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Figure 3.6. Gene synteny near putative group 1e and 3b [Ni Fe] hydrogenase genes among “Ca.  E. persephone”.  The 
genes depicted include IMG gene object ID numbers 2600441718 - 727 and 2600441763 – 768 (T.  jerichonana), 
2600436877 – 887 and 2600438609 – 602 (R. pachyptila vent Ph05), and 2601634007 – 3997 and 2601634696 – 703 
(R. pachyptila vent Mk28). 
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Figure 3.7. Transcripts per million (TPM) encoding type 1e and 3b hydrogenase subunits and associated proteins for 
RNA extracted from trophosome samples from R. pachyptila incubated in the presence of H2 and ∑H2S under low 
and high O2 conditions. 
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Figure 3.8. Schematic of the high pressure respirometry system.  Select gases (e.g. H2, H2S, CO2, O2, and N2) are 
bubbled into equilibration columns that feed high pressure pumps, which in turn pump fluid into aquaria.  Pressure is 
controlled via back pressure/relief valves which allow for a flow through system. 
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Chapter 4: Nitrate use by “Candidatus Endoriftia persephone” 

Introduction 

The supply of electron acceptors and other growth substrates is erratic at hydrothermal 

vents (HTVs).  In HTV diffuse flow, oxygen concentrations range from 0-110 µM over varying 

time periods which can range from minutes to days (31, 34, 35).  Nitrate is another potentially 

accessible electron donor around HTVs (1 µM-40 µM) (35, 202, 203).  In the heterogeneity of the 

HTV environment, nitrate may be an alternative electron acceptor either when oxygen is not 

available, or in addition to oxygen to satisfy the symbiont’s respiratory requirements.   

It is apparent that both the host and endosymbiont of the Riftia pachyptila symbiotic association 

can use oxygen as a terminal electron acceptor.  Oxygen consumption by intact R. pachyptila in 

high pressure aquaria was measured and confirmed soon after its discovery at HTVs (54).  Oxygen 

consumption was observed under a variety of conditions including a range of temperature and pH 

(54), and pressure (68).   

To facilitate delivery of oxygen to the symbiont, R. pachyptila hemoglobin has a high 

oxygen carrying capacity (52).  This enables the host to transport oxygen to the trophosome to 

meet the demands of symbiont sulfide oxidation, or to be used as a short term oxygen store during 

oxygen depletion at the HTV.  Oxygen use by “Candidatus Endoriftia persephone” is evident by 

stimulation of carbon fixation with the addition of oxygen (64).  This evidence suggests that 

symbionts oxidize sulfide and utilize oxygen as a terminal electron acceptor for energy for carbon 

fixation.   
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There is evidence that “Candidatus Endoriftia persephone” can use nitrate as both an 

electron acceptor and a nitrogen source.  R. pachyptila blood and coelomic fluids have elevated 

nitrate concentrations (<1mM), suggesting that the host is specifically acquiring nitrate from the 

environment (204).  Symbiont metabolism of nitrate is suggested by the stimulation of nitrite 

production by the presence of the electron donor sulfide.  Additionally, nitrite production increases 

when oxygen concentrations are low (70).  The symbiont metagenome contains the entire suite of 

genes for dissimilatory nitrate reduction (62).  Transcripts of key enzymes involved in 

dissimilatory nitrate reduction (NarGHJ) and ammonium assimilation have been detected (57, 62, 

203).  Nitrate is reduced to nitrite and the nitrite could be further reduced to ammonium via 

NirFHT, which have been identified in the proteome (56, 62, 71). 

It is evident that symbionts can use nitrate as a nitrogen source (56, 62, 70, 71), but the 

contribution of nitrate as an electron acceptor during respiration or assimilation for biosynthesis is 

unclear.  To clarify its role, I determined whether its presence stimulated carbon fixation by intact 

symbionts.  To verify that the symbionts were indeed capable of reducing nitrate, I measured 

carbon fixation in the presence of nitrate and nitrate reductase activities in trophosome samples 

via a colorimetric methyl viologen assay.   

