational time for some instances.

Overall, we hope that the simplicity of our proposed ML technique and its promis-

ing results encourage more researchers to use ML techniques for improving multi-objective

optimization solvers.

110



Chapter 6: Conclusions and Future Research Directions

We now present a summary of the conclusions of this thesis, and some still-open

interesting research questions derived from our contributions.

6.1 Optimization Over the Efficient Set

We presented the first criterion space search algorithm for optimizing a linear function

over the set of efficient solutions for BOMILP. Our proposed algorithm is built on top

of the Triangle Splitting Method (TSM). Therefore, the first research question open for

discussion would be, can we build a criterion space search algorithm for optimization over

the efficient set on top of an exact algorithm for BOMILP other than the TSM? Additionally,

we encourage the creation of decision space algorithms to solve the same problem.

Another open research question is related to the creation of an algorithm for opti-

mization over the efficient set for MOMILP. This includes working with 2 or more objective

functions. We believe that such advances will be possible once the first algorithm for finding

the nondominated frontier of MOMILP problems becomes available.

6.2 Ecological Applications of the Nash Bargaining Solution

We presented a Nash bargaining solution approach for spatial conservation plan-

ning problems modeled using Modern Portfolio Theory (MPT). Our approach is generic

and can be used in many other problems of the ecological literature. For instance, one of

the interesting real problems, that can be modeled with MPT and solved with our Nash

bargaining solution approach, is to determine the appropriate speed limit for boats in the

rivers of Florida. The main objective of this problem is to minimize the risk of collision

111



between boats and wild manatees. Another real ecological application is to determine the

amount and location of law enforcement troops in some regions of Africa to minimize the

risk of poaching. Solving these, and many other related problems, are important for the

conservation of biodiversity, and MPT and our Nash bargaining solution approach allow to

solve large instances of these problems accurately.

6.3 Learning to Project in MOBLP

Finally, we developed a machine learning approach that learns the best selection of

objective function to project in MOBLP. We addressed one of the two open questions about

projection in the criterion space. Therefore, the first question that remains open is, can

we develop a machine learning approach to learn how to project (what projection method)

in MOBLP? Evidently, the question addressed in this thesis and the question that remains

open can be extended to MOMILP.

As a reminder, our approach selects an objective function which is fixed for projection

during the course of the algorithm. However, criterion space search algorithms usually

perform a projection in the reduced objective space at every iteration. Therefore, it is

possible to update the learning function at each iteration based on the new information

(proportion of the criterion space explored in the previous iteration, and (possible) new

nondominated point found) to always select the best objective for projection.

112



References

[1] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion space search

algorithm for biobjective mixed integer programming: The triangle splitting method.

INFORMS Journal on Computing, 27(4):597–618, 2015.

[2] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and

elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary

computation, 6(2):182–197, 2002.

[3] Mitchell Eaton, Simeon Yurek, Zulqarnain Haider, Julien Martin, Fred Johnson,

Bradley Udell, Hadi Charkhgard, and Changhyun Kwon. Spatial conservation plan-

ning under uncertainty: adapting to climate change risks using modern portfolio theory.

Ecological Applications, 2019. . https://doi.org/10.1002/eap.1962.

[4] K Dächert, J Gorski, and K Klamroth. An augmented weighted Tchebycheff method

with adaptively chosen parameters for discrete bicriteria optimization problems. Com-

puters & Operations Research, 39:2929–2943, 2012.

[5] Kerstin Dächert and Kathrin Klamroth. A linear bound on the number of scalar-

izations needed to solve discrete tricriteria optimization problems. Journal of Global

Optimization, pages 1–34, 2014.

[6] G Kirlik and S Sayın. A new algorithm for generating all nondominated solutions

of multiobjective discrete optimization problems. European Journal of Operational

Research, 232(3):479 – 488, 2014.

113



[7] Özgür Özpeynirci and Murat Köksalan. An exact algorithm for finding extreme sup-

ported nondominated points of multiobjective mixed integer programs. Management

Science, 56(12):2302–2315, 2010.

[8] Banu Lokman and Murat Köksalan. Finding all nondominated points of multi-objective

integer programs. Journal of Global Optimization, 57(2):347–365, 2013.

[9] M Özlen, B A Burton, and C A G MacRae. Multi-objective integer programming: An

improved recursive algorithm. Journal of Optimization Theory and Applications, 2013.

10.1007/s10957-013-0364-y.

[10] Anthony Przybylski and Xavier Gandibleux. Multi-objective branch and bound. Eu-

ropean Journal of Operational Research, 260(3):856 – 872, 2017.

[11] Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott. A two phase method

for multi-objective integer programming and its application to the assignment problem

with three objectives. Discrete Optimization, 7(3):149 – 165, 2010.

[12] Banu Soylu and Gazi Bilal Yıldız. An exact algorithm for biobjective mixed integer

linear programming problems. Computers & Operations Research, 72:204–213, 2016.

[13] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion space search

algorithm for biobjective integer programming: The balanced box method. INFORMS

Journal on Computing, 27(4):735–754, 2015.

[14] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. The L-shape search

method for triobjective integer programming. Mathematical Programming Computa-

tion, 8(2):217–251, 2016.

[15] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. The quadrant shrinking

method: A simple and efficient algorithm for solving tri-objective integer programs.

European Journal of Operational Research, 2016. available online.

114



[16] Jesús M Jorge. An algorithm for optimizing a linear function over an integer efficient

set. European Journal of Operational Research, 195(1):98–103, 2009.

[17] Harold P Benson. Optimization over the efficient set. Journal of Mathematical Analysis

and Applications, 98(2):562–580, 1984.

[18] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A new method for op-

timizing a linear function over the efficient set of a multiobjective integer program.

European Journal of Operational Research, 2016. available online.

[19] Murat Köksalan and Banu Lokman. Finding nadir points in multi-objective integer

programs. Journal of Global Optimization, 62(1):55–77, May 2015.

[20] Gokhan Kirlik and Serpil Sayın. Computing the nadir point for multiobjective discrete

optimization problems. Journal of Global Optimization, 62(1):79–99, May 2015.

[21] Özgür Özpeynirci. On nadir points of multiobjective integer programming problems.

Journal of Global Optimization, May 2017. available online.

[22] Hadi Charkhgard, Martin Savelsbergh, and Masoud Talebian. A linear programming

based algorithm to solve a class of optimization problems with a multi-linear objective

function and affine constraints. Computers & Operations Research, 89:17 – 30, 2018.

[23] Yuelin Gao, Chengxian Xu, and Yongjian Yang. An outcome-space finite algorithm

for solving linear multiplicative programming. Applied Mathematics and Computation,

179(2):494 – 505, 2006.

[24] Lizhen Shao and Matthias Ehrgott. Primal and dual multi-objective linear program-

ming algorithms for linear multiplicative programmes. Optimization, 65(2):415–431,

2016.

[25] Harold P Benson. An all-linear programming relaxation algorithm for optimizing over

the efficient set. Journal of Global Optimization, 1(1):83–104, 1991.

115



[26] Harold P Benson. A finite, nonadjacent extreme-point search algorithm for optimiza-

tion over the efficient set. Journal of Optimization Theory and Applications, 73(1):47–

64, 1992.

[27] Harold P Benson. A bisection-extreme point search algorithm for optimizing over the

efficient set in the linear dependence case. Journal of Global Optimization, 3(1):95–111,

1993.

[28] Jerald P Dauer. Optimization over the efficient set using an active constraint approach.

Mathematical Methods of Operations Research, 35(3):185–195, 1991.

[29] JG Ecker and JH Song. Optimizing a linear function over an efficient set. Journal of

Optimization Theory and Applications, 83(3):541–563, 1994.

[30] Serpil Sayin. Optimizing over the efficient set using a top-down search of faces. Oper-

ations Research, 48(1):65–72, 2000.

[31] Yoshitsugu Yamamoto. Optimization over the efficient set: overview. Journal of Global

Optimization, 22(1-4):285, 2002.

[32] Moncef Abbas and Djamal Chaabane. Optimizing a linear function over an integer

efficient set. European Journal of Operational Research, 174(2):1140–1161, 2006.

[33] Chaabane Djamal and Pirlot Marc. A method for optimizing over the integer efficient

set. Journal of industrial and management optimization, 6(4):811, 2010.

[34] Djamal Chaabane, B Brahmi, and Z Ramdani. The augmented weighted tchebychev

norm for optimizing a linear function over an integer efficient set of a multicriteria

linear program. International Transactions in Operational Research, 19(4):531–545,

2012.

116



[35] Ali Fattahi and Metin Turkay. A one direction search method to find the exact nondom-

inated frontier of biobjective mixed-binary linear programming problems. European

Journal of Operational Research, 2017. avaiable online.

[36] T. Vincent, F Seipp, S Ruzika, A Przybylski, and X Gandibleux. Multiple objective

branch and bound for mixed 0-1 linear programming: Corrections and improvements

for biobjective case. Computers & Operations Research, 40(1):498–509, 2013.

[37] Y P Aneja and K P K Nair. Bicriteria transportation problem. Management Science,

27:73–78, 1979.

[38] P Belotti, B Soylu, and MM Wiecek. A branch-and-bound algorithm for biobjective

mixed-integer programs. 2013. http://www.optimization-online.org/DB_FILE/

2013/01/3719.pdf. Last accessed: September 23, 2017.

[39] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for

mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[40] Aritra Pal and Hadi Charkhgard. FPBH. jl: A feasibility pump based heuristic

for multi-objective mixed integer linear programming in julia. 2018. http://www.

optimization-online.org/DB_FILE/2017/09/6195.pdf. Last accessed: March 01,

2019.

[41] Wei-Jie Yu, Jin-Zhou Li, Wei-Neng Chen, and Jun Zhang. A parallel double-level mul-

tiobjective evolutionary algorithm for robust optimization. Applied Soft Computing,

59:258 – 275, 2017.

[42] William Pettersson and Melih Özlen. A parallel approach to bi-objective integer pro-

gramming. ANZIAM Journal, 58:69–81, 2017.

117

http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf
http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf
 http://www.optimization-online.org/DB_FILE/2017/09/6195.pdf
 http://www.optimization-online.org/DB_FILE/2017/09/6195.pdf


[43] Xavier Gandibleux, Gauthier Soleilhac, Anthony Przybylski, Flavien Lucas, Stefan

Ruzika, and Pascal Halffmann. voptsolver, a “get and run" solver of multiobjective

linear optimization problems built on julia and jump. MCDM2017: 24th International

Conference on Multiple Criteria Decision Making, 2017.

[44] Aritra Pal and Hadi Charkhgard. MSEA. jl: A multi-stage exact algorithm

for bi-objective pure integer linear programming in julia. 2018. http://www.

optimization-online.org/DB_FILE/2018/04/6595.pdf. Last accessed: March 01,

2019.

[45] Yicheng Wang and Hayri Önal. Optimal design of compact and connected nature

reserves for multiple species. Conservation biology, 30(2):413–424, 2016.

