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Abstract 

The field of synthetic mRNA therapeutics is a rapidly expanding arm of gene 

therapies. The use of mRNA provides multiple benefits over viral or DNA vectors. 

synthetic mRNA vectors are immediately translated into protein after entering the 

cytoplasm of cells in contrast to DNA vectors that must first be transcribed to mRNA in 

the nucleus. This allows synthetic mRNA to produce a therapeutic protein in any cell 

type, including non-dividing cells. In addition, the non-replicative nature of mRNA means 

that insertional mutagenesis or generation of escape mutants is not a concern. 

However, the stimulation of innate immune responses by unmodified synthetic mRNA 

prevented widespread clinical applications. 

The discovery that incorporation of modified nucleotides, such as pseudouridine 

or 5-methylcytosine, prevents the recognition by innate immune sensors has renewed 

interest in the use of synthetic mRNA as a therapeutic. In conjunction, numerous post-

transcriptional regulatory elements have recently been described in mRNA. Adding 

these regulatory elements to synthetic mRNA allows control of the expression of the 

encoded protein in tissue-, cell-, or environmental-specific conditions. However, the 

influence that the modified nucleotides commonly incorporated in synthetic mRNA have 

on the regulatory capacity of these elements has not been examined. 

In this study we investigated what effects modified nucleotides have on the 

regulation of synthetic mRNA by microRNA (miRNA switch). We found that nucleotide 
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modifications that increase the translation of the synthetic mRNA tended to decrease 

the regulatory capacity of microRNA switch. Inclusion of multiple microRNA target sites 

at the 3’ UTR of the synthetic mRNA was able to minimize the loss of miRNA-

dependent regulation of the miRNA switch, but microRNA target sites complementary to 

the six-nucleotide microRNA “seed” sequence were more affected to nucleotide 

modification. We found the effect of nucleotide modifications varied between microRNA 

species and was not determined by the proportion of modified nucleotides present in the 

microRNA target sites. Finally, we observed that utilizing a single microRNA target site 

at the 5’ UTR of the synthetic mRNA completely ameliorated the loss of regulation due 

to nucleotide modifications.  

Because synthetic mRNA are easy to produce and can be made to encode any 

protein of interest, they are ideal for clinical development. Currently there are over 45 

clinical trials underway utilizing synthetic mRNA as a monotherapy or in conjunction with 

other therapeutics. Most of these clinical trials are focused on cancer immunotherapy, 

particularly autologous T-cell therapy. This therapeutic modality is well suited for 

synthetic mRNA as the target cells are transfected ex vivo. This avoids the major 

obstacles that synthetic mRNA therapeutics must still overcome: delivery to target 

organs.    

The sensitivity of synthetic mRNA to extracellular ribonucleases requires 

encapsulation of the mRNA in a protective nanoparticle. Numerous such nanoparticles 

have been reported, but nearly all are variations on either lipid nanoparticles or 

polymeric nanoparticles. The advances made thus far with these two mRNA delivery 

platforms have significantly reduced their toxicity, however the endosomal escape rate 
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of these particles remains well below 5%. Furthermore, when administered systemically 

these nanoparticles are avidly taken up by sentinel macrophages of the liver and spleen 

or hepatocytes. The accumulation of particles in the liver has thus far limited the 

applications of mRNA therapeutics to diseases and disorders that are liver-specific or 

that can be treated by using the liver as a biosynthetic depot. Expanding the clinical 

application of synthetic mRNA may require the discovery of novel delivery platforms that 

are capable of targeting other organs. 

In this study we also tested the delivery of synthetic mRNA using a small cell 

penetrating peptide, called p5RHH, that is derived from bee venom protein melittin. We 

showed that in the presence of mRNA, p5RHH self-assembles into spherical 

nanoparticles that display a high degree of RNase resistance. These nanoparticles were 

consistently sized regardless of the length of the mRNA payload. Furthermore, after 

uptake by cells, p5RHH-mRNA nanoparticles displayed a high degree of endosomal 

escape that was dependent upon the acidification of endosomes, which disassembles 

the nanoparticles. The high concentration of p5RHH in the lumen of the endosome led 

to efficient endosomal disruption and produces minimal cytotoxic effects. When the 

p5RHH-mRNA nanoparticles were injected intravenously into an atherosclerotic mouse, 

we observed robust expression of the payload mRNA in only the atherosclerotic 

plaques. The lack of expression in typical depot organs, such as the liver, spleen, lungs, 

or kidneys, was also confirmed in a normal mouse. The simplicity and specificity of 

p5RHH-mRNA nanoparticles makes them an ideal candidate for further pre-clinical 

development as an mRNA delivery platform. 
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Chapter 1 

Eukaryotic mRNA Biogenesis and Function 

mRNA Biogenesis 

 The expression of mRNA is the primary phenotypic determinant of a cell; the 

epigenetic patterning of a cell’s DNA gives rise to a pool of mRNAs that are dynamically 

regulated by their protein products in response to internal and external stimuli. The 

production of eukaryotic mRNA is a highly regulated and concerted process, that 

includes transcription from genomic DNA and processing of transcripts to form mature 

mRNA.  

 

Transcription of pre-mRNA 

The production of mRNA begins with the transcription of precursor (pre)-mRNA 

from DNA by RNA polymerase II. RNA polymerase II is recruited to the promoter region 

of a gene by DNA-bound transcription factors. Because the recruitment of RNA 

polymerase II to the promoter does not displace the transcription factors bound there, 

multiple polymerases can transcribe the same gene simultaneously 1.  

Once bound, the RNA polymerase II unwinds the double-stranded DNA and 

begins to synthesize an RNA version of the coding strand of DNA based on Watson-

Crick base pairing of free ribonucleotides with the complementary strand of DNA. The 

pre-mRNA transcript is elongated as the polymerase continues along the gene. 

Termination of transcription by RNA polymerase II is caused by recognition of the 
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polyadenylation signal which leads to cleavage and release of the nascent pre-mRNA 2. 

Importantly, RNA polymerase II contains an unstructured C-terminal domain that 

regulates its activity and also localizes proteins necessary for processing the nascent 

transcript 2. 