Methods 

R. pachyptila collection 

R. pachyptila were collected in October 2016 at the 9°N Integrated Study Site in the East 

Pacific (9° 50'N, 104° 18'W, 2500 m).  R. pachyptila were collected with the HOV ALVIN during 

dives to Tica and Bio-9 sites, and contained in a thermally insulated box during ascent.  Upon 

reaching the surface, R. pachyptila were dissected, and samples were either used immediately for 

DIC incorporation assays, or frozen at -80C for nitrate reductase assays.   
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Nitrate stimulated carbon fixation by trophosome homogenate 

To determine whether nitrate stimulated symbiont DIC fixation, carbon fixation by 

trophosome homogenate was measured as in Scott et al., 2011.  Homogenized R. pachyptila 

trophosome was incubated in glass, air-tight syringes with buffered R. pachyptila saline solution 

(63)and 14C-bicarbonate in the presence of 0.18 mM O2 and 10mM DIC; one syringe also had 0.1 

mM ΣH2S, one had 1mM NO3, and one had 0.1 mM ΣH2S with 1mM NO3.  Syringes were 

incubated at 15°C and stirred with magnetic stir bars over 25 minutes, and sampled at 5 minute 

intervals.  100 µl subsamples were added to 100 µl 1.2N HCl to stop the reaction, sparged with air 

for 2 hours to remove remaining 14CO2, and then resuspended in 200 µl of ScintiGest tissue 

solubilizer (Fisher Chemical) and 20 µl of H2O2 to minimize quenching.  After 20 minutes, 3 ml 

of ScintiVerse BD cocktail (Fisher Chemical) was added.  The following day, radioactivity was 

measured using a scintillation counter. 

Nitrate reductase activity in Riftia pachyptila trophosome, and Riftia pachyptila vestimentum 

Nitrate reductase activity was assayed using a colorimetric methyl viologen assay as 

described by MacGregor et al.  (205).  Anaerobic conditions were maintained by performing the 

assay under argon gas in a Glas-Col glove bag.  Reactions were carried out in glass, crimp-top 

serum vials and pressurized with argon gas.  Trophosome samples were thawed, pulverized in 

liquid nitrogen, and added to 4.5 ml of nitrate reductase assay buffer (250 mM sodium phosphate, 

50 mM sodium nitrate, 0.05% methyl viologen, and 0.05 mM dithiothreitol, pH 7.1) with 500 µl 

of initiation reaction solution (0.8% sodium bicarbonate and 0.8% sodium dithionite).  Negative 

controls were carried out in assay buffer without nitrate.  The addition of suspended trophosome 

extract initiated the reaction, and 500 µl subsamples were taken every minute for four minutes.  

The reaction was stopped by shaking reaction vials until the solution turned clear.  Subsamples 
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were centrifuged for 5 minutes, 500 µl of a 1% sulfanilic acid solution in 20% HCl was added and 

mixed into the reaction vials, 500 µl of 0.129% solution of N-1-naphthy-lethylenediamine diHCL 

was added, and samples were incubated for 10 minutes at room temperature.  The absorbance at 

604nm was measured on a Thermospectronic Genesys 5 UV-vis spectrophotometer.  Protein 

concentrations in the assays were measured using a Bio-Rad RC DC Protein Assay Kit. 

Results 

Nitrate stimulated carbon fixation by trophosome homogenate 

Nitrate stimulated carbon fixation by trophosome homogenate (Fig.  1).  Homogenized 

trophosome from an R. pachyptila individual with a lighter colored trophosome had the highest 

carbon fixation rates when nitrate was added, both in the presence and absence of H2S (Fig.  1A).   

The addition of only NO3
- significantly stimulated carbon fixation, and the addition of only H2S 

did not stimulate carbon fixation (Fig.  1A).  Homogenized trophosome from an R. pachyptila 

individual with a darker trophosome fixed CO2 most rapidly in the presence of NO3
- with the 

addition of H2S (Fig.  1B).  The addition of only NO3
- slightly stimulated carbon fixation, and the 

addition of only H2S did not stimulate carbon fixation (Fig.  1B).   