[46] RL Pressey, CJ Humphries, Christopher R Margules, RI Vane-Wright, and

PH Williams. Beyond opportunism: key principles for systematic reserve selection.

Trends in ecology & evolution, 8(4):124–128, 1993.

[47] April E Reside, Nathalie Butt, and Vanessa M Adams. Adapting systematic conser-

vation planning for climate change. Biodiversity and Conservation, 27(1):1–29, 2018.

[48] Sharon E Kingsland. Creating a science of nature reserve design: perspectives from

history. Environmental Modeling & Assessment, 7(2):61–69, 2002.

[49] James Boyd, Rebecca Epanchin-Niell, and Juha Siikamäki. Conservation planning:

a review of return on investment analysis. Review of Environmental Economics and

Policy, 9(1):23–42, 2015.

[50] Mark W Schwartz, Carly N Cook, Robert L Pressey, Andrew S Pullin, Michael C

Runge, Nick Salafsky, William J Sutherland, and Matthew A Williamson. Decision

support frameworks and tools for conservation. Conservation Letters, 11(2):e12385,

2018.

118

 http://www.optimization-online.org/DB_FILE/2018/04/6595.pdf
 http://www.optimization-online.org/DB_FILE/2018/04/6595.pdf


[51] Hawthorne L Beyer, Yann Dujardin, Matthew E Watts, and Hugh P Possingham.

Solving conservation planning problems with integer linear programming. Ecological

Modelling, 328:14–22, 2016.

[52] Jessica Zamborain-Mason, Garry R Russ, Rene A Abesamis, Abner A Bucol, and

Sean R Connolly. Network theory and metapopulation persistence: incorporating

node self-connections. Ecology letters, 20(7):815–831, 2017.

[53] Benjamin S Ramage, Elaina C Marshalek, Justin Kitzes, and Matthew D Potts. Con-

serving tropical biodiversity via strategic spatiotemporal harvest planning. Journal of

Applied Ecology, 50(6):1301–1310, 2013.

[54] Christopher Costello and Stephen Polasky. Dynamic reserve site selection. Resource

and Energy Economics, 26(2):157–174, 2004.

[55] Adam W Schapaugh and Andrew J Tyre. A simple method for dealing with large state

spaces. Methods in Ecology and Evolution, 3(6):949–957, 2012.

[56] Hayri Önal and Yicheng Wang. A graph theory approach for designing conservation

reserve networks with minimal fragmentation. Networks: An International Journal,

51(2):142–152, 2008.

[57] Ian R Ball, Hugh P Possingham, and M Watts. Marxan and relatives: software for

spatial conservation prioritisation. Spatial conservation prioritisation: Quantitative

methods and computational tools, pages 185–195, 2009.

[58] Noam Levin, James EM Watson, Liana N Joseph, Hedley S Grantham, Liat Hadar,

Naomi Apel, Avi Perevolotsky, Niv DeMalach, Hugh P Possingham, and Salit Kark.

A framework for systematic conservation planning and management of mediterranean

landscapes. Biological Conservation, 158:371–383, 2013.

119



[59] Yicheng Wang, Hayri Önal, and Qiaoling Fang. How large spatially-explicit optimal

reserve design models can we solve now? an exploration of current models’ computa-

tional efficiency. Nature Conservation, 27:17, 2018.

[60] Justin C Williams, Charles S ReVelle, and Simon A Levin. Using mathematical opti-

mization models to design nature reserves. Frontiers in Ecology and the Environment,

2(2):98–105, 2004.

[61] Rebecca K Runting, Catherine E Lovelock, Hawthorne L Beyer, and Jonathan R

Rhodes. Costs and opportunities for preserving coastal wetlands under sea level rise.

Conservation Letters, 10(1):49–57, 2017.

[62] Diogo Alagador, Jorge Orestes Cerdeira, and Miguel Bastos Araújo. Climate change,

species range shifts and dispersal corridors: an evaluation of spatial conservation mod-

els. Methods in Ecology and Evolution, 7(7):853–866, 2016.

[63] Neville D Crossman and Brett A Bryan. Systematic landscape restoration using integer

programming. Biological Conservation, 128(3):369–383, 2006.

[64] Olga Chernomor, Bui Quang Minh, Félix Forest, Steffen Klaere, Travis Ingram, Monika

Henzinger, and Arndt von Haeseler. Split diversity in constrained conservation prioriti-

zation using integer linear programming. Methods in ecology and evolution, 6(1):83–91,

2015.

[65] Rodolfo Carvajal, Miguel Constantino, Marcos Goycoolea, Juan Pablo Vielma, and

Andrés Weintraub. Imposing connectivity constraints in forest planning models. Op-

erations Research, 61(4):824–836, 2013.

[66] Paul R Armsworth, Szvetlana Acs, Martin Dallimer, Kevin J Gaston, Nick Hanley,

and Paul Wilson. The cost of policy simplification in conservation incentive programs.

Ecology letters, 15(5):406–414, 2012.

120



[67] John C Withey, Joshua J Lawler, Stephen Polasky, Andrew J Plantinga, Erik J Nelson,

Peter Kareiva, Chad B Wilsey, Carrie A Schloss, Theresa M Nogeire, Aaron Ruesch,

et al. Maximising return on conservation investment in the conterminous usa. Ecology

Letters, 15(11):1249–1256, 2012.

[68] Sahan TM Dissanayake, Hayri Önal, James D Westervelt, and Harold E Balbach.

Incorporating species relocation in reserve design models: An example from ft. benning

ga. Ecological modelling, 224(1):65–75, 2012.

[69] Sahan TM Dissanayake and Hayri Önal. Amenity driven price effects and conservation

reserve site selection: A dynamic linear integer programming approach. Ecological

Economics, 70(12):2225–2235, 2011.

[70] Bronwyn Rayfield, David Pelletier, Maria Dumitru, Jeffrey A Cardille, and Andrew

Gonzalez. Multipurpose habitat networks for short-range and long-range connectivity:

a new method combining graph and circuit connectivity. Methods in Ecology and

Evolution, 7(2):222–231, 2016.

[71] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh

freeman New York, 2002.

[72] Matthew E Watts, Ian R Ball, Romola S Stewart, Carissa J Klein, Kerrie Wilson,

Charles Steinback, Reinaldo Lourival, Lindsay Kircher, and Hugh P Possingham.

Marxan with zones: software for optimal conservation based land-and sea-use zon-

ing. Environmental Modelling & Software, 24(12):1513–1521, 2009.

[73] Ayesha IT Tulloch, Richard F Maloney, Liana N Joseph, Joseph R Bennett, Martina MI

Di Fonzo, William JM Probert, Shaun M O’connor, Jodie P Densem, and Hugh P

Possingham. Effect of risk aversion on prioritizing conservation projects. Conservation

Biology, 29(2):513–524, 2015.

121



[74] Bradley J Udell, Julien Martin, Robert J Fletcher Jr, Mathieu Bonneau, Holly H

Edwards, Timothy A Gowan, Stacie K Hardy, Eliezer Gurarie, Charles S Calleson,

and Charles J Deutsch. Integrating encounter theory with decision analysis to evaluate

collision risk and determine optimal protection zones for wildlife. Journal of Applied

Ecology, 2018.

[75] Zulqarnain Haider, Hadi Charkhgard, and Changhyun Kwon. A robust optimization

approach for solving problems in conservation planning. Ecological modelling, 368:288–

297, 2018.

[76] Benjamin S Halpern, Crow White, Sarah E Lester, Christopher Costello, and Steven D

Gaines. Using portfolio theory to assess tradeoffs between return from natural capital

and social equity across space. Biological Conservation, 144(5):1499–1507, 2011.

[77] Mindy L Mallory and Amy W Ando. Implementing efficient conservation portfolio

design. Resource and Energy Economics, 38:1–18, 2014.

[78] Sergio Alvarez, Sherry L Larkin, and Andrew Ropicki. Optimizing provision of ecosys-

tem services using modern portfolio theory. Ecosystem services, 27:25–37, 2017.

[79] John F Nash Jr. The bargaining problem. Econometrica: Journal of the Econometric

Society, pages 155–162, 1950.

[80] Payman Ghasemi Saghand, Hadi Charkhgard, and Changhyun Kwon. A branch-and-

bound algorithm for a class of mixed integer linear maximum multiplicative programs:

A bi-objective optimization approach. Computers & Operations Research, 101:263–274,

2019.

[81] Harry Markowitz. Portfolio selection. The journal of finance, 7(1):77–91, 1952.

[82] Harry M. Markowitz. Portfolio Selection: Efficient Diversification of Investment. John

Wiley & Sons, New York, 1959.

122



[83] M Özlen and M Azizoğlu. Multi-objective integer programming: A general approach

for generating all non-dominated solutions. European Journal of Operational Research,

199:25–35, 2009.

[84] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L Nemhauser, and Bistra N

Dilkina. Learning to branch in mixed integer programming. In AAAI, pages 724–731,

2016.

[85] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine

learning-based approximation of strong branching. INFORMS Journal on Comput-

ing, 29(1):185–195, 2017.

[86] Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding combinatorial

optimization with uct. In International Conference on Integration of Artificial Intel-

ligence (AI) and Operations Research (OR) Techniques in Constraint Programming,

pages 356–361. Springer, 2012.

[87] He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound

algorithms. In Advances in neural information processing systems, pages 3293–3301,

2014.

[88] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao.

Learning to run heuristics in tree search. In Proceedings of the international joint

conference on artificial intelligence. AAAI Press, Melbourne, Australia, 2017.

[89] Dan Roth and Wen-tau Yih. Integer linear programming inference for conditional

random fields. In Proceedings of the 22nd international conference on Machine learning,

pages 736–743. ACM, 2005.

[90] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-

ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

123



[91] Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and An-

drew Y Ng. On optimization methods for deep learning. In Proceedings of the 28th

International Conference on International Conference on Machine Learning, pages

265–272. Omnipress, 2011.

[92] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for machine

learning. MIT Press, 2012.

[93] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization

of machine learning algorithms. In Advances in neural information processing systems,

pages 2951–2959, 2012.

[94] Dimitris Bertsimas, Angela King, Rahul Mazumder, et al. Best subset selection via a

modern optimization lens. The annals of statistics, 44(2):813–852, 2016.

[95] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of machine learning research, 2(Dec):265–292,

2001.

[96] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.

Support vector machine learning for interdependent and structured output spaces. In

Proceedings of the twenty-first international conference on Machine learning, page 104.

ACM, 2004.

[97] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[98] Anita Prinzie and Dirk Van den Poel. Random forests for multiclass classification:

Random multinomial logit. Expert systems with Applications, 34(3):1721–1732, 2008.

124



[99] Hadi Charkhgard and Ali Eshragh. A new approach to select the best subset

of predictors in linear regression modeling: bi-objective mixed integer linear pro-

gramming. ANZIAM journal, 2019. . Available online. https://doi.org/10.1017/

S1446181118000275.

[100] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B, 58:267–288, 1996.