 

Addition of the 5’ Cap 

The first step of processing of pre-mRNA into mature mRNA is the addition of the 

5’ cap. Capping of mRNA is essential in eukaryotes for avoidance of the innate immune 

system and recognition of mRNA by conventional translation initiators. Though, under 

stress conditions cap-independent translation can be used to express a specific subset 

of the cellular mRNA pool 3. Capping begins after approximately 25 nucleotides have 

been transcribed. The initial enzymatic step by RNA triphosphatase converts the 5’ 

triphosphate of the nascent pre-mRNA into a diphosphate. This allows RNA 

guanyltransferase to attach a guanosine monophosphate to the 5’ of the pre-mRNA to 

form a 5’-5’ triphosphate bond. The attached guanosine is then methylated at N7 to 

produce the 7-methylguanosine (m7G) Cap0. In higher order eukaryotes, the Cap0 is 

further modified by the addition of another methyl group to the 2’ hydroxyl of the ribose 

sugar of the neighboring nucleotide to produce Cap1 4. Additional methylation of 2’ 

hydroxyl of the second transcribed nucleotide to form Cap2 occurs in about half of all 

mRNAs, which unlike Cap1 can also occur in the cytoplasm after nuclear export of the 

mature mRNA.  
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Splicing of pre-mRNA  

In eukaryotes, the coding portions of a gene may be interspersed with non-

coding regions, called exons and introns respectively. Transcription of a gene includes 

both of these regions. However, the intronic regions of a gene are rapidly spliced out of 

the transcript by the spliceosome. The assembly and function of the  human 

spliceosome involves approximately 300 proteins and 5 small nuclear RNAs 5. 

Assembly of the spliceosome requires identification of the 5’ splice site by the U1 

snRNP and a branch point adenine by the U2 snRNP. After the spliceosome is 

assembled, the hydroxyl group of the branch point adenine is used to perform a 

nucleophilic attack and covalently link to a guanosine at the 5’ splice site forming a 

intronic lariat. The exposed 3’ hydroxyl group of the upstream exon is then able to be 

covalently linked to a guanosine in the 3’ splice site of the downstream exon, joining the 

two exons. After splicing is completed a complex of eukaryotic initiation factor 4A3, 

MAGOH, Y14 and metastatic lymph node 51 are deposited 24 nucleotides upstream of 

the exon-exon junction. This Exon Junction Complex (EJC) aids in the export of mature 

mRNA from the nucleus to the cytoplasm and plays a role in degradation of mRNA 

transcripts with premature stop codons 6.  The splicing of pre-mRNA transcripts can be 

altered by cells to produce different isoforms of a gene. However, mutations can also 

disrupt normal splicing of a gene to produce a deleterious isoform, such as is seen in 

Duchenne Muscular Dystrophy 5.  
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3’ Polyadenylation 

The final modification needed for production of eukaryotic mRNA is the addition 

of a polyadenylate (poly(A)) tail. The addition of the poly(A) tail is intrinsically linked to 

the termination of transcription by RNA polymerase II, which facilitates assembly of the 

3’ processing complex via its C-terminal domain. The cleavage and polyadenylation 

specificity factor (CPSF) protein complex recognizes the AAUAAA polyadenylation 

sequence of the pre-mRNA transcript and recruits cleavage stimulation factor, cleavage 

factor 1 and 2, poly(A) polymerase (PAP), and poly(A) binding protein (PAB2) 7. The 

activity of the cleavage factors is inhibited in the absence of PAP, ensuring tight 

coupling of pre-mRNA cleavage and polyadenylation 8. The site of cleavage is not the 

same on each copy of a transcript. However, there is a strong preference for cleavage 

after a CA dinucleotide 10 to 30 nucleotides downstream of the polyadenylation signal 9. 

Mutation of the dinucleotide can significantly alter the efficiency of 3’ processing, as is 

seen in the case of a mutation to a CA dinucleotide in the prothrombin gene that causes 

hereditary thrombophilia due to more efficient production of prothrombin mRNA 10. The 

length of the poly(A) tail is determined by the duration of PAP association with CPSF 

and limits the number of added adenines to approximately 250, which is shortened in 

the absence of PAB2 11. The binding of PAB2 along the poly(A) tail promotes nuclear 

export and recruitment of translation initiation factors in the cytoplasm 12.  

 

Post-transcriptional Regulation of mRNA 

Once the mRNA has been transcribed the cell can still exert control over 

translation of the encoded protein in a variety of ways. To prevent wasteful energy spent 
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translating unwanted mRNA, cells exhibit a strong preference for regulating the initiation 

of translation over other mechanisms, such as transcript degradation. Most of these 

pathways involve the two untranslated regions (UTR) located at the 5’ and 3’ of the 

coding sequence. 

 

Role of the Untranslated Regions 

The importance of UTRs is highlighted by the high degree of localized 

evolutionary conserved regulatory elements 13,14. Furthermore, a large expansion in the 

UTRs of genes is observed in higher order organisms, indicating that morphological 

complexity is perhaps driven by regulatory patterning rather than an increase in protein 

diversity 15,16. 

 

5’ Untranslated Region 

As mentioned above, under certain cellular stresses, such as hypoxia, there is a 

switch away from cap-dependent translation. A subset of cellular mRNAs possess 

internal ribosome entry sites (IRES), which allow for ribosome formation and translation 

of the encoded protein under stress conditions 17. This strategy is also responsible for 

transcription of cell cycle proteins like PITSLRE (p58), which is involved in mitotic 

spindle formation at the G2/M checkpoint 18. In addition, IRES-mediated translation is a 

key driver of protein expression in apoptotic cells as the cap-dependent translation 

factors are cleaved by caspases, allowing cells to continue producing the proteins 

necessary for the apoptotic process 19. 
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Another mechanism for driving cap-independent translation has been observed 

for a small subset of transcripts which were shown to bind eukaryotic initiation factor 3 

(eIF3) to stem-loop structures in the 5’ UTR. Unlike IRES, these eIF3-binding sites 

exhibited the ability to promote or inhibit translation of transcripts of c-Jun and B cell 

translocation gene 1, respectively 20,21. Further studies showed that the binding of eIF3 

to the 5’ UTR is mediated by the reversible nucleotide modification N6-methyladenosine 

(m6A) and that a single m6A in the 5’ UTR was sufficient for eIF3 to bypass cap-

dependent translation 22. 