Nitrate reductase activity in trophosome and vestimentum from Riftia pachyptila 

Methyl viologen oxidation rates as a proxy for nitrate reduction were significantly higher 

in trophosome versus respective vestimentum samples within three worms (Fig.  2A-C).  Addition 

of nitrate to trophosome homogenate significantly increased methyl viologen oxidation rates in 

two worms (two-sided t-test; p<0.05, Figure 2A-B).  In worm 3, the rate of methyl viologen 

oxidation was not significantly different in the trophosome without NO3
-
 versus with NO3

- (two-
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Figure 4.2.  Nitrate stimulation of methyl viologen oxidation in homogenized trophosome containing symbionts and 
symbiont-free vestimentum samples from R. pachyptila, with and without the addition of NO3

-.  NO3
- reductase rates 

that are statistically distinct (two-sided t-test; p<0.05) are labelled with different lowercase letters. 
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Chapter 5: Conclusion 

The objective of the research reported here was to investigate potential mechanisms that 

enable the Riftia pachyptila-“Candidatus Endoriftia persephone” symbiosis to thrive in the 

heterogeneous habitats associated with HTVs.  Carbon fixation capability and potential alternative 

redox substrates were investigated based on previous predictions from metagenome, 

transcriptome, and proteome data (33, 56, 57, 62, 70, 71, 208).  Here, I tested these predictions 

with biochemical and physiological measurements. 

Carbon fixation pathways 

I hypothesized that under low sulfide conditions the energetically favorable reductive citric 

acid cycle (rCAC) is more active than the CBB cycle in “Ca.  E. persephone”.  This study found 

no difference in the activity of either the CBB cycle or the rCAC in trophosome samples removed 

from R. pachyptila incubated under low or high sulfide conditions.  Our results do not support 

predictions that rCAC is more active in low energy conditions.  Assertions of the dominance of 

either the CBB or the rCAC carbon fixing pathways in “Ca.  E. persephone” (47, 56, 62) or 

simultaneous expression (209) have been made many times.  It was also reported that the 

expression of these carbon fixing pathways might be influenced by regional habitat (58).  

However, it has been previously shown that RuBisCO activity does not vary in symbionts collected 

from high sulfide versus low sulfide habitats (210), which this study has also demonstrated.  These 

pathways could be expressed in parallel in the same symbiont cell, differentially as a result of 

microhabitat chemistry within the trophosome, or in response to the region specific HTV habitat 

chemistry (e.g. the EPR, Mid-Atlantic Ridge, Lau Basin, or Juan DeFuca).  It is additionally 
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confounding that each pathway produces different precursor molecules for biosynthesis (47), 

which could influence the regulation of expression of either pathway based on the host’s nutritional 

requirements.   

The evolutionary origin of the rCAC in “Ca.  E. persephone” is unknown, It appears to 

have been horizontally acquired as few members of Gammaproteobacteria use the rCAC (211).  

Until recently, “Ca.  E. persephone” was believed to be the only bacterium with two carbon fixing 

pathways, but a recent identification of ATP citrate lyase genes in the genome data from a 

tubeworm-associated endosymbiont in the Mediterranean Sea has hinted at the presence of both 

the rCAC and the CBB in this symbiont (127).  The presence of both pathways has since been 

suggested by genome data from free-living bacteria as well, suggesting that their co-occurrence 

might be more common than previously thought (126, 208, 212).  A broader enzymatic study of 

the presence and functions of these pathways could provide better insight into the circumstances 

under which each of these carbon fixing pathways are utilized in these endosymbionts and in other 

bacteria that have the genetic potential for both.   