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

125

https://doi.org/10.1017/S1446181118000275
https://doi.org/10.1017/S1446181118000275


Appendix A: Copyright Permissions

Appendix A1: Reprint Permission for Chapter 3, Sections 3.1 - 3.3

Inst for Operations Research and the Mgmt Sciences (INFORMS) LICENSE
 TERMS AND CONDITIONS
Oct 28, 2019

This is a License Agreement between Alvaro Sierra-Altamiranda ("You") and Inst for
Operations Research and the Mgmt Sciences (INFORMS) ("Inst for Operations Research
and the Mgmt Sciences (INFORMS)") provided by Copyright Clearance Center ("CCC").
The license consists of your order details, the terms and conditions provided by Inst for
Operations Research and the Mgmt Sciences (INFORMS), and the payment terms and
conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the
bottom of this form.

License Number 4697800148480

License date Sep 30, 2019

Licensed content publisher Inst for Operations Research and the Mgmt Sciences (INFORMS)

Licensed content title INFORMS journal on computing

Licensed content date Jan 1, 1996

Type of Use Thesis/Dissertation

Requestor type Author of requested content

Format Electronic

Portion chapter/article

Number of pages in
chapter/article

18

The requesting
person/organization is:

Alvaro Sierra-Altamiranda

Title or numeric reference of the
portion(s)

Chapter 3

Title of the article or chapter the
portion is from

A New Exact Algorithm to Optimize a Linear Function over the Set of Efficient
Solutions for Biobjective Mixed Integer Linear Programs

Editor of portion(s) Alvaro Sierra-Altamiranda

Author of portion(s) Alvaro Sierra-Altamiranda

Volume of serial or monograph. N/A

Page range of the portion 1-18

Publication date of portion Dec/2019

Rights for Main product

Duration of use Life of current edition

Creation of copies for the
disabled

no

With minor editing privileges yes

For distribution to United States

In the following language(s) Original language of publication

With incidental promotional use no

The lifetime unit quantity of new
product

Up to 499

Title Algorithms for Multi-Objective Mixed Integer Programming Problems

Institution name n/a

Expected presentation date Dec 2019

Billing Type Invoice

126



Billing Address Alvaro Sierra-Altamiranda
 4202 E. Fowler Avenue

ENG 302
  

TAMPA, FL 33620
 United States

Attn: Alvaro Sierra-Altamiranda

Total (may include CCC user
fee)

0.00 USD

Terms and Conditions

TERMS AND CONDITIONS
The following terms are individual to this publisher:

None
Other Terms and Conditions:

STANDARD TERMS AND CONDITIONS
1. Description of Service; Defined Terms. This Republication License enables the User to
obtain licenses for republication of one or more copyrighted works as described in detail on
the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”)
grants licenses through the Service on behalf of the rightsholder identified on the Order
Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the
inclusion of a Work, in whole or in part, in a new work or works, also as described on the
Order Confirmation. “User”, as used herein, means the person or entity making such
republication.
2. The terms set forth in the relevant Order Confirmation, and any terms set by the
Rightsholder with respect to a particular Work, govern the terms of use of Works in
connection with the Service. By using the Service, the person transacting for a republication
license on behalf of the User represents and warrants that he/she/it (a) has been duly
authorized by the User to accept, and hereby does accept, all such terms and conditions on
behalf of User, and (b) shall inform User of all such terms and conditions. In the event such
person is a “freelancer” or other third party independent of User and CCC, such party shall
be deemed jointly a “User” for purposes of these terms and conditions. In any event, User
shall be deemed to have accepted and agreed to all such terms and conditions if User
republishes the Work in any fashion.
3. Scope of License; Limitations and Obligations.
3.1 All Works and all rights therein, including copyright rights, remain the sole and
exclusive property of the Rightsholder. The license created by the exchange of an Order
Confirmation (and/or any invoice) and payment by User of the full amount set forth on that
document includes only those rights expressly set forth in the Order Confirmation and in
these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not
expressly granted are hereby reserved.
3.2 General Payment Terms: You may pay by credit card or through an account with us
payable at the end of the month. If you and we agree that you may establish a standing
account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance
Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable
upon their delivery to you (or upon our notice to you that they are available to you for
downloading). After 30 days, outstanding amounts will be subject to a service charge of 1-
1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise
specifically set forth in the Order Confirmation or in a separate written agreement signed by
CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights
licensed immediately upon issuance of the Order Confirmation, the license is automatically
revoked and is null and void, as if it had never been issued, if complete payment for the
license is not received on a timely basis either from User directly or through a payment
agent, such as a credit card company.
3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is
“one-time” (including the editions and product family specified in the license), (ii) is non-
exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions
(such as, but not limited to, limitations on duration of use or circulation) included in the
Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the
licensed use, User shall either secure a new permission for further use of the Work(s) or

127



immediately cease any new use of the Work(s) and shall render inaccessible (such as by
deleting or by removing or severing links or other locators) any further copies of the Work
(except for copies printed on paper in accordance with this license and still in User's stock at
the end of such period).
3.4 In the event that the material for which a republication license is sought includes third
party materials (such as photographs, illustrations, graphs, inserts and similar materials)
which are identified in such material as having been used by permission, User is responsible
for identifying, and seeking separate licenses (under this Service or otherwise) for, any of
such third party materials; without a separate license, such third party materials may not be
used.
3.5 Use of proper copyright notice for a Work is required as a condition of any license
granted under the Service. Unless otherwise provided in the Order Confirmation, a proper
copyright notice will read substantially as follows: “Republished with permission of
[Rightsholder’s name], from [Work's title, author, volume, edition number and year of
copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice
must be provided in a reasonably legible font size and must be placed either immediately
adjacent to the Work as used (for example, as part of a by-line or footnote but not as a
separate electronic link) or in the place where substantially all other credits or notices for the
new work containing the republished Work are located. Failure to include the required notice
results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated
damages for each such failure equal to twice the use fee specified in the Order Confirmation,
in addition to the use fee itself and any other fees and charges specified.
3.6 User may only make alterations to the Work if and as expressly set forth in the Order
Confirmation. No Work may be used in any way that is defamatory, violates the rights of
third parties (including such third parties' rights of copyright, privacy, publicity, or other
tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In
addition, User may not conjoin a Work with any other material that may result in damage to
the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any
infringement of any rights in a Work and to cooperate with any reasonable request of CCC
or the Rightsholder in connection therewith.
4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and
their respective employees and directors, against all claims, liability, damages, costs and
expenses, including legal fees and expenses, arising out of any use of a Work beyond the
scope of the rights granted herein, or any use of a Work which has been altered in any
unauthorized way by User, including claims of defamation or infringement of rights of
copyright, publicity, privacy or other tangible or intangible property.
5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE
RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR
LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS
INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK,
EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their
respective employees and directors) shall not exceed the total amount actually paid by User
for this license. User assumes full liability for the actions and omissions of its principals,
employees, agents, affiliates, successors and assigns.
6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC
HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER
CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS,
GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE
WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED
BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE
RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.

128



7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of
a Work beyond the scope of the license set forth in the Order Confirmation and/or these
terms and conditions, shall be a material breach of the license created by the Order
Confirmation and these terms and conditions. Any breach not cured within 30 days of
written notice thereof shall result in immediate termination of such license without further
notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon
notice thereof may be liquidated by payment of the Rightsholder's ordinary license price
therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any
reason (including, for example, because materials containing the Work cannot reasonably be
recalled) will be subject to all remedies available at law or in equity, but in no event to a
payment of less than three times the Rightsholder's ordinary license price for the most
closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses
incurred in collecting such payment.
8. Miscellaneous.
8.1 User acknowledges that CCC may, from time to time, make changes or additions to the
Service or to these terms and conditions, and CCC reserves the right to send notice to the
User by electronic mail or otherwise for the purposes of notifying User of such changes or
additions; provided that any such changes or additions shall not apply to permissions already
secured and paid for.
8.2 Use of User-related information collected through the Service is governed by CCC’s
privacy policy, available online here:
http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.
8.3 The licensing transaction described in the Order Confirmation is personal to User.
Therefore, User may not assign or transfer to any other person (whether a natural person or
an organization of any kind) the license created by the Order Confirmation and these terms
and conditions or any rights granted hereunder; provided, however, that User may assign
such license in its entirety on written notice to CCC in the event of a transfer of all or
substantially all of User’s rights in the new material which includes the Work(s) licensed
under this Service.
8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed
by the parties. The Rightsholder and CCC hereby object to any terms contained in any
writing prepared by the User or its principals, employees, agents or affiliates and purporting
to govern or otherwise relate to the licensing transaction described in the Order
Confirmation, which terms are in any way inconsistent with any terms set forth in the Order
Confirmation and/or in these terms and conditions or CCC's standard operating procedures,
whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a
separate instrument.
8.5 The licensing transaction described in the Order Confirmation document shall be
governed by and construed under the law of the State of New York, USA, without regard to
the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding
arising out of, in connection with, or related to such licensing transaction shall be brought, at
CCC's sole discretion, in any federal or state court located in the County of New York, State
of New York, USA, or in any federal or state court whose geographical jurisdiction covers
the location of the Rightsholder set forth in the Order Confirmation. The parties expressly
submit to the personal jurisdiction and venue of each such federal or state court.If you have
any comments or questions about the Service or Copyright Clearance Center, please contact
us at 978-750-8400 or send an e-mail to info@copyright.com.
v 1.1

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

129



Appendix A2: Reprint Permission for Chapter 3, Section 3.4

JOHN WILEY AND SONS LICENSE
 TERMS AND CONDITIONS

Oct 05, 2019

This Agreement between Alvaro Sierra-Altamiranda ("You") and John Wiley and Sons
("John Wiley and Sons") consists of your license details and the terms and conditions
provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4678800588675

License date Sep 30, 2019

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication International Transactions in Operational Research

Licensed Content Title OOESAlgorithm.jl: a julia package for optimizing a linear function over the set
of efficient solutions for biobjective mixed integer linear programming

Licensed Content Author Alvaro Sierra‐Altamiranda, Hadi Charkhgard

Licensed Content Date Jun 28, 2019

Licensed Content Volume 0

Licensed Content Issue 0

Licensed Content Pages 13

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Electronic

Portion Full article

Will you be translating? No

Title of your thesis / dissertation Algorithms for Multi-Objective Mixed Integer Programming Problems

Expected completion date Dec 2019

Expected size (number of
pages)

150

Requestor Location Alvaro Sierra-Altamiranda
 4202 E. Fowler Avenue

 ENG 302
  

TAMPA, FL 33620
 United States

 Attn: Alvaro Sierra-Altamiranda

Publisher Tax ID EU826007151

Total 0.00 USD

Terms and Conditions

TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
you opened your RightsLink account (these are available at any time at
http://myaccount.copyright.com).
 
Terms and Conditions

 

130



The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 
 
You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license.
The first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

  
With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

  
NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU. 

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

 

131



 
You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN. 