The secondary structure of the 5’ UTR can also affect the efficiency of 

translation. The 5’ UTR tends to be less structured than the open reading frame, and 

transcripts with highly structured 5’ UTRs produced less protein than transcripts with 

unstructured 5’ UTRs 23. The helicase activity of eIF4A is required to unwind these 

highly structured regions. However, the binding of recognition proteins to the secondary 

structures in the 5’ UTR, such as iron response elements of ferritin and ferriportin, can 

prevent cap-dependent translation machinery assembly and subsequent unwinding by 

eIF4A. These recognition proteins are often responsive to environmental stimuli, such 

as the availability of cytoplasmic iron, and dynamically control the translation of their 

target transcripts 24.  

 

3’ Untranslated Region and Poly(A) Tail 

Nearly all eukaryotic mRNA is translated in pseudo-circular conformation due to 

the interaction of the eIF4G subunit of the cap-binding complex with PAB2 on the 
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poly(A) tail. Decreasing the distance between the cap-binding complex and the stop 

codon may improve translation by increasing the rate of ribosome recycling 25.  

While the function of 5’ UTR is primarily to regulate translation initiation, the 3’ 

UTR of eukaryotic mRNA has a more diverse set of functions. The 3’ UTR, like the 5’ 

UTR, is capable of regulating the initiation of translation. Indeed, some of the same 

motifs discussed above, such as the iron response elements, can also exert their effects 

on translation when present in the 3’ UTR 26. In addition, the hairpin structures 

responsible for the alternative decoding of the “UGA” stop codon as selenocysteine are 

present in the 3’ UTR of selenoproteins 27.  However, the primary function of the 3’ UTR 

is to provide binding sites for a variety of proteins that regulate mRNA turnover and 

sequence-specific transcript silencing. 

 

mRNA Stability and Turnover 

The level a given protein in a cell is often correlated with the number of mRNA 

transcripts that encode that protein 28. Transcript expression levels are determined by 

the balance of transcription and degradation. Like transcription, mRNA turnover must be 

a robust and tightly regulated process for cells to maintain mRNA expression levels at a 

steady state and to alter production of encoded proteins as needed.  

 

mRNA Degradation  

mRNA transcripts are constantly attacked by cytoplasmic nucleases. The 5’ end 

of mRNA transcripts are largely protected from exonuclease-mediated degradation by 

the presence of the 5’ cap. However, there are multiple deadenylases, such as poly(A) 
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ribonuclease, that specifically target the poly(A) tail by recognition of the 5’ cap, PAB2 

or other RNA binding proteins. The removal of the poly(A) tail often serves as a trigger 

for the rapid inactivation of the mRNA transcript by removal of the 5’ cap and associated 

translational machinery via decapping protein 2 (DCP2) 29. The decapped mRNA is then 

degraded from both the 5’ and 3’ ends by cytoplasmic exonucleases 28. 

Degradation of mRNA may also be initiated by endonuclease attacks. Only five 

such endonucleases have been identified, and the specificity of their activity is still 

under investigation. However, the activation of endonuclease-mediated mRNA 

degradation seems to be triggered in response to stimuli such as cellular or 

endoplasmic reticulum stress 30. The products of endonucleolytic cleavage of mRNA are 

further degraded by the same 5’ and 3’ exonucleases discussed above. 

  

Determinants of mRNA Stability 

The stability of mRNA is influenced by factors intrinsic to the transcript, such as 

destabilizing AU-rich elements (ARE) and GU-rich elements (GRE), as wells extrinsic 

regulatory agents, such as RNA binding proteins. In addition, the effects of these factors 

may be linked to the translation, or lack thereof, of the mRNA transcript.  

ARE and GRE are “AUUUA” and “UGUUUGUUUGU” sequences, respectively, 

that occur in uridine enriched stretches of 3’ UTRs. These sequences are recognized by 

ARE- or GRE-binding proteins, which typically induce rapid degradation of the bound 

transcript via decapping 31,32. However, one ARE-binding protein family, ELAV-like 

which is also known as human antigen, increases mRNA stability after binding to the 

ARE. The dysregulation of ARE-binding proteins has clinical implications in cancer as 
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there is significant enrichment of ARE in genes involved in cell cycle and proliferation, 

many of which are classified as protooncogenes 33.  

The translation status of an mRNA transcript has a profound impact on the its 

stability. The principal determinant of mRNA stability was recently shown to be the 

stochastic competition between the 5’ cap-binding translation initiation factors and 

decapping enzymes 34. In addition, the efficiency of translation also affects the half-life 

of mRNA transcripts. The composition of codons in the mRNA transcript and the relative 

abundance of the cognate transfer RNA (tRNA) in the cell can limit the rate of 

translation. The inclusion of rare codons in an mRNA transcript decreases protein 

production and causes ribosomal stalling 35. This stalling can be sensed by RNA binding 

proteins such as DEAD-box helicase 6 (DDX6) which promotes removal of the 5’ cap 

and subsequent mRNA transcript degradation 36.   

 

Silencing by microRNA 

In addition to the post-transcriptional regulators discussed above, most 

eukaryotes possess an RNA-directed transcript silencing system that identifies its 

targets by Watson-Crick base pairing between a ~22 nucleotide single stranded RNA, 

called a microRNA (miRNA), and a complementary target site on an mRNA. The activity 

of miRNA provides an additional layer of dynamic control over mRNA translation and 

stability. However, the primary physiological role of miRNA is to fine tune gene 

expression. Many miRNA are expressed in specific types of cells, such as the 

endothelial cell specific miR-126, while others are almost ubiquitously expressed like 

miR-3960 37–39.   
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microRNA Biogenesis 

RNA polymerase II transcription of genes with short hairpin structures located in 

intronic regions or independent non-coding genes, called primary microRNA (pri-

miRNA), results in cleavage by nuclear Microprocessor complex 40. The Microprocessor 

complex is made up the catalytic Drosha subunit and two structural DGCR8 subunits. 

All three subunits function in the recognition of the stem-loop structure of the pri-miRNA. 

Drosha recognizes the single stranded RNA (ssRNA)- double stranded RNA (dsRNA) 

junction. The size of Drosha and the helical structure of the dsRNA ensures that pri-

miRNA are cleaved 11 nt from the ssRNA-dsRNA junction and 22 nt from the apical 

loop with a 2 nt overhang on the 3’ end to form the precursor-miRNA (pre-miRNA) 41.  