Hydrogen as an electron donor 

I hypothesized that “Ca.  E. persephone” uses H2 to supplement the use of H2S as an 

electron donor.  The symbiont does not use H2 for energy to fuel carbon fixation despite the 

presence of hydrogenase genes and proteins detected in –omics studies.  The use of hydrogen as 

an energy source for this symbiosis has been predicted (85, 211), but is not supported by the 

research reported here because we did not measure the stimulation of carbon fixation in the 

presence of H2, nor H2 stimulated methylene blue reduction.  Transcription of a putative 1e 

hydrogenase (213, 214) was upregulated when O2 was high, in the presence of H2 compared to 

H2S, when H2S was present and H2 was absent, and low O2 conditions compared to high O2.  
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Hydrogenase genes homologous to form 1e and 3b (212, 213, 215) were identified in the “Ca.  E. 

persephone” genome.  Form 1e and 3b are Ni-Fe type hydrogenases that have bidirectional 

potential.  Reversible hydrogenases catalyze hydrogen evolution in the reversible reaction H2 ↔ 

2H+ + 2e- (214).   

Other bacteria whose genomes encode multiple hydrogenases upregulate them 

differentially under different growth conditions.  Mycobacterium smegmatis, an aerobe, has genes 

encoding three distinct hydrogenase genes which enable the cell to adapt to energy and oxygen 

limitation (216).  Expression of each of the three hydrogenases (forms 2a, 5, and 3b) was quantified 

in response to different growth conditions.  Form 2a consumed H2 from cellular metabolic 

processes (scavenging), and the form 5 hydrogenase, a high affinity enzyme, oxidized H2 from the 

environment.  Both aided respiratory processes and ATP production.  3b hydrogenase in M.  

smegmatis is a NAD(P)+ linked bidirectional hydrogenase.  This 3b hydrogenase is oxygen 

tolerant, but was shown to be upregulated under hypoxia (216)..  These results are consistent with 

a hydrogen evolving function in response to oxygen limitation for the oxidation of NAD(P)H.  

“Ca.  E. persephone” may not be using H2 for energy but may be responding to an environment 

that is low in reductant (e.g. when O2 is high and H2 is present), or to low oxidant availability (e.g. 

when O2 is low and H2S is present).  In this circumstance, hydrogenase could maintain redox 

homeostasis by oxidizing cellular electron carriers (e.g., NAD(P)H) when in excess, and reducing 

these cellular electron carriers when their oxidized forms predominate. 

Nitrate as a nitrogen source or as an electron acceptor 

I hypothesized that “Ca.  E. persephone” can supplement oxygen as a terminal electron 

acceptor by using nitrate.  Indeed, nitrate stimulates carbon fixation in freshly collected R. 

pachyptila trophosome and nitrate reductase activity was measured in trophosome homogenate.  
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However, the extent of its contribution to the R. pachyptila symbiosis is still not resolved.  The 

symbiont has been shown to reduce nitrate to ammonia (71) and 15NO3 added to aquaria was 

incorporated into R. pachyptila biomass (217).  Furthermore, R. pachyptila from an environment 

with high NH4
+ have low NO3

- uptake (33).  If nitrate were functioning as an electron acceptor, its 

rates of uptake would not be sensitive to the NH4
+ concentrations in the environment.  Conflicting 

with results of previous experiments that posited nitrate is primarily used for assimilation (33, 71), 

the nitrate experiment reported here correlates carbon fixation rates with the presence of nitrate.  

These results suggest either that nitrate could act as an electron acceptor during respiration, or that 

its primary function is as a nitrogen source.  If electron transport is stimulated in the presence of 

nitrate as an electron acceptor during respiration, then ATP and NADPH production will increase 

and thus, carbon fixation increases.  Alternatively, the availability of NO3
- could regulate carbon 

fixation in response to nitrate availability for biosynthetic processes.  These pathways are not 

exclusive, but the extent of the contribution of nitrate reductase in “Ca.  E. persephone” to either 

assimilation or respiration remains to be quantified.   