  
Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

  
The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

  
This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

  
These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 

  
In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

  
WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

132



This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

  
This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-
Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

  
Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

 
Other Terms and Conditions:

  

 
v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

133



Appendix B: Chapter 3

Appendix B1: Documentation of OOESAlgorithm.jl

Characteristics: Some important characteristics of this package are:

• The package can solve any (both structured and unstructured) biobjective mixed

integer linear problem. The following problem classes are supported:

1. Objectives: 2 linear objectives and one extra objective to be optimized over the

efficient set.

2. Constraints: 0 or more linear (both inequality and equality) constraints

3. Variables:

– Binary variables

– Integer variables

– Continuous variables

• A biobjective mixed integer linear instance can be provided as input to the package

in 3 ways:

1. JuMP Model

2. LP file format

3. MPS file format

• Any mixed integer linear programming solver supported by MathProgBase.jl can be

used.

134

https://github.com/JuliaOpt/JuMP.jl


– OOESAlgorithm.jl automatically installs GLPK.jl as the default single-objective

mixed integer linear programming solver. If the user desires to use any other

MIP solver, it must be separately installed. Note that OOESAlgorithm.jl has

been successfully tested with:

1. GLPK - v4.61

2. SCIP - v5.0.1

∗ The file /.julia/packages/SCIP/.../src/mpb_interface.jl of the package

SCIP.jl v0.6.1 has to be modified manually. In lines 185, 186, 192, 193,

207 and 208, numvar(m) has to be changed by MathProgBase.numvar(m).

3. Gurobi - v7.5

4. CPLEX - v12.7

• Supports parallelization.

– Can use how many threads are available when julia is opened.

– Can implement different parallelization types.

• Can be easily modified to compute the entire Pareto-optimal frontier.

– Can compute the nondominated frontier by just tuning a parameter.

Installation: Next you will find the instruuctions to install OOESAlgorithm.jl.

OOESAlgorithm.jl is a package for Julia. To use OOESAlgorithm.jl, first download

and install Julia. Note that the whole ecosystem has been tested using Julia v1.0.2 and

hence we can cannot guarantee whether it will work with previous versions of Julia. Thus, it

is important that a Julia version v1.0.2 or higher is properly installed and available on your

system. Our package is available at the METADATA.jl repository, therefore, from Julia, the

latest released version of OOESAlgorithm.jl is installed by using the package environment:

(v1.0) pkg> add OOESAlgorithm

135

https://github.com/alvsierra286/OOESAlgorithm.jl
https://github.com/JuliaOpt/GLPKMathProgInterface.jl
https://github.com/alvsierra286/OOESAlgorithm.jl
https://github.com/JuliaOpt/GLPKMathProgInterface.jl
https://github.com/SCIP-Interfaces/SCIP.jl
https://github.com/JuliaOpt/Gurobi.jl
https://github.com/JuliaOpt/CPLEX.jl
https://julialang.org/
https://julialang.org/downloads/
https://julialang.org/downloads/
https://github.com/JuliaLang/METADATA.jl


You may also install the package with the latest updates using the built-in package

manager:

julia> import Pkg

julia> Pkg.clone(“https://github.com/alvsierra286/OOESAlgorithm.jl")

julia> Pkg.build(“OOESAlgorithm")

The dependencies of OOESAlgorithm.jl include the following Julia packages:

• MathOptInterface.jl

• MathProgBase.jl

• JuMP.jl

• GLPKMathProgInterface.jl

• GLPK.jl

Note that GLPK.jl is installed with the package, and therefore, used as the default

single-objective mixed integer programming (MIP) solver. However, our package relies on

the MIP solvers supported by the package MathProgBase.jl. In this sense (if available) we

strongly recommend to use other optimization solvers.

Next you will find a list of MIP solvers supported by OOESAlgorithm.jl.

Observe that some of the supported solvers are available for public and academic

use. We refer the users to the links in the table of supported solvers to follow guidelines for

correct installation.

Getting Started: Start guide to introduce the main concepts of OOESAlgorithm.jl.

Once OOESAlgorithm.jl is installed, to use OOESAlgorithm.jl in your programs,

you just need to say:

julia> using OOESAlgorithm

136

https://github.com/JuliaOpt/MathOptInterface.jl
https://github.com/JuliaOpt/MathProgBase.jl
https://github.com/JuliaOpt/JuMP.jl
https://github.com/JuliaOpt/GLPKMathProgInterface.jl
https://github.com/JuliaOpt/GLPK.jl


Solver Julia Package License

Cbc Cbc.jl Eclipse Public License

CPLEX CPLEX.jl Commercial

FICO Xpress Xpress.jl Commercial

GLPK GLPK.jl General Public License

Gurobi Gurobi.jl Commercial

MOSEK MathProgBaseMosek.jl Commercial

SCIP SCIP.jl ZIB Academic License

The main function exported when using OOESAlgorithm.jl is called OOES, and

returns the optimal solution for the problem of optimizing a linear function over the set of

efficient solutions for biobjective mixed integer linear programs. To use this function, we

need to provide the input in file format (LP, MPS) or a JuMP model. For example:

• LP format:

julia> OOES(“input_file.lp")

• MPS format:

julia> OOES(“input_file.mps")

• JuMP model:

julia> model = JuMP.Model()

after creating the model:

julia> OOES(model)

137

https://projects.coin-or.org/Cbc
https://github.com/JuliaOpt/Cbc.jl
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://github.com/JuliaOpt/CPLEX.jl
http://www.fico.com/en/products/fico-xpress-optimization-suite
https://github.com/JuliaOpt/Xpress.jl
http://www.gnu.org/software/glpk/
https://github.com/JuliaOpt/GLPK.jl
http://gurobi.com/
https://github.com/JuliaOpt/Gurobi.jl
http://www.mosek.com/
https://github.com/ulfworsoe/MathProgBaseMosek.jl
http://scip.zib.de/
https://github.com/SCIP-Interfaces/SCIP.jl


OOESAlgorithm.jl assumes that all the functions are in minimization form. In further

section we explain how to consider problems in maximization form.

OOESAlgorithm.jl automatically creates an output summary file with the value of

the objective functions and a solution file with the value of the variables. We can also assign

the optimal solution to a variable:

julia> optimal_solution = OOES(model)

The solution returned has the following information:

vector with the values of the objective functions:

julia> optimal_solution.obj_vals

vector with the values of the variables:

julia> optimal_solution.vars

true when solution is optimal over a nondominated point, false otherwise:

julia> optimal_solution.fxopt

Consider the following BOMILP problem:

min 3x1 + x2

min − x1 − 2x2

subject to: x2 ≤ 3

3x1 − x2 ≤ 6

x1 ∈ R+, x2 ∈ Z+,

and let the linear function we want to optimize over the set of efficient solutions of the

problem be:

−2x1 + 3x2.

138



To represent this problem in any format, we first consider a generic minimization

function equivalent to the sum of all the variables. The order of the variables in this objective

function will correspond to the order of the variables in the output. Then we add the

constraints of the problem, and finally we add the 2 objective functions and the function to

be optimized over the efficient set as additional equality constraints with RHS equal to 0.

The first two functions will be the objective functions of the BOMILP program and the third

function will be the linear function to be optimized over the efficient set. In some cases, when

using a JuMP model, objective functions can be confused with some other equality constraints

with RHS equal to 0. In this case, replace the equality constraint with two constraints (one

≥ and the other ≤).
The following box represents the text of the BOMILP problem in LP file format:

Minimize

obj: x1+x2

Subject To

c1: x2 <= 3

c2: 3 x1 - x2 <= 6

c3: 3 x1 + x2 = 0

c4: - x1 - 2 x2 = 0

c5: -2 x1 + 3 x2 = 0

Bounds

0 <= x1 <= 1e10

0 <= x2 <= 1e10

General

x2

End

The following box represents the text of the BOMILP problem in MPS file format:

139



ROWS

N obj

L c1

L c2

E c3

E c4

E c5

COLUMNS

x1 obj 1

x1 c2 3

x1 c3 3

x1 c4 -1

x1 c5 -2

MARK0000 ’MARKER’ ’INTORG’

x2 obj 1

x2 c1 1

x2 c2 -1

x2 c3 1

x2 c4 -2

x2 c5 3

MARK0001 ’MARKER’ ’INTEND’

RHS

rhs c1 3

rhs c2 6

BOUNDS

UP bnd x1 10000000000

UP bnd x2 10000000000

ENDATA

And finally, the following box shows the julia commands to represent the BOMILP

as a JuMP model:

140



julia> using JuMP

julia> model = JuMP.Model()

julia> @variable(model, 0 <= x1 <= 1e10)

julia> @variable(model, 0 <= x2 <= 1e10, Int)

julia> @objective(model, Min, x1 + x2)

julia> @constraint(model, x2 <= 3)

julia> @constraint(model, 3x1 - x2 <= 6)

julia> @constraint(model, 3x1 + x2 == 0)

julia> @constraint(model, -x1 - 2x2 == 0)

julia> @constraint(model, -2x1 + 3x2 == 0)

Advanced Features: In this section we explain some of the advanced features of

OOESAlgorithm.jl. The advanced features are divided in tuning parameters, solver selection

and parallelization. Additionally, we include some test files that run our package under

some scenarios with the default parameters. For instance, lets assume that our input is a

JuMP.Model() called model.

Time Limit: Time limit is a termination condition of OOESAlgorithm.jl. When the

running time of OOESAlgorithm.jl reach the time limit, it automatically stops. By default,

OOESAlgorithm.jl finish the current iteration before exiting. The default value for the time

limit is 86400.0 seconds, which is equivalent to one day. The following command must be

followed in order to modify the time limit:

julia> OOES(model, timelimit=α)

where α is a floating number with the new time limit in seconds.

For example, if we want to run our package for one hour, then we must type:

julia> OOES(model, timelimit=3600.0)

141



Relative Gap: The relative gap is a termination condition of the single-objective MIP

solver implemented in OOESAlgorithm.jl. The relative gap by default is 1.0−6. To change

this value, we must type:

julia> OOES(model, relative_gap=β)

where β is a floating number with the new relative gap.

For example, if we want to run our package with a relative gap of 1.0−9, then we must

type:

julia> OOES(model, relative_gap=1.0e-9)

Optimization Sense: The optimization sense is a parameter that let us declare if the

objective function is in minimization or maximization form. By default, the sense of all

objective functions is minimization, however, we can change that by tuning the vector sense

in OOESAlgorithm.jl. For example, if our first objective function is in minimization form,

while the second and third functions are in maximization form, we must type:

julia> OOES(model, sense=[:Min, :Max, :Max])

Solver Selection: OOESAlgorithm.jl offers two different options to select the single-

objective MIP solver to implement. One of the options is by tuning the parameter mipsolver,

and the other by tuning the parameter mip_solver.

mipsolver: OOESAlgorithm.jl automatically detects if some of the most popular

solvers are installed, and mipsolver represents one of the solvers with an integer number.