The pre-miRNA is then exported from the nucleus after binding to Exportin 5 and 

RAs-related Nuclear protein (RAN)-GTP 42. In the cytoplasm, pre-miRNA is further 

processed by Dicer, which recognizes the 5’ end of the pre-mRNA. Again the helical 

structure of the dsRNA allows Dicer to specifically cleave the both strands of the pre-

miRNA 22 nt from each end to produce two mature miRNA 43.  

 

The RNA-induced Silencing Complex 

The mature miRNA remains double stranded until they are loaded into the RNA-

induced Silencing Complex (RISC). The mechanisms and proteins involved in the 

loading of miRNA duplexes into Argonaute (Ago) proteins, the effector subunit of the 

RISC, is not well conserved between mammals and lower order organisms like 

Drosophila. In Drosophila, Dicer-2 (dcr-2) and the dsRNA binding protein R2D2 

coordinate the loading of the miRNA into Ago 44. However in humans and mice, Dicer is 
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not needed for loading of the miRNA duplexes, although a Dicer-Ago2-TRBP (TAR-

RNA binding protein) complex has been described 45,46. The bulkiness of the miRNA 

duplex necessitates a energetically unfavorable conformational change in Ago that is 

driven by adenosine triphosphate (ATP) hydrolysis by Heat shock protein 90 (Hsp90) in 

all organisms 47. 

Once the miRNA duplex is loaded in to Ago, one of the strands must be ejected 

from the complex to allow for scanning of target mRNAs. Which strand of the miRNA 

duplex remains bound in Ago depends primarily on the stability of the initial interaction 

of the 5’ monophosphate nucleotide with the middle (MID) domain of Ago, which shows 

a preference for binding adenine or uridine over guanosine or cytosine 48. Removal of 

the unincorporated passenger strand is driven by pressure from the Ago Piwi-

Argonaute-Zwille (PAZ) domain that is displaced by loading of the miRNA duplex. In 

human Ago2 is the only Ago protein that has the ability to endonucleolyticaly cleave 

target RNAs, and cleavage of the passenger strand facilitates its release from the RISC 

49.  

 

Mechanisms of microRNA Activity 

Once the guide strand of miRNA has been loaded, the RISC begins scanning 

cytoplasmic transcripts including mRNA for target sites that are complementary to the 

loaded miRNA. Recognition is mediated by nucleotides 2 – 8 of the guide miRNA, called 

the seed sequence 50. This seed sequence may be conserved in multiple miRNA, 

forming a miRNA family. Over half of the human transcriptome is targeted by miRNA, 
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and each miRNA or miRNA family can targets hundreds of different mRNA transcripts 

51. 

In their canonical role, miRNA repress the expression of targeted mRNA. This 

repression can be accomplished by two different mechanisms. When the RISC binds to 

a miRNA target site that is complementary to only the seed sequence, which is the 

predominant type of target site in animals, the primary means for miRNA-mediated 

silencing is the recruitment of mRNA degradation machinery. Ago proteins that are 

loaded with a miRNA can form stable complexes with the trinucleotide repeat containing 

protein 6 (TRN6) 52. After binding to the cognate miRNA target site, the Ago-TRN6 

complex interacts with poly(A) binding proteins to recruit deadenylases and the carbon 

catabolite repressor 4-Negative on TATA complex (CCR4-NOT). CCR4-NOT in turn 

recruits the DDX6 decapping enzyme 53. In addition, DDX6 competes with translation 

initiators to reduce protein expression prior to decapping. 

In contrast to the translational repression mediated by the RISC binding to the 

seed complementary sequence, binding to target sites with extensive or perfect 

complementarity to the entire miRNA induces cleavage by Ago proteins. In humans, 

Ago2 is the only Ago protein that has RNA cleaving activity, and thus far only 20 

endogenous mRNA transcripts have been experimentally proven to be cleaved by Ago 

in all mammals. However, the cleavage of mRNA by the RISC is the predominant 

mechanism of action in plants 50. Importantly, this mechanism has been extensively 

exploited in the design of short interfering RNA (siRNA). Extensive or perfect 

complementarity positions the substrate mRNA within the catalytic PIWI domain of 

Ago2, which cleaves the phosphodiester backbone between the nucleotides 
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complementary to nucleotides 10-11 of the loaded miRNA 54. Once the mRNA is 

cleaved and degraded the miRNA-loaded RISC is freed to search for additional targets. 

 

Translation of mRNA to Protein  

mRNA serves as the intermediate step between the storage of gene in the DNA and the 

effector of the gene, protein. Like transcription, translation is a tightly controlled process, 

and the translation of an mRNA sequence to a peptide sequence is the final regulatory 

checkpoint at which a cell can regulate mRNA. Translation in eukaryotes is highly 

coordinated and requires specific factors for translation initiation, peptide elongation, 

and termination. Translation also serves as a key quality control checkpoint for 

detecting and disposing of aberrant mRNAs.  

 

Initiation of Translation 

As discussed above, the initiation of translation plays a major role in the stability 

of an mRNA transcript. The synthesis of proteins requires a large energy investment by 

a cell. Halting the initiation of translation is the most effective way of preventing this loss 

of energy during times of cellular stress or nutrient deprivation. It is not surprising 

therefore that cells tightly regulate the drivers of translation initiation. 

 

Eukaryotic Translation Initiation Factors 

The primary method of translation initiation in eukaryotes is dependent on the 5’ 

cap of the substrate mRNA. Cap-dependent translation initiation requires the 

independent preassembly of eukaryotic initiation factors (eIF) on the substrate mRNA, 
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the 40S ribosomal subunit, and methionine transfer RNA (tRNAiMet). The 5’ cap is 

recognized by the eIF4F complex, composed of the IF4A, eIF4G, and eIF4E subunits. 

Once bound, eIF4F hydrolyzes ATP to unwind a small stretch of the 5’ UTR. This 

“activated” mRNA is prepared for loading into the pre-initiation complex and subsequent 

translation. 

The pre-initiation complex is formed by the binding of eIF3 and eIF1A to the 40S 

ribosomal subunit. The complex is then charged by the binding of the guanosine 

triphosphate (GTP)-eIF2-tRNAiMet ternary complex at the ribosomal peptidyl site (P-site) 

55. The charged pre-initiation complex, also known as the 43S ribosomal subunit, then 

associates with the activated mRNA via interactions between eIF3 and eIF4G. 