The nitrate experiments reported here did not measure an end product as a result of nitrate 

reduction.  If nitrate is used for respiration, then nitrite or N2 would be an end product of nitrate 

reduction in this symbiosis.  If nitrate is used for assimilation, ammonia or amino acids would be 

the end product of nitrate reduction.  Nitrite production has been measured in purified symbionts 

of R. pachyptila but the mechanism of nitrate reduction was not deduced (70).  Here, we confirm 

that the mechanism of nitrate reduction for this symbiosis is nitrate reductase in the symbiont “Ca.  

E. persephone”.  However, no inference can be made about the contribution of nitrate reductase to 

either dissimilatory nitrate reductase for respiration or assimilatory nitrate reductase for 

biosynthesis from this study.   
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Summary 

The results of this study failed to support statements made about the rCAC and CBB cycle 

and predictions made about the identities of redox substrates.  Further evidence is needed to show 

that (1) carbon fixation pathways are indeed differentially expressed, (2) hydrogen is used for 

energy, and (3) to what extent nitrate reductase is utilized in either respiration or biosynthesis.   

These studies highlight the necessity for biochemical and physiological studies to support 

results from -omics investigations.  For example, gene sequence data can be used to generate 

hypotheses about gene function based on sequence similarity to biochemically characterized 

homologs, but those similarities are based on previously characterized gene sequences which may 

have substantial differences in primary structure, and therefore have considerably different roles 

(e.g., enzyme activities).  Furthermore, the presence of a gene, of itself, does not provide 

information about if and when the gene is transcribed.  Additionally, if a gene is transcribed that 

does not always result in the presence of the protein.  Proteins can be post transcriptionally 

modified.  Enzyme activities are further influenced by the maximal rate of the enzyme (Vmax), 

affinity of the enzyme for its substrate (Km), and positive or negative allosteric regulation.  Because 

of this disjunction between –omics data and organism function, further physiological experiments 

are necessary to better understand how “Ca.  E. persephone” adapts to the heterogeneity of the 

HTV environment.   
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Appendix: Characterization of a putative ATP lyase gene from “Candidatus Endoriftia 

persephone” 

Objective 

A potential citrate cleaving enzyme is encoded in the genome of “Ca.  E. persephone”, and 

has been proposed to catalyze the first step of the reductive citric acid cycle (209).  To determine 

whether this enzyme is capable of cleaving citrate, the genes encoding it were cloned into an 

expression vector for heterologous expression in E.coli. 

Methods 

Cloning 

Genomic DNA was purified from the trophosome of Riftia pachyptila using the primers 

listed (Table 1) with a QiaQuick PCR purification kit, and ATP citrate lyase (ACL) genes from 

“Ca.  E. persephone” (IMG ID 2600441586 and 2600441587) were amplified with an Invitrogen 

Platinum Superfi DNA polymerase kit.  PCR conditions were as follows: melt temperature 95°C 

for 30 seconds, annealing temperature 50°C for 30 seconds, and 72°Cfor 4 minutes for 35 cycles.  

The amplified DNA was inserted into a pBAD-TOPO vector and transformed into One Shot® 

TOP10 Chemically Competent E.coli.  Expression of ACL genes was driven by an arabinose 

(araBAD) promoter.  Tight regulation of expression was important due to the potential toxicity of 

ACL in E.coli.  Vector sequences were amplified via colony pick PCR to screen transformed 

bacteria for the presence of plasmids and plasmids were purified using a QIAquick PCR 
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Purification kit.  Purified plasmids were sent for sequencing to Macrogen to verify that the genes 

were free from mutations introduced during PCR amplification.   