The list of the solvers with their respective mipsolver number is shown next:

For example, if we want to run our package with CPLEX.jl (if CPLEX is available

and properly installed), then we must type:

julia> OOES(model, mipsolver=3)

142



Solver mipsolver

GLPK.jl 1

Gurobi.jl 2

CPLEX.jl 3

SCIP.jl 4

Xpress.jl 5

mip_solver: We can tune the parameter mip_solver when using OOESAlgorithm.jl

to explore advanced settings in the single-objective MIP solvers. This feature is recommended

for advanced users. A list with some of the solvers with their respective mip_solver code is

shown next:

Solver mip_solver

Gurobi.jl GurobiSolver(OutputFlag=φ, Threads=ρ, MIPGap=γ)

CPLEX.jl CplexSolver(CPX_PARAM_SCRIND=φ, CPX_PARAM_THREADS=ρ, CPX_PARAM_EPGAP=γ)

SCIP.jl SCIPSolver(“display/verblevel", φ, “limits/gap", γ)

Xpress.jl Xpress.XpressSolver(XPRS_OUTPUTLOG=φ, XPRS_THREADS=ρ, XPRS_STOP_MIPGAP=γ)

where φ indicates the level of verbosity of the MIP solver, ρ is the number of threads (if

multiple processors are available, we strongly recommend to declare ρ = 1 and exploit

parallelization by tuning the parallelization parameters), and γ is the relative gap. For

example, if we want to run our package with Gurobi.jl (Given that Gurobi is available and

properly installed), with no screen information, 1 thread and relative gap of 1.0−12 then we

must type:

julia> OOES(model, mip_solver=GurobiSolver(OutputFlag=0, Threads=1,

MIPGap=1e-12))

Note that, if the solver is not detected by the package, it must be added manually as

shown in the next example:

julia> using OOESAlgorithm, MathProgBaseMosek

143



Parallelization: In this section, we explain two important parameters to exploit par-

allelization in our package. In order to enable multiple processors, we must type in the

terminal the following code:

∼ $ julia -p Ω

where Ω is the number of processors to enable.

For example, if we want to enable 3 processors, then we must type:

∼ $ julia -p 3

Number Of Threads: Once we enable multiple processors, we can tune a parameter

to declare the number of threads we want to use. This parameter should have a value lesser

or equal to the number of available processors. The following command must be followed in

order to modify the number of threads:

julia> OOES(model, threads=σ)

where σ is an integer number with the new number of threads to use.

For example, if we want to run our package with three threads, then we must type:

julia> OOES(model, threads=3)

Parallelization Techniques: We can tune a parameter to exploit different paralleliza-

tion techniques. There are a total of 4 techniques, three based on cuts in the criterion space

and one based on the elements of the priority queue of the algorithm. To choose between

the different parallelization techniques, we tune the parameter parallelization, which is an

integer number. The list parallelization techniques with their respective parameter value are

shown next:

The following command must be followed in order to choose a different parallelization

technique:

144



Technique parallelization

Horizontal cuts 1

Vertical cuts 2

Diagonal cuts 3

Elements of the Priority Queue 4

julia> OOES(model, parallelization=θ)

where θ is an integer number that represents the parallelization technique to use.

For example, if we want to run our package, using diagonal cuts, then we must type:

julia> OOES(model, parallelization=3)

Computing The Pareto-Optimal Frontier: The package can easily be modified to com-

pute the entire Pareto-optimal frontier of a biobjective mixed integer linear programming.

The name of the parameter to tune is pareto_frontier, a boolean variable that indicates that

the package will compute the Pareto-optimal frontier when the value is true. For example,

if we want to get the Pareto-optimal frontier, using our package, we must type:

julia> OOES(model, pareto_frontier=true)

The algorithm implemented to compute the Pareto-optimal frontier is the Triangle

Splitting Method . The output of the package contains the points in the Pareto-optimal

frontier, organized in non-decreasing order of the first objective function, and a boolean

parameter that indicates if such point is connected to the next point in the frontier by a line

or not. If connected, then the connection is a line contained in the Pareto-optimal frontier.

145

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2015.0646
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2015.0646


Please be aware of the following observation: to be sure that our package is computing

the exact nondominated frontier, the input file must have 3 objectives just as if we were

optimizing the linear function over the efficient set, i.e., 3 constraints equal to 0. The order

of the objectives is the same as the explained in the subsection ‘Creating The Input For

OOESAlgorithm.jl’. The third objective function will automatically be obviated by the

package, therefore we may consider any simple function. Additionally, the package returns

a vector with the points Pareto-optimal frontier and the solutions correspondent to such

points. An example to obtain the vector is shown next:

julia> Pareto_optimal_frontier = OOES(model, pareto_frontier=true)

In this example, the variable Pareto_optimal_frontier is a vector with as many po-

sitions as the points discovered in the nondominated frontier. Each position will contain the

following information:

vector with the values of the objective functions in the point ξ of the Pareto-optimal

frontier:

julia> Pareto_optimal_frontier[ξ].obj_vals

vector with the values of the variables in the point ξ of the Pareto-optimal frontier:

julia> Pareto_optimal_frontier[ξ].vars

true when the point ξ is connected to the next point of the Pareto-optimal frontier by

a line:

julia> Pareto_optimal_frontier[ξ].fxopt

The parameter pareto_frontier also supports parallelization, however, it doesn’t support the

fourth technique, i.e., parallelization=4.

146



Testing: We provide our package with a test located in OOESAlgorithm.jl/test/ to

check the installation. After installing OOESAlgorithm.jl, open julia in a new terminal, go

to pkg environment and execute the following code:

(v1.0) pkg> test OOESAlgorithm

The test executes a total of three examples, one of them a JuMP model, and the

other two LP and MPS files. If the installation of OOESAlgorithm.jl was successful and the

solver returns the optimal values for the objective functions, the following message should

appear:

Solution test 1: [-276.667, -257.333, -443.0]

Test 1 Successful

Solution test 2: [-276.667, -257.333, -443.0]

Test 2 Successful

Solution test 3: [-276.667, -257.333, -443.0]

Test 3 Successful

Testing OOESAlgorithm tests passed

Contributions: This package is written and maintained by Alvaro Sierra-Altamiranda.

Please fork and send a pull request or create a GitHub issue for bug reports or feature

requests.

147

https://github.com/alvsierra286
https://github.com/alvsierra286/OOESAlgorithm.jl/issues


Appendix C: Chapter 4

Appendix C1: Neighboring Constraints

B1 For each parcel j, let xj be a binary decision variable indicating whether a parcel

should be selected (xj = 1) or not (xj = 0). Based on this definition, a common constraint

when formulating SCP problems is that a given parcel i can be selected only if parcel j is

selected. To enforce this, one can implement the following constraint,

xi − xj ≤ 0. (1)

In contrast, if the desired result is to protect at most one of the parcels i and j, then

the following constraint must be added,

xi + xj ≤ 1. (2)

Let C be the set of parcels neighboring a given parcel j. Then, one can define the

following constraint to ensure that parcel j can be selected only if at least one of its neighbors

is also selected, ∑
i∈C

xi − xj ≥ 0. (3)

One can also define the following constraint to ensure that parcel j can be selected

only if all of its neighbors are also selected,

∑
i∈C

xi − |C|xj ≥ 0. (4)

148



Now let n < |C| be an integer number. Then, one can define the following constraint

to ensure that parcel j can be selected only if at least n neighbors are also selected,

∑
i∈C

xi − nxj ≥ 0. (5)

One can also define the following constraint to ensure that parcel j can be selected

only if at most n neighbors are also selected,

∑
i∈C

xi + (|C| − n)xj ≤ |C|. (6)

Finally, one can define the following constraint to ensure that parcel j can be selected

only if none of its neighbors is selected,

∑
i∈C

xi + |C|xj ≤ |C|. (7)

Appendix C2: Data for the Example

In this appendix, we provide the data used for the numerical example in subsec-

tion 4.3.2.

149



Table B2.1 – Parcels data

Parcel Initial State Return ($) Variance (×105) Size Parcel Initial State Return ($) Variance (×105) Size
1 Unprotected 0.1 0.007 453.63 26 Unprotected 0.2 17.326 167.15
2 Unprotected 0.1 0.009 8.71 27 Unprotected 2.8 4.090 8.95
3 Unprotected 1.3 950.404 5.89 28 Unprotected 0.5 30.355 13.59
4 Unprotected 0.1 0.069 278.53 29 Protected 2.0 11.949 1,298.25
5 Unprotected 0.0 0.012 9.18 30 Protected 3.4 82.591 334.15
6 Protected 1.7 50.037 154.40 31 Unprotected 1.7 5,119.985 155.94
7 Unprotected 0.2 0.222 8.54 32 Unprotected 0.1 0.037 365.88
8 Protected 1.2 115.276 160.80 33 Unprotected 0.2 0.018 18.05
9 Unprotected 0.1 0.109 9.70 34 Unprotected 2.9 2.374 8.14
10 Protected 2.8 2,074.640 58.99 35 Unprotected 0.0 0.011 15.41
11 Unprotected 0.4 0.587 14.08 36 Protected 0.8 25.733 149.32
12 Protected 0.5 98.375 359.54 37 Unprotected 0.1 0.273 590.54
13 Unprotected 0.1 2,379.336 6.80 38 Unprotected 0.0 0.000 16.99
14 Protected 0.1 0.000 16.84 39 Unprotected 0.7 20.110 7.23
15 Unprotected 0.8 20.500 15.94 40 Protected 0.8 14.030 113.07
16 Unprotected 0.5 42.332 15.05 41 Unprotected 0.5 9.882 9.42
17 Unprotected 0.1 0.051 7.54 42 Unprotected 0.0 0.008 12.96
18 Unprotected 0.1 0.420 109.45 43 Unprotected 0.1 0.828 6.12
19 Unprotected 0.0 0.004 89.77 44 Unprotected 0.0 0.097 8.80
20 Protected 0.4 0.204 129.79 45 Protected 2.0 155.901 47.34
21 Unprotected 0.0 0.002 8.30 46 Protected 0.3 2.610 110.42
22 Unprotected 0.9 3,103.866 34.62 47 Unprotected 0.1 0.074 26.94
23 Unprotected 0.6 5.819 10.60 48 Protected 0.0 0.000 10.06
24 Protected 0.8 1.858 5.56 49 Unprotected 0.0 0.006 9.61
25 Protected 0.1 0.000 26.70 50 Unprotected 0.0 0.004 19.74

150



Table B2.2 – Correlation between pairs of parcels

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

1
1.0

0
0.3

8
0.1

6
-0.

21
-0.

46
-0.

29
-0.

64
-0.

07
-0.

43
0.8

4
-0.

62
-0.

27
-0.

01
-0.

95
0.0

9
-0.

03
0.8

8
-0.

55
-0.

45
0.3

4
-0.

42
-0.

19
0.1

6
-0.

26
-0.

95
-0.

73
-0.

58
0.0

1
-0.

46
0.8

0
-0.

67
0.9

5
-0.

53
-0.

47
-0.

38
-0.

09
-0.

64
-0.

43
0.1

7
0.9

0
-0.