Translation initiation is regulated by inactivation eIF4E or eIF2. eIF4E is the 

target of three eIF4E-binding proteins (4E-BP) that are regulated by environmental 

signals, such as growth factors, as well as stressors like nutrient deprivation. The 

reversible binding of 4E-BP prevents eIF4E binding to eIF4G to form the eIF4F 

complex. Phosphorylation of 4E-BP in response to growth factors releases the bound 

eIF4E and allows for translation initiation 56. This phosphorylation is carried out by the 

FKBP12-rapamycin associated protein/mammalian target of rapamycin (FRAP/mTOR), 

which is a primary sensor of nutrient availability and integrates initiation of translation 

with a variety of other cellular processes 57.  

Unlike the singular kinase regulating eIF4E, there are four known regulatory 

kinases that target mammalian eIF2. Three of these sensors, general control 

nonderepressible 2 (GCN2), hemin-regulated inhibitor kinase (HRI), and PKR-like ER 

kinase (PERK), detect states of cellular stress or nutrient deprivation 58. The fourth 
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sensor, double-stranded RNA-activated protein kinase (PKR), is primarily activated in 

response to viral infection but can also be activated by synthetic mRNA 59. 

Phosphorylation of eIF2 sequesters eIF2B, which prevents recycling of GDP-eIF2 to the 

active GTP-eIF2 and subsequent formation of the ternary complex.  

 

Ribosome Assembly 

After binding to the mRNA, the pre-initiation complex begins to move along the 

mRNA in the 3’ direction. This movement is aided by the ATP-dependent helicase 

activity of eIF4A 60. The complex continues to scan along the mRNA until it encounters 

an “AUG” start codon that is recognized by the tRNAiMet anti-codon loop in the P-site of 

the small ribosomal subunit. Recognition of the start codon triggers removal of the 

bound initiation factors and ribosome assembly.  

The joining of the large ribosomal subunit to the mRNA-bound small ribosomal 

subunit requires another translation initiation factor, eIF5. The presence of eIF5 

promotes the self-hydrolysis of GTP-eIF2 to GDP-eIF2, and the liberated phosphate ion 

induces a conformational change in eIF5 that arrests the smaller ribosomal subunit on 

the start codon. The recognition of the start codon also induces a conformational 

change that releases eIF1 from the small ribosomal subunit, allowing for the large 

ribosomal subunit to associate with the small ribosomal subunit. Formation of the 

complete ribosome prompts hydrolysis of GTP on eIF5 that reduces its affinity for the 

ribosome 61. 
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Peptide Elongation  

The assembled ribosome is now poised to translate the rest of the mRNA. The 

continued translation decodes the mRNA into a peptide sequence and is coordinated by 

a family of eukaryotic elongation factors (eEF). The rate of translation also plays a role 

in the efficiency of protein production, balancing speed of synthesis with the time 

required to properly fold the protein products. All of these processes are monitored by 

the cell to prevent translation of degraded or degenerate mRNAs through No-Go Decay. 

 

Decoding of mRNA 

Translation proceeds one trinucleotide codon at a time, and each codon is 

recognized by a single species of tRNA that possesses the complimentary anti-codon. 

The amino acid loaded-tRNAs (aa-tRNA) are directed to the aminoacyl site (A-site) of 

the ribosome as a complex with eEF1A and GTP. Loading of the complementary aa-

tRNA induces a conformational change in eEF1A that induces hydrolysis of the GTP to 

GDP and subsequent dissociation from the aa-tRNA. A peptide bond is rapidly formed 

between the last amino acid in the peptide chain and the amino acid on the aa-tRNA, 

forming a peptidyl-tRNA. The now uncharged tRNA in the P-site and peptidyl-tRNA in 

the A-site induce a GTP-dependent translocation of the mRNA within the ribosome to 

reposition the tRNAs in the exit site (E-site) and P-site, respectively. The hydrolysis of 

GTP that drives translocation is carried out by eEF2, which is dissociated from the 

ribosome by the resulting conformational change 62. 
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Effects of Translation Rate 

The rate at which the translation of mRNA occurs is largely determined by the 

codon composition of the transcript. Optimal codons that are recognized by relatively 

abundant tRNAs are translated at a higher rate than rare codons with less abundant 

tRNAs. The inclusion of rare codons can induce a stall in translation and reduce the 

amount of protein produced from an mRNA 35. However, both optimal and rare codons 

are found to be evolutionarily conserved, indicating a need for ribosomal pausing. 

Indeed, structured regions of proteins, such as a-helices, often exhibit a pattern of 

optimal and rare codons that aids in the co-translational folding, while less structured 

regions tend to be enriched in optimal codons 63.  

 

No-Go Decay 

While some ribosomal pausing is important to proper protein folding, excessive 

pausing may be indicative of degraded or degenerate mRNA. Removing these mRNAs 

and liberating the bound ribosomes is achieved by a mRNA surveillance pathway called 

No-Go Decay. Details of the mechanism that induces this system are not currently well 

understood, however, Dom34 and Hbs1 proteins have been shown to be involved in 

No-Go Decay in yeast 64. Degradation of the mRNA transcript is driven by cleavage 

within the mRNA exit tunnel of the ribosome and requires at least three stalled 

ribosomes 65.  
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Translation Termination 

 Proper translation of the mRNA requires that decoding terminates at the final 

codon. This process, like initiation and elongation is regulated by a small set of proteins 

called eukaryotic releases factors (eRFs). The activity of the eRFs is tied to recognition 

of the final codon in the coding region of the mRNA, triggers the release of nascent 

peptide to prevent production of truncated proteins, and disassembles the ribosome. 

However, cells must also be able to detect when errors in translation termination occur 

and destroy the defective mRNA. 

 

Stop Codons 

Like the initiation of translation, the site of translation termination is also encoded 

within the mRNA as Stop codons. Unlike the Start codon, there are three codons that 

signal for translation to stop: Amber (UAG), Ochre (UAA), and Opal (UGA). In humans 

and other higher order eukaryotes, UGA is the most commonly used stop codon 66. 

However, in highly expressed genes UAA is more frequently used, possibly due to the 

higher efficiency of termination than UAG or UGA 67,68.  

In a small set of proteins, UGA encodes for a selenocysteine rather than Stop. 

This alternative decoding is mediated by a nearby selenocysteine incorporation 

sequence 69. Expression of selenoproteins can be regulated by the abundance of 

selenocysteine-tRNA; the lack of environmental selenium causes the UGA to be 

decoded as Stop and prematurely terminates translation 70. 
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Eukaryotic Release Factors 

Recognition of all three stop codons in eukaryotes is mediated by eRF1, which 

contains a codon recognition region similar in structure to the anticodon loop of tRNA 71. 