40
-0.

05
0.8

6
-0.

48
-0.

02
0.4

6
0.8

8
-0.

14
-0.

54
-0.

08
2

.
1.0

0
0.8

9
0.7

1
0.5

2
-1.

00
0.3

8
-0.

86
0.5

5
0.3

0
0.3

5
-0.

99
0.8

3
-0.

48
0.7

8
0.8

1
0.3

4
0.4

1
0.5

1
-0.

57
0.5

3
-0.

89
0.8

7
0.6

5
-0.

57
0.2

4
0.3

7
0.7

7
0.4

8
-0.

19
0.2

3
0.6

8
0.3

6
0.4

6
0.5

6
0.7

2
0.3

1
0.4

6
0.9

4
0.1

8
0.5

1
0.7

4
0.8

3
0.5

4
-0.

83
-0.

48
0.3

1
-0.

88
0.4

4
0.8

1
3

.
.

1.0
0

0.7
9

0.6
9

-0.
91

0.6
4

-0.
87

0.8
2

0.0
6

0.6
1

-1.
00

0.9
3

-0.
24

0.8
8

0.9
1

0.0
6

0.6
4

0.7
3

-0.
79

0.7
0

-0.
99

0.9
7

0.7
6

-0.
28

0.5
2

0.5
7

0.8
7

0.7
6

-0.
44

0.5
2

0.4
2

0.5
8

0.6
7

0.7
1

0.9
3

0.5
1

0.7
0

0.8
8

-0.
09

0.6
9

0.8
2

0.7
2

0.7
3

-0.
90

-0.
71

0.0
5

-1.
00

0.6
1

0.9
7

4
.

.
.

1.0
0

0.8
5

-0.
71

0.8
8

-0.
94

1.0
0

-0.
30

0.8
7

-0.
77

0.8
6

0.1
3

0.9
5

0.9
5

-0.
31

0.8
2

0.8
8

-0.
91

0.9
3

-0.
90

0.7
8

0.9
8

0.0
9

0.8
0

0.8
6

0.8
7

0.9
0

-0.
79

0.8
3

0.1
0

0.7
8

0.9
2

0.8
9

0.8
7

0.7
6

0.9
3

0.8
9

-0.
44

0.9
9

0.9
4

0.3
5

0.7
9

-0.
94

-0.
91

-0.
36

-0.
81

0.8
9

0.8
4

5
.

.
.

.
1.0

0
-0.

52
1.0

0
-0.

70
0.8

6
-0.

56
0.8

5
-0.

56
0.8

6
0.3

9
0.7

1
0.8

4
-0.

57
0.9

4
0.9

6
-0.

84
0.9

8
-0.

65
0.6

8
0.9

6
0.3

8
0.8

9
0.9

0
0.7

4
0.8

3
-0.

88
0.8

3
-0.

20
0.8

7
0.8

6
0.9

0
0.8

7
0.8

5
0.9

0
0.6

4
-0.

67
0.9

3
0.8

5
0.0

7
0.9

3
-0.

84
-0.

95
-0.

61
-0.

78
0.9

8
0.7

6
6

.
.

.
.

.
1.0

0
-0.

44
0.9

3
-0.

60
-0.

22
-0.

48
0.8

9
-0.

87
0.4

4
-0.

95
-0.

83
-0.

25
-0.

58
-0.

66
0.6

7
-0.

61
1.0

0
-0.

89
-0.

80
0.4

5
-0.

32
-0.

47
-0.

84
-0.

66
0.3

1
-0.

35
-0.

65
-0.

51
-0.

57
-0.

67
-0.

82
-0.

40
-0.

59
-0.

89
-0.

09
-0.

66
-0.

93
-0.

83
-0.

56
0.8

4
0.5

4
-0.

25
0.9

7
-0.

47
-0.

89
7

.
.

.
.

.
.

1.0
0

-0.
72

0.8
6

-0.
65

0.9
0

-0.
50

0.6
7

0.5
2

0.6
4

0.6
9

-0.
61

0.9
6

0.8
6

-0.
93

0.8
7

-0.
55

0.5
9

0.8
4

0.5
4

0.8
5

0.8
7

0.6
5

0.9
2

-0.
93

0.9
4

-0.
32

0.9
1

0.9
8

0.9
7

0.7
7

0.9
5

0.9
8

0.6
6

-0.
77

0.9
0

0.6
8

-0.
06

0.8
8

-0.
72

-0.
87

-0.
61

-0.
60

0.9
2

0.7
4

8
.

.
.

.
.

.
.

1.0
0

-0.
87

0.0
4

-0.
63

0.9
2

-0.
99

0.1
6

-0.
96

-0.
91

0.0
3

-0.
71

-0.
73

0.8
0

-0.
81

0.9
6

-0.
88

-0.
87

0.1
9

-0.
55

-0.
64

-0.
88

-0.
74

0.5
2

-0.
56

-0.
35

-0.
69

-0.
66

-0.
85

-0.
91

-0.
63

-0.
73

-1.
00

0.1
7

-0.
82

-0.
91

-0.
61

-0.
80

0.9
6

0.7
7

0.0
4

1.0
0

-0.
66

-0.
86

9
.

.
.

.
.

.
.

.
1.0

0
-0.

47
1.0

0
-0.

65
0.9

3
0.3

5
0.7

6
0.8

7
-0.

50
0.9

8
0.9

2
-0.

94
0.8

9
-0.

70
0.7

7
0.8

8
0.2

7
0.9

2
0.8

4
0.9

1
0.9

1
-0.

86
0.9

2
-0.

12
0.8

6
0.9

1
0.9

2
0.8

9
0.9

6
0.9

3
0.6

9
-0.

58
0.9

1
0.8

8
0.1

6
1.0

0
-0.

81
-0.

90
-0.

50
-0.

79
0.8

8
0.8

8
10

.
.

.
.

.
.

.
.

.
1.0

0
-0.

62
-0.

19
-0.

11
-0.

88
-0.

01
-0.

15
1.0

0
-0.

56
-0.

60
0.4

7
-0.

48
-0.

07
0.0

5
-0.

34
-1.

00
-0.

71
-0.

65
-0.

10
-0.

57
0.8

7
-0.

77
0.8

7
-0.

70
-0.

53
-0.

49
-0.

20
-0.

78
-0.

53
0.0

5
0.9

4
-0.

45
-0.

17
0.7

5
-0.

55
0.0

9
0.5

9
0.9

6
-0.

04
-0.

65
-0.

20
11

.
.

.
.

.
.

.
.

.
.

1.0
0

-0.
49

0.7
9

0.4
7

0.6
2

0.6
9

-0.
60

1.0
0

0.9
3

-0.
94

0.8
4

-0.
60

0.6
3

0.8
5

0.4
7

0.9
0

0.9
9

0.7
7

0.8
2

-0.
92

0.8
7

-0.
32

0.8
9

0.9
4

0.9
2

0.7
0

0.9
4

0.8
9

0.6
0

-0.
68

0.8
3

0.7
8

-0.
06

0.8
7

-0.
64

-0.
86

-0.
65

-0.
66

0.9
3

0.7
2

12
.

.
.

.
.

.
.

.
.

.
.

1.0
0

-0.
88

0.3
5

-0.
87

-0.
89

-0.
20

-0.
61

-0.
59

0.6
6

-0.
61

0.9
7

-0.
94

-0.
71

0.3
7

-0.
36

-0.
51

-0.
86

-0.
61

0.3
6

-0.
34

-0.
52

-0.
48

-0.
56

-0.
63

-0.
84

-0.
42

-0.
58

-0.
88

-0.
05

-0.
61

-0.
85

-0.
79

-0.
64

0.8
2

0.6
0

-0.
20

0.9
0

-0.
56

-0.
78

13
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

06
0.8

3
1.0

0
-0.

10
0.7

8
0.8

3
-0.

82
0.8

0
-0.

94
0.8

7
0.9

0
-0.

10
0.6

6
0.7

6
0.9

0
0.8

0
-0.

60
0.6

7
0.3

0
0.7

0
0.8

1
0.8

8
0.9

1
0.6

0
0.8

3
0.9

9
-0.

25
0.7

7
0.9

6
0.5

4
0.7

7
-0.

98
-0.

78
-0.

12
-0.

85
0.7

0
0.8

8
14

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

16
-0.

04
-1.

00
0.4

5
0.3

5
-0.

25
0.3

5
0.2

8
-0.

25
0.2

1
0.9

1
0.6

1
0.5

2
-0.

08
0.3

5
-0.

72
0.6

9
-0.

89
0.5

3
0.4

4
0.3

8
0.0

1
0.6

1
0.4

1
-0.

23
-0.

93
0.3

4
-0.

02
-0.

85
0.4

3
0.0

9
-0.

38
-0.

90
0.2

4
0.5

2
0.0

0
15

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.8
7

0.0
0

0.6
9

0.7
8

-0.
84

0.8
4

-0.
98

1.0
0

0.8
4

-0.
22

0.5
5

0.6
9

0.8
5

0.6
8

-0.
48

0.5
6

0.3
6

0.6
6

0.6
6

0.7
3

0.9
1

0.6
1

0.8
0

0.9
8

-0.
15

0.7
4

0.9
1

0.5
7

0.8
0

-0.
89

-0.
72

-0.
01

-0.
85

0.6
6

0.8
8

16
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

-0.
12

0.7
8

0.8
2

-0.
93

0.8
0

-0.
94

0.9
3

0.9
6

-0.
08

0.6
4

0.7
1

0.8
4

0.8
6

-0.
64

0.6
2

0.2
7

0.7
6

0.7
5

0.8
4

1.0
0

0.6
2

0.8
2

0.8
7

-0.
28

0.8
4

0.8
7

0.4
6

0.8
1

-0.
86

-0.
75

-0.
13

-0.
87

0.7
0

0.9
7

17
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

60
-0.

57
0.4

1
-0.

46
-0.

07
0.0

5
-0.

36
-0.

93
-0.

81
-0.

68
-0.

11
-0.

50
0.8

0
-0.

82
0.8

7
-0.

63
-0.

58
-0.

50
-0.

18
-0.

76
-0.

55
0.0

6
0.9

4
-0.

51
-0.

16
0.7

6
-0.

59
0.0

8
0.4

9
1.0

0
-0.

05
-0.

62
-0.

16
18

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
0.9

2
-0.

97
0.8

3
-0.

70
0.7

3
0.8

5
0.3

9
0.9

2
0.9

3
0.7

4
0.9

1
-0.

95
0.8

7
-0.

23
0.9

0
0.8

7
0.9

2
0.8

1
0.9

6
0.9

9
0.6

5
-0.

71
0.9

3
0.8

6
0.0

1
0.9

5
-0.

83
-0.

85
-0.

64
-0.