Before entry into the ribosome, eRF1 forms a complex with eRF3 and GTP. Like tRNA, 

eRF1 binds to the stop codon in the A-site of the ribosome, which induces hydrolysis of 

the complexed GTP via eRF3 and positions the Gly-Gly-Gln motif of eRF1 to catalyze 

the release of the nascent peptide from the peptidyl-tRNA in the P-site of the ribosome 

72.  The eRF1/eRF3 complex can then promote disassembly of the large ribosomal 

subunit, a process that is greatly accelerated by association with ATP Binding Cassette 

Subfamily E Member 1 (ABCE1) 73. The small ribosomal subunit remains bound to the 

mRNA until the deacetylated tRNA is removed by eIF1, which also initiates the 

reformation of the preinitiation complex 74. 

 

Nonsense-Mediated Decay 

Mutations that create a stop codon from a sense codon are called nonsense 

mutations. The inclusion of a premature stop codon in an mRNA can cause the 

production of a truncated and potentially deleterious protein product. Cells possess an 

mRNA quality control system that targets transcripts that are not completely translated 

for degradation. In mammals this nonsense-mediated decay pathway relies on the exon 

junction complexes (EJC) deposited on the mRNA during splicing. The EJC is normally 

displaced during translation by ribosomes, but premature termination codons at least 50 

nt upstream of the last exon junction will allow the EJC to persist on the mRNA 

transcript 75. The remaining EJC is recognized by complex of suppressor with 
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morphological effect on genitalia 1 (SMG1), Regulator of nonsense mediated decay 1 

(UPF1), eRF1, and eRF3 (SURF). Binding of SURF to the EJC recruits UPF2 and 

UPF3b and triggers dissociation eRF1 and eRF3 along with activation of the helicase 

activity of UPF1. UPF1 proceeds along the transcript removing mRNA-binding proteins 

to enable endonucleolytic attack by SMG6 76. The cleaved mRNA is then rapidly 

degraded by mRNA decay due to decapping enzymes and deadenylases that are 

recruited by the activated UPF1, UPF2, and UPF3b 77.  

 

Nonstop-Mediated Decay 

In addition to the premature translation termination of mRNAs with nonsense 

mutations, cells must be able to recognize transcripts that fail to terminate translation 

due to destruction of the stop codon by a nonstop mutation or premature 

polyadenylation. Nonstop mutations can lead to accumulation of ribosomes on the 

defective mRNA as eRF1 is not able to induce ribosomal release. In addition, the stalled 

ribosomes increase the transcript’s resistance to 3’ to 5’ exonuclease degradation. In 

mammals the stalled ribosomes are recognized by a complex of HBS1-like translation 

GTPase (HBS1L; Hbs1) and pelota mRNA surveillance and ribosome rescue factor 

(PELO; Dom34), which is also involved in No-Go decay discussed above. The Hbs1-

Dom34 complex interacts with the vacant A-site of the ribosome in a codon-independent 

manner. Once bound to the ribosome, the Hbs1-Dom34 complex recruits mRNA 

degradation machinery. Unlike normal mRNA degradation, Nonstop decay does not 

induce deadenylation of the transcript and instead promotes attack by endonucleases 

78.   
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Figure 6.7. Tissue distribution of p5RHH-niRFP nanoparticles in ApoE-/- mice.  
 
Representative fluorescent confocal microscopy images of the indicated organs 
collected from ApoE-/- mice 48 hours after intravenous injection of 200 µL of vehicle or 
niRFP mRNA-p5RHH nanoparticles. Images were taken at 20x. Scale bar represents 
100 µm.  
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Discussion 

Synthetic mRNA therapeutics hold great promise for the treatment of myriad 

diseases. Despite substantial advances in the production of the synthetic mRNA, the 

limitations of existing delivery platforms severely hinder its clinical development. 

Identification of novel delivery vehicles that prevent degradation and effectively deliver 

the mRNA are crucial for the expansion of this promising class of therapies. The present 

study demonstrates that p5RHH peptides in the presence of mRNA spontaneously form 

compact nanoparticles across a range of mRNA sizes.  These nanoparticles are highly 

RNase resistant, readily taken up by the cells, and efficiently and safely release the 

mRNA from the endosomes to be translated. Moreover, systemic delivery of p5RHH-

niRFP nanoparticle in atherosclerotic mice generated high expression levels of the 

synthetic mRNA exclusively in atherosclerotic plaque regions.   

The natural cell-penetrating peptide melittin is the major pore-forming component 

of bee venom. In prior work, we substantially modified its cell lytic activity by amino-

terminus truncations to produce a new peptide, “p5”, which still allowed it to stably but 

safely insert into cell membranes 239.This p5 was developed as a linker agent for 

delivery of various therapeutic or diagnostic compounds into cells by the penetrating 

action of the peptide 239. However, neither p5 nor melittin itself were able to condense 

siRNA into a nanoparticle that was transfective (unpublished data). Upon further highly 

specific modification of the C-terminus with histidines and arginines to create p5RHH, a 

transfective particle was enabled for siRNA delivery 240,241. 

Alternative formulations of the native membrane lytic melittin have been reported 

to promote endosomal escape and efficient release of the DNA into the cytoplasm after 
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covalent attachment to polyethylenimine 234. In this case, to limit the inherent toxicity of 

native melittin to endosomes, additional pH-sensitive protecting groups were conjugated 

to mask melittin’s pore forming activity at neutral pH, which then could be removed upon 

endosomal acidification 237. However, this strategy ultimately proved to exert 

unacceptable levels of toxicity, prompting the termination of clinical trials against 

Hepatitis B (NCT02452528).  