65
0.9

6
0.7

9
19

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

-0.
89

0.8
5

-0.
78

0.7
7

0.9
7

0.3
5

0.9
6

0.9
4

0.7
8

0.8
8

-0.
82

0.8
4

-0.
18

1.0
0

0.8
6

0.8
6

0.7
7

0.9
3

1.0
0

0.7
4

-0.
64

0.9
7

0.8
1

0.1
1

0.9
9

-0.
87

-0.
85

-0.
60

-0.
81

0.9
2

0.8
8

20
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

-0.
83

0.8
1

-0.
83

-1.
00

-0.
25

-0.
82

-0.
85

-0.
86

-1.
00

0.8
7

-0.
89

0.0
5

-0.
88

-0.
88

-0.
93

-0.
82

-0.
86

-0.
90

-0.
83

0.6
1

-0.
93

-0.
96

-0.
24

-0.
93

0.9
3

0.9
8

0.4
8

0.7
7

-0.
96

-0.
84

21
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

70
0.7

4
1.0

0
0.3

0
0.8

8
0.8

7
0.7

5
0.9

0
-0.

78
0.8

4
-0.

14
0.9

5
0.8

5
0.9

3
0.8

8
0.8

0
0.9

1
0.6

9
-0.

68
0.9

9
0.7

9
0.1

5
1.0

0
-0.

81
-0.

95
-0.

59
-0.

79
0.9

4
0.9

4
22

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

99
-0.

81
0.2

7
-0.

45
-0.

56
-0.

89
-0.

77
0.4

6
-0.

51
-0.

47
-0.

57
-0.

71
-0.

72
-0.

96
-0.

54
-0.

63
-0.

89
0.0

7
-0.

75
-0.

88
-0.

64
-0.

70
0.9

7
0.6

8
-0.

07
0.9

0
-0.

61
-0.

92
23

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.7
6

-0.
29

0.4
5

0.5
9

0.8
2

0.7
8

-0.
43

0.4
7

0.4
4

0.5
8

0.6
5

0.7
5

0.8
2

0.5
5

0.6
8

0.8
8

-0.
09

0.7
5

0.8
5

0.6
3

0.7
0

-0.
92

-0.
69

0.0
5

-0.
87

0.6
2

0.8
6

24
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.1
8

0.7
9

0.8
5

0.9
7

0.9
3

-0.
81

0.8
0

0.0
2

0.9
3

0.9
6

0.8
7

0.9
0

0.8
6

0.9
8

0.7
7

-0.
55

0.9
4

0.9
2

0.3
0

0.9
8

-0.
82

-0.
99

-0.
39

-0.
91

0.8
9

0.8
9

25
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
0.6

2
0.4

7
-0.

13
0.3

3
-0.

73
0.5

8
-0.

91
0.5

1
0.4

6
0.3

1
-0.

03
0.5

4
0.4

2
-0.

26
-0.

82
0.3

2
-0.

05
-0.

81
0.4

1
0.1

2
-0.

35
-0.

97
0.2

7
0.5

2
-0.

04
26

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.8
9

0.5
8

0.9
2

-1.
00

0.9
0

-0.
41

0.9
6

0.9
1

0.7
7

0.7
1

1.0
0

0.8
1

0.4
9

-0.
88

0.8
2

0.7
1

-0.
23

0.7
9

-0.
60

-0.
91

-0.
81

-0.
47

0.8
8

0.6
7

27
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
0.7

6
0.8

6
-0.

87
0.9

9
-0.

31
0.9

0
0.9

9
0.8

1
0.8

2
1.0

0
0.9

7
0.6

4
-0.

73
0.9

1
0.7

6
-0.

06
0.8

8
-0.

68
-0.

95
-0.

66
-0.

60
0.8

3
0.7

8
28

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
0.8

0
-0.

58
0.6

4
0.2

8
0.7

8
0.7

7
0.8

0
0.9

4
0.6

5
0.8

8
0.9

6
-0.

26
0.8

2
0.8

5
0.5

8
0.8

2
-0.

86
-0.

83
-0.

10
-0.

85
0.7

6
1.0

0
29

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

-0.
77

0.8
7

-0.
16

0.9
6

0.9
5

0.9
7

0.8
9

0.8
8

0.9
4

0.7
7

-0.
64

0.9
4

0.8
4

0.1
0

0.8
9

-0.
87

-0.
85

-0.
51

-0.
71

0.9
7

0.8
5

30
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

-0.
89

0.5
2

-0.
91

-0.
95

-0.
79

-0.
61

-0.
98

-0.
91

-0.
42

0.9
0

-0.
88

-0.
59

0.2
7

-0.
92

0.5
8

0.8
9

0.7
5

0.4
4

-0.
86

-0.
58

31
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

45
0.9

5
0.9

5
0.8

5
0.6

7
0.9

5
0.9

5
0.4

4
-0.

80
0.8

2
0.7

1
-0.

21
0.9

2
-0.

57
-0.

93
-0.

78
-0.

46
0.9

5
0.6

5
32

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

33
-0.

23
-0.

14
0.2

0
-0.

44
-0.

19
0.4

9
0.8

1
-0.

11
0.2

6
1.0

0
-0.

19
-0.

32
0.1

7
0.8

2
-0.

46
-0.

29
0.2

2
33

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.9
9

0.9
6

0.7
5

1.0
0

0.9
9

0.6
2

-0.
67

0.8
3

0.7
9

-0.
05

0.8
6

-0.
68

-0.
90

-0.
62

-0.
56

0.9
0

0.7
8

34
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.8
6

0.8
7

0.9
4

1.0
0

0.6
6

-0.
65

0.9
1

0.8
4

0.0
3

0.9
3

-0.
76

-0.
92

-0.
58

-0.
65

0.9
9

0.8
4

35
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
0.8

1
0.8

5
0.9

9
0.7

2
-0.

59
1.0

0
0.7

7
0.1

3
0.8

4
-0.

78
-1.

00
-0.

47
-0.

79
0.8

5
0.8

0
36

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
0.6

7
0.8

9
0.8

4
-0.

33
0.9

0
0.9

0
0.4

4
0.8

0
-0.

86
-0.

92
-0.

20
-0.

95
0.8

1
0.8

6
37

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.8
2

0.5
6

-0.
79

0.8
5

0.7
2

-0.
15

0.9
0

-0.
64

-0.
91

-0.
73

-0.
53

0.8
3

0.7
5

38
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.7
4

-0.
69

0.8
7

0.8
8

0.0
7

0.9
8

-0.
74

-0.
98

-0.
58

-0.
70

0.9
9

0.7
7

39
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

09
0.6

8
0.9

1
0.6

8
0.6

9
-0.

99
-0.

76
0.0

6
-0.

98
0.5

8
0.8

9
40

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

68
-0.

33
0.6

5
-0.

67
0.2

7
0.7

4
0.9

3
0.1

0
-0.

79
-0.

33
41

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.7
7

0.1
7

0.8
6

-0.
82

-0.
96

-0.
53

-0.
78

0.8
9

0.9
0

42
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.4
4

0.8
1

-1.
00

-0.
83

-0.
18

-0.
87

0.8
2

0.9
6

43
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
0.0

8
-0.

55
-0.

10
0.6

8
-0.

69
-0.

02
0.4

8
44

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

85
-0.

91
-0.

55
-0.

71
1.0

0
0.8

9
45

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.7
4

0.1
0

0.8
6

-0.
71

-0.
91

46
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.5
9

0.7
8

-0.
97

-0.
81

47
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

04
-0.

67
-0.

19
48

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1.0

0
-0.

62
-0.

92
49

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

0.8
3

50
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1.0
0

151



Appendix D: Chapter 5

Appendix D1: List of Features

In this section, we present all 5p2 +106p−50 features that we used in this study. Note

that since p = 3 in our computational study, the total number of features are 313 features.

For convenience, we partition all the proposed features into some subsets and present them

next. We use the letter F to represent each subset.

The first subset of features is F 1 = {cᵀ1x̃, c
ᵀ
2x̃, . . . , c

ᵀ
px̃}, which will be automatically

computed during the pre-ordering process. To incorporate the impact of the size of an

instance in the learning process, we introduce F 2 = {n}, F 3 = {m}, and F 4 = {density(A)}.

To incorporate the impact of zero coefficients of the objective functions in the learning

process, for each i ∈ {1, . . . , p} we introduce:

F 5
i = {size(S5

i )},

where S5
i = {c ∈ ci : c = 0}. To incorporate the impact of positive coefficients of the

objective functions in the learning process, for each i ∈ {1, . . . , p} we introduce:

F 6
i = {size(S6

i ),Avg(S6
i ),Min(S6

i ),Max(S6
i ), Std(S6

i ),Median(S6
i )},

where S6
i = {c ∈ ci : c > 0}. To incorporate the impact of negative coefficients of the

objective functions in the learning process, for each i ∈ {1, . . . , p} we introduce:

F 7
i = {size(S7

i ),Avg(S7
i ),Min(S7

i ),Max(S7
i ), Std(S7

i ),Median(S7
i )},

152



where S7
i = {c ∈ ci : c < 0}. To establish a relation between the objective functions and A

in the learning process, for each i ∈ {1, . . . , p} we introduce:

F 8
i = {Avg(S8

i ),Min(S8
i ),Max(S8

i ), Std(S8
i ),Median(S8

i )},

where S8
i = ∪j∈{1,...,m}{cᵀia

ᵀ
j.} and aj. represents row j of matrix A. For the same purpose,

for each i ∈ {1, . . . , p} we also introduce:

F 9
i = cᵀi × Aᵀ × b.

For each j ∈ {1, . . . ,m}, let b′j := bj + 1 if bj ≥ 0 and b′j := bj − 1 otherwise. To

establish a relation between the positive and negative coefficients in the objective functions

and b in the learning process, for each i ∈ {1, . . . , p} and k ∈ {10, 11} we introduce:

F k
i = {Avg(Ski ),Min(Ski ),Max(Ski ), Std(Ski ),Median(Ski )},

where S10
i = ∪j∈{1,...,m}{

∑
c∈S6

i
c

b′j
} and S11

i = ∪j∈{1,...,m}{
∑

c∈S7
i
c

b′j
}.

For each i ∈ {1, . . . , p}, let li := minx∈XLR
zi(x) and ui := maxx∈XLR

zi(x) where

XLR is the linear programming relaxation of X . To incorporate the impact of the volume of

the search region in a projected criterion space, i.e., a (p− 1)-dimensional criterion space, in

the learning process, for each i ∈ {1, . . . , p} we introduce:

F 12
i =

∏
j∈{1,...,p}\{i}

(uj − lj).

Let c̄′i :=
∑

c∈ci
|c|

n
be the average of the absolute values of the elements in the objective

i ∈ {1, . . . , p}. Note that we understand that ci is a vector (and not a set) and hence c ∈ ci

is not a well-defined mathematical notation. However, for simplicity, we keep this notation

as is and basically treat each component of the vector as an element.