In contrast, the p5RHH is an N-terminal truncation of melittin that retains a 13 aa 

hydrophobic core combined with a modified cationic C-terminus composed of five 

arginine and two histidine residues. The p5RHH peptide initiates formation of 

nanoparticles through electrostatic interactions with negatively charged siRNA 

molecules, which remain stable in circulation as a complex at neutral pH. As the peptide 

is not free, its cytotoxicity is minimized until the entire particle is disassembled in the 

endosome at lower pH 240. In analogous fashion, the p5RHH rapidly interacts with 

mRNA molecules of different sizes to self-assemble nanoparticles with high transfection 

efficiency and minimal cytotoxicity. Despite the 50-fold difference in GFP mRNA to 

siRNA length or even 400-fold difference in the case of the VEE-GFP mRNA, the 

optimal charge ratio of p5RHH and synthetic mRNA (+10:-1) was similar to that 

previously reported for p5RHH and siRNA (+12:-1) 240,  because the mass-to-charge 

ratio of nucleic acids is essentially constant. Therefore, the ratio of 350 ng synthetic 

mRNA to 2 nmol p5RHH, which produces the optimal charge ratio, might be scaled up 

or down to deliver a range of lengths of RNA, from siRNA to 8kb long mRNA, and 

perhaps beyond.  
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Measurement of the p5RHH-mRNA nanoparticles size and surface charge 

revealed compact spherical structures that were <200 nm in diameter with a +6 mV zeta 

potential for all of the tested mRNA. Because the cell membrane is a negatively charged 

surface, the nanoparticles’ positive surface charge may increase cellular uptake by 

endocytosis 307. In addition, the small magnitude of the surface charge may minimize 

opsonization by serum proteins and clearance by the mononuclear phagocyte system, 

thereby avoiding sequestration in the liver and spleen. Prior work with p5RHH-siRNA 

nanoparticles has shown that uptake is mediated by macropinocytosis and trafficks 

through endosomes 241. Given the similar formation kinetics and in vivo behaviors of the 

p5RHH-mRNA nanoparticles, we propose that the same mechanisms for cellular 

interactions would be responsible for p5RHH-mRNA nanoparticles. 

Trafficking of synthetic mRNAs from endosomes into the cytoplasm represents a 

major rate-limiting step for many delivery approaches, with typical endosomal escape 

efficiencies of around 1-2% 218. The present study demonstrates that the endosomal 

escape of p5RHH-mRNA nanoparticles is highly efficient since inducing complete 

endosome lysis with chloroquine did not potentiate transfection. We also show that the 

intrinsic endosomolytic activity of p5RHH-mRNA nanoparticles requires endosomal 

acidification to release the payload mRNA into the cytosol, where it can be rapidly 

translated into protein. Indeed, we observed that the entire process from addition of the 

p5RHH-mRNA nanoparticles to visible GFP expression takes less than one hour in 

vitro.  

Previous work by Hou et al has shown that protonation of the two histidine 

residues (pKa ~6) of p5RHH is necessary for the dissociation of the p5RHH peptide 
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from the nucleotide payload 240,241. The pH-dependent dissociation of p5RHH-siRNA 

nanoparticle was confirmed in vitro by using a dye-binding assay which showed 

increasing accessibility to the free siRNA at pH ≤ 5.5 that promoted particle disassembly 

241. Once the p5RHH is dissociated from the siRNA upon endosomal acidification, the 

free p5RHH causes endosomal disruption, which was confirmed by release of the 

endosomal dye acridine orange into the cytoplasm of p5RHH-siRNA nanoparticle 

treated cells. Importantly, a p5RHH analog peptide p5RWR, that lacks the ionizable 

histidine residues was able to form nanoparticles with siRNA but failed to dissociate 

from its siRNA payload and did not alter endosomal integrity. Therefore, the pH-

sensitive histidine residues are both necessary and sufficient for disassembling p5RHH-

mRNA nanoparticles, while enabling release of the peptide to permeabilize endosomes 

after acidification. 

Regarding mechanism, the buffering capacity of p5RHH conferred by the 

ionizable histidine residues is far lower than necessary to lyse the endosomes through 

osmotic pressure or “proton sponging”. Instead, p5RHH directly interacts with the 

endosomal membrane leading to endosomolysis via membrane destabilization 234. 

Because p5RHH was engineered deliberately to be far less potent as a membrane 

disruptor in comparison to native melittin as shown earlier by Pan et al it only effects 

membrane permeability in the high concentrations found in the endosome after particle 

disassembly 239,308,309. 

The present study also demonstrated that p5RHH-mRNA nanoparticles exhibit 

minimal cytotoxicity. The binding of p5RHH to the mRNA reduces the concentration of 

the free p5RHH prior to dissociation in the endosome. After endosomolysis, the 
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concentration of the free p5RHH is diluted in the cytosol, preventing disruption of the 

cell membrane.  Previous work with pH-responsive native melittin adjuvants by 

Arrowhead Pharmaceuticals has demonstrated an unacceptable level of hepatotoxicity 

after systemic administration, leading to halting of a Phase 2 clinical trial for Hepatitis B 

(NCT02452528), although trials have resumed using this system for subcutaneously 

delivery (NCT03747224, NCT03365947). However, p5RHH has not been reported to 

produce any such toxicity due to the designed attenuation of its membrane lytic capacity 

and the avoidance of liver sequestration of the p5RHH-siRNA and p5RHH-mRNA 

nanoparticles. 

Another key requirement for an effective in vivo mRNA delivery platform is the 

ability to prevent degradation of the synthetic mRNA by extracellular endonucleases. 

The present study demonstrated that p5RHH-mRNA nanoparticles provided protection 

from RNaseA degradation.  Moreover, the transfection efficiency of p5RHH-mRNA 

nanoparticles was also unaffected by RNaseA treatment, which is a promising stability 

attribute for in vivo applications. 

Recent advances in the design of non-viral delivery systems for synthetic mRNA 

have been reported for selective targeting to specific organs 256. However, the majority 

of these reports highlight selectivity that is restricted to liver, lung, or spleen. Previous 

work with p5RHH-siRNA nanoparticles has demonstrated passive permeation and 

prolonged residence only in regions of disrupted endothelial cell barriers but minimal 

uptake in liver, lung, or spleen 241,246. The restriction of the p5RHH-mRNA nanoparticles 

to leaky or damaged vasculature confers an additional level of safety for systemic 

administration as tissues with intact barrier function will not accumulate particles. To 
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that point, we did not observe niRFP expression in plaque free regions of the same 

aortas. To our knowledge this work is the first report of nanoparticle-mediated mRNA 

delivery to atherosclerotic plaques after systemic administration. Strikingly, we were 

unable to detect any niRFP transcripts in other organs of the ApoE-/- mice, nor did we 

detect any GFP in the organs of C57BL6/J mice after treatment with p5RHH-GFP 

mRNA nanoparticles. The possibility of delivering both siRNA and mRNA 

simultaneously to the same area with the same platform may provide robust control of 

protein expression, which might increase both safety and specificity for future 

therapeutic applications. 