153



We also introduce some features that measures the size of an instance in an indirect

way. Specifically, for each i ∈ {1, . . . , p} and k ∈ {13, 14, 15} we introduce:

F k
i = {Avg(Ski ),Min(Ski ),Max(Ski ), Std(Ski ),Median(Ski )},

to measure n, p and m, respectively, where

S13
i := ∪j∈{1,...,p}\{i}{

∑
c∈ci |c|
c̄′j + 1

},

S14
i := ∪k∈{1,...,n}{

∑
j∈{1,...,p}\{i} |cjk|
|cik|+ 1

},

and

S15
i := ∪k∈{1,...,n}{

∑m
j=1 |ajk|
|cik|+ 1

}.

Motivated by the idea using the product of two variables for studying the interaction

effect between them, for each i ∈ {1, . . . , p}, we introduce:

F 16
i = {Avg(S16

i ),Min(S16
i ),Max(S16

i ), Std(S16
i ),Median(S16

i )},

where S16
i = ∪j∈{1,...,p}\{i}{

∑n
l=1 cilcjl}. Similarly, we also define a subset of features based

on the leverage score LSj of the variable j ∈ {1, . . . , n} in the matrix A. Specifically, for

each i ∈ {1 . . . , p}, we introduce:

F 17
i =

n∑
j=1

cijLSj.

where LSj :=
||aj ||2∑n
l=1 ||al||2

and aj represents column j of matrix A for each j ∈ {1, . . . , n}. Let

Avg(C) := Avg(c1, . . . , cp), Std(C) := Std(c1, . . . , cp), and

O := {(−∞,−1), (−1,−0.5), (−0.5, 0), (0, 0.5), (0.5, 1), (1,∞)}.

154



For each i ∈ {1 . . . , p}, we define

F 18
i = ∪(l,u)∈O{car(cl,ui )}

where

cl,ui := {c ∈ ci : Avg(C) + l Std(C) ≤ c ≤ Avg(C) + u std(C)}.

The following observation creates the basis of the remaining features.

Observation 3. Let αi > 0 where i ∈ {1, . . . , p} and βk where k ∈ {1, . . . ,m} be

positive constants. For a MOBLP, its equivalent problem can be constructed as follows:

min {
n∑
j=1

α1c1jxj, . . . ,
n∑
j=1

αpcpjxj}

s.t.
n∑
j=1

βkakjxj ≤ βkbk ∀ k ∈ {1, . . . ,m},

xj ∈ {0, 1} ∀ j ∈ {1, . . . , n}

(8)

Observation 3 is critical because it shows that our ML approach should not be sensitive

to positive scaling. So, the remaining features are specifically designed to address this issue.

Note that the remaining features are similar to the ones that we have already seen before

but they are less sensitive to a positive scaling.

Let cmaxi = max{|ci1|, . . . , |cin|} and c̄i = ( ci1
cmax
i

, . . . , cin
cmax
i

). To incorporate the impact

of the relative number of zeros, positive, and negative coefficients of the objective functions

in the learning process, for each i ∈ {2, . . . , p}, we introduce:

F 19
i = {ln

(
1 +

car(c̄1)0

1 + car(c̄i)0

)
},

F 20
i = {ln

(
1 +

car(c̄1)+

1 + car(c̄i)+

)
},

155



and

F 21
i = {ln

(
1 +

car(c̄1)−

1 + car(c̄i)−

)
},

where car(c̄i)0 is the number of elements in c̄i with zero values. Also, car(c̄i)+ is the

number of elements in c̄i with positive values. Finally, car(c̄i)− is the number of elements

in c̄i with negative values.

The following function is helpful for introducing some other features:

g(a) =

 a+ 1 if a ≥ 0

a− 1 otherwise

 .

For each l ∈ {1, . . . ,m}, let amaxl = max{|al1|, . . . , |aln|}, āl = ( al1
amax
l

, . . . , aln
amax
l

)

and b̄l = bl
amax
l

. To incorporate the relative impact of the magnitude of objective func-

tion coefficients, and constraints in the learning process, for each i ∈ {2, . . . , p} and k ∈

{22, 23, 24, 25, 26, 27}, we introduce:

F k
i = {Avg(Ski ),Min(Ski ),Max(Ski ), Std(Ski ),Median(Ski )},

where

S22
i = { c̄11

g(c̄i1)
, . . . ,

c̄1n

g(c̄in)
},

S23
i = { c̄2

11

g(c̄2
i1)
, . . . ,

c̄2
1n

g(c̄2
in)
},

S24
i = {

n∑
j=1

c̄1j ā1j

ng(c̄ij)
, . . . ,

n∑
j=1

c̄1j āmj
ng(c̄ij)

},

S25
i = {

n∑
j=1

c̄1j ā1j

ng(c̄ij)
− b̄1, . . . ,

n∑
j=1

c̄1j āmj
ng(c̄ij)

− b̄m},

S26
i = {

n∑
j=1

c̄2
1j ā1j

ng(c̄2
ij)
, . . . ,

n∑
j=1

c̄2
1j āmj

ng(c̄2
ij)
},

156



and

S27
i = {

n∑
j=1

c̄2
1j ā1j

ng(c̄2
ij)
− b̄1, . . . ,

n∑
j=1

c̄2
1j āmj

ng(c̄2
ij)
− b̄m}.

For the same reason, for each i ∈ {1, . . . , p} and l ∈ {1 . . . , p}\{i}, we introduce:

F 28
il =

{
Avg(S28

il ),Min(S28
il ),Max(S28

il ), Std(S28
il ),Median(S28

il )
}
,

where

S28
il = { c̄i1

g(c̄l1)
, . . . ,

c̄in
g(c̄ln)

}.

Finally, let Āj = {ā1j, . . . , āmj} for each j ∈ {1, . . . , n}. For each i ∈ {2, . . . , p},

the following subsets of features are also defined for linking the constraints and objective

functions:

F 29
i ={

n∑
j=1

c̄1jAvg(Āj)

ng(c̄ij)
,

n∑
j=1

c̄1jMin(Āj)

ng(c̄ij)
,

n∑
j=1

c̄1jMax(Āj)

ng(c̄ij)
,

n∑
j=1

c̄1jStd(Āj)

ng(c̄ij)
,

n∑
j=1

c̄1jMedian(Āj)

ng(c̄ij)
},

F 30
i ={

n∑
j=1

c̄1jAvg(Āj)

ng(c̄ij)
− Avg(b̄j),

n∑
j=1

c̄1jMin(Āj)

ng(c̄ij)
−Min(b̄j),

n∑
j=1

c̄1jMax(Āj)

ng(c̄ij)
−Max(b̄j),

n∑
j=1

c̄1jStd(Āj)

ng(c̄ij)
− Std(b̄j),

n∑
j=1

c̄1jMedian(Āj)

ng(c̄ij)
−Median(b̄j)},

F 31
i ={

n∑
j=1

c̄2
1jAvg(Āj)

ng(c̄2
ij)

,

n∑
j=1

c̄2
1jMin(Āj)

ng(c̄2
ij)

,

n∑
j=1

c̄2
1jMax(Āj)

ng(c̄2
ij)

,

n∑
j=1

c̄2
1jStd(Āj)

ng(c̄2
ij)

,

n∑
j=1

c̄@
1jMedian(Āj)

ng(c̄2
ij)

},

157



F 32
i ={

n∑
j=1

c̄2
1jAvg(Āj)

ng(c̄2
ij)

− Avg(b̄j),
n∑
j=1

c̄2
1jMin(Āj)

ng(c̄2
ij)

−Min(b̄j),
n∑
j=1

c̄2
1jMax(Āj)

ng(c̄2
ij)

−Max(b̄j),

n∑
j=1

c̄2
1jStd(Āj)

ng(c̄2
ij)

− Std(b̄j),
n∑
j=1

c̄2
1jMedian(Āj)

ng(c̄2
ij)

−Median(b̄j)},

where c̄2
ij = c̄ij c̄ij for each i ∈ {1, . . . , p} and j ∈ {1 . . . , n}.

158


	Algorithms for Multi-Objective Mixed Integer Programming Problems
	Scholar Commons Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Contributions of the Thesis
	Related Publications and Preprints

	Outline of the Thesis

	Preliminaries
	Mixed-Integer Linear Programming
	Multi-Objective Mixed Integer Linear Programming
	Single-Objective Binary Quadratically Constrained Linear Programming

	Optimization Over the Efficient Set of Bi-Objective Mixed Integer Linear Programs
	Introduction
	Preliminaries
	Bi-Objective Mixed Integer Linear Programming
	The Triangle Splitting Method
	Lexicographic Operation
	Weighted Sum Method Operation
	Line Detector Operation
	Triangle Split Operation

	Optimization Over the Efficient Set of a BOMILP

	A New Exact Algorithm for Optimizing a Linear Function Over the Efficient Set of BOMILPs
	Key Operations
	Computing Local Upper Bound Solutions
	Computing Local Lower Bound Solutions
	Computing an Efficient Solution Based on a Local Lower Solution

	The Algorithm
	Operation Explore Triangle

	Performance of the Algorithm: A Small Example
	Implementation Issues and Enhancements
	A Computational Study for the First Implementation of the Algorithm
	Overall Performance
	Performance of Enhancements
	Approximate Solutions
	  Increasing the Optimality Gap Tolerance
	  Imposing a Time Limit



	OOESAlgorithm.jl: A Julia Package for Optimizing Over the Efficient Set of BOMILP
	Main Characteristics of the Package
	Parallelization Techniques
	Single-Objective Solvers Supported

	A Computational Study for the Package
	OOESAlgorithm.jl Versus C++ Implementation
	Comparison Between Different Solvers
	Parallelization


	Conclusion

	Nash Bargaining Solution: Application of a Special Case of Optimization Over the Efficient Set for Spatial Conservation Planning Problems
	Spatial Conservation Planning and the Role of Operations Research
	Mathematical Formulation of an MPT-SCP Problem
	Return and Risk Functions
	A Bi-Objective Optimization Formulation
	Issues Related to the Bi-Objective Optimization Formulation

	A Nash Bargaining Solution Approach for the MPT-SCP Problem
	Implementation Issues
	Performance of the Approach: A Numerical Example
	A Computational Study

	Conclusion

	Learning to Project in Multi-Objective Binary Linear Programming
	Introduction
	Preliminaries
	Machine Learning Framework
	A Pre-Ordering Approach for Objective Functions
	Features and Labels Describing a MOBLP Instance
	Features
	Labels

	Best Subset Selection of Features
	A Computational Study
	Complete Training and Testing Sets
	Complete Training Set and Reduced Testing Set
	Reduced Training and Testing Sets
	Replacing MSVM by Random Forest


	Conclusion

	Conclusions and Future Research Directions
	Optimization Over the Efficient Set
	Ecological Applications of the Nash Bargaining Solution
	Learning to Project in MOBLP

	References
	Appendix A: Copyright Permissions
	A1: Reprint Permission for Chapter 3, Sections 3.1 - 3.3
	A2: Reprint Permission for Chapter 3, Section 3.4

	Appendix B: Chapter 3
	B1: Documentation of OOESAlgorithm.jl


	Appendix C: Chapter 4
	C1: Neighboring Constraints
	C2: Data for the Example

	Appendix D: Chapter 5
	D1: List of Features