Other penetrating peptide-based nucleic acid delivery system have used 

chemically modified transportan-derived peptides such as PepFect. However, unlike 

p5RHH, the original PepFect complexes exhibit poor endosomal escape and required 

chloroquine treatment 310 or conjugation of chloroquine analogs to the peptide to 

increase transfection efficiency 311. In addition, no reports have demonstrated the ability 

of PepFect to deliver mRNA payloads, despite success in plasmid DNA delivery. 

Furthermore, the in vivo administration of the PepFect complexes lead to accumulation 

in the liver or lungs, depending on the specific peptide modification 312, in contrast to 

p5RHH complexes that avoid the macrophage phagocytic system as shown in this and 

prior work 242,246.  

 

Conclusions 

In conclusion, we have reported a highly efficient mRNA delivery platform based 

on a modified cell penetrating peptide, p5RHH. p5RHH-mRNA nanoparticles 
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spontaneously assemble in solution without the need for filtering or removal of toxic 

solvents. Complexing of p5RHH with mRNA payloads attenuates its membrane lytic 

activity until the nanoparticles are disassembled in the acidic environment of 

endosomes. These nanoparticles exhibit a unique distribution after systemic 

administration, resulting in robust expression of the payload mRNA in atherosclerotic 

plaques. In addition, the flexibility of complexing any RNA with p5RHH in a simple 

mixing procedure may prove advantageous for both clinical and pre-clinical use. 
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Chapter 7 

Limitations and Overall Conclusions 

Study Limitations 

In our examination of the effects of modified nucleotides on the regulation of 

miRNA switches, we utilized a variety of modified nucleotides at multiple percentages of 

substitution. However, this does not permit the modification of specific bases and 

therefore produces heterogeneity in the product transcripts. Given the enrichment of 

nucleotide modifications in specific regions of endogenous mRNA, the effects of 

transcript-wide incorporation of modified nucleotides may mask the effects produced by 

modification of specific loci. Further studies using a nucleotide modifying enzyme fused 

to an RNA-targeting Cas13 CRISPR effector, similar to reported RNA editing systems 

313, may be better able to elucidate the importance of modification location. In an 

attempt to test the generality of the effects observed using the miR-126-3p switches, we 

utilized switches with target sites for different miRNA. We only tested a few additional 

miRNA that were specifically selected miRNA as they were known to be expressed at a 

high level in various cell types. A more thorough study would have also investigated the 

silencing of a cognate nucleotide-modified miRNA switches by other less robustly 

expressed miRNA. Such data could also be used to determine the interaction between 

the miRNA expression level and the effect of nucleotide modification on the silencing of 

miRNA switches. Furthermore, testing different miRNA target sites at the 5’ UTR would 

also be beneficial, though our results are supported by other published studies 144. We 
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also used only one 5’ and 3’ UTR to minimize the variability of our results. Further 

studies that examine these affects in different UTRs are required to further confirm the 

generality of our results.  In addition, a more sensitive assay, such as luciferase activity, 

may better show the differences between the various miRNA switches. However, we 

reasoned that the ability to normalize the expression of the GFP reporter to an 

endogenous control protein, GAPDH, by immunoblotting was worth the loss in 

sensitivity. Finally, the expression of GFP was assayed at the 24-hour timepoint in all of 

the reported experiments, but translation of synthetic mRNA is often reported to peak 

around 6-10 hours after transfection 104. Examining differences at earlier or later 

timepoints may reveal other changes in regulation caused by the nucleotide 

modification. 

In our study we did not directly track the uptake of p5RHH-mRNA nanoparticles 

into endosomes. However, the results we observed after inhibition of endosomal 

acidification by bafilomycin are supported by previous studies using p5RHH-siRNA 

nanoparticles that were colocalized with endosomal markers 241. Furthermore, we 

observed that not all cells that were positive for the presence of the fluorescently-

labeled mRNA were also GFP positive. However, we interpreted the lack of increased 

percentage of GFP expressing cells after chloroquine treatment to indicate efficient 

endosomal escape, but this is not a direct measurement, which would require intensive 

microscopic analysis. While we did not detect expression of GFP either by 

immunoblotting or the presence of the synthetic mRNA by RT-PCR 48 hours after 

administration of p5RHH-GFP nanoparticles to healthy mice, tissue distribution should 

also be assessed at an earlier timepoint. In addition, the presence of the cargo mRNA 
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could be determined in situ by utilizing the Cy5-labelled GFP mRNA, however, the 

presence of the fluorescent signal would not necessarily indicate the expression of the 

encoded protein. In fact, previous work with fluorescently-labeled p5RHH-siRNA 

nanoparticles showed significant signal in the kidney after systemic administration but 

no apparent effect of the treatment 245. 

 

Overall Conclusions 

In this study we investigated the influence of modified nucleotides on the 

performance of miRNA switches. We found that incorporation of modified nucleotides 

that significantly increase translation, such as Ψ and m1Ψ, tended to decrease the 

miRNA-dependent regulation of miRNA switches. However, we also found that Ψ/m5C 

modification enabled one miRNA target site at the 3’ UTR to regulate the miRNA switch 

as effectively as four target sites. We also demonstrated that the effects of Ψ, Ψ/m5C, 

and m1Ψ are dependent on the sequence of the miRNA site but not the proportion of 

the number of modified nucleotides within the site. Furthermore, we found that effects of 

nucleotide modification are modified miRNA switches with seed complementary target 

sites are poorly regulated by miRNA, while placing the miRNA target site in the 5’ UTR 

makes the miRNA-dependent silencing largely insensitive to nucleotide modification. 

We also demonstrated that p5RHH peptides spontaneously form compact 

nanoparticles in the presence of mRNA across a wide range of mRNA sizes.  These 

nanoparticles are highly transfective and RNase resistant. Furthermore, they achieve 

robust endosomal escape with minimal cytotoxicity. Systemic delivery of p5RHH-mRNA 

nanoparticles generated high expression levels of the synthetic mRNA exclusively in 
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atherosclerotic plaque regions with no detectable expression in typical depot organs. 

The simple method of production and the use of only biologically compatible solutions 

makes p5RHH-mRNA nanoparticles an attractive platform for both pre-clinical and 

clinical applications.  
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