Table A1.  Primers for amplification of both the α and β ACL genes from the endosymbiont of Riftia pachyptila 

Endoriftia ACL 5’ 5’- GAG GAA TAA TAA ATG CGT TAC GGC GCG AAA CTC- 3’ 

Endoriftia ACL 3’ 5’- CGG TGC CAG CAA ATT CTT CGC TA- 3’ 

 

Expression of ACL genes 

Two strains of E. coli were cultivated for ACL expression; in strain 6, the ACL genes were 

in the forward orientation relative to the promotor, while in strain 7, they were in the reverse 

orientation, to act as a control.  These strains were grown in 250 ml of LB with 100 µg/ml 

ampicillin at 37°C in 2L Fernbach flasks on a shaker table.  A pilot experiment to determine the 

optimum concentration of the arabinose inducer did not show a difference in growth rate between 

0.0002-0.2% arabinose.  Once the OD600 = ~0.5, 0.2% arabinose was added to the cultures and the 

incubation temperature was changed to 30°C.  The next day, cultures were centrifuged for 10 

minutes at 10,000 G at 4°C, washed in 20 mM MgCl2, centrifuged as before, and the pellets were 

stored at -80°C until day of use.   

SDS Polyacrylamide Gel Electrophoresis (PAGE) 

The presence of ACL alpha and beta subunits was investigated using construct 6 and 

construct 7.  The detection of inclusion bodies in the insoluble portion of the sample was 

investigated using construct 6.  Frozen culture pellets were resuspended in 3 ml of 50 mM Tris pH 

8 and sonicated on ice (Sonic Dismembrator, Fisher Scientific, Pittsburgh, PA) with 0.5 g of fine 

glass beads 5X for 15 seconds each.  Sonicant was centrifuged at 10,000 G at 4°C for 5 minutes.  

Fifty µl of supernatant (50 µl of supernatant and 50 µl pellet of for the investigation of inclusion 
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bodies in the insoluble fraction) with 50 µl of gel loading buffer (50 mM Tris [pH 6.8], 2% SDS, 

0.1% bromophenol blue, 10% glycerol, 100 mM DTT) was incubated at 95°C for 10 minutes.  30 

µl of these mixtures were loaded into a 10% SDS PAGE gel using the procedure from J. Sambrook 

and D. W. Russell (218).  Gels were stained with Coomassie blue and scrutinized for the presence 

of proteins at 44 and 96kD for the ACL beta and alpha subunits, respectively.   

 The detection of inclusion bodies in the insoluble portion of the sample was 

investigated using construct 6.  Frozen culture pellet was resuspended, sonicated, and centrifuged 

as described above. Fifty µl of loading buffer was added to each of 50 µl of supernatant and 50 µl 

of pellet and then incubated at 95°C for 10 minutes. 30 µl of each of these mixtures was loaded 

into a 10% SDS PAGE and the procedure was followed as described above. 

ACL assay 

Frozen pellets of construct 6 and 7 were resuspended in 3 mL of assay buffer (30 mM 

MgCl2, 5 mM DTE, 30 mM NaHEPES, pH 8) and sonicated on ice (Sonic Dismembrator, Fisher 

Scientific, Pittsburgh, PA) with 0.5 g of fine glass beads 5X for 15 seconds each.  Sonicant was 

centrifuged at 10,000 G at 4°C for 5 minutes and desalted using a PD-10 desalting column (GE 

Healthcare, Buckinghamshire).  ACL was assayed spectrophotometrically by tracking 

oxaloacetate synthesis from citrate: oxaloacetate synthesis was tracked via NADH oxidation by 

malate dehydrogenase, which reduced the oxaloacetate to malate (141, 209).  1 ml of assay buffer 

was sealed in an anaerobic quartz cuvette and sparged with argon.  A solution of 1.5 mM adenosine 

5'-triphosphate disodium salt, 0.1mM coenzyme A free acid trihydrate, β-nicotinamide adenine 

dinucleotide, disodium salt, hydrate (NADH; 0.1 mM), and malate dehydrogenase (from porcine 

heart, E.C.  1.1.1.37, 200 U; MP Biomedicals, Solon, OH) was added to the cuvette followed by 

50 µl of desalted extract.  Sodium citrate (0.1 mM final concentration) was injected to begin the 
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reaction.  A340 (ε340 = 6.2 mM-1 cm-1) measurements were taken every 60 sec for 5 minutes.  

Klebsiella citrate lyase (Sigma-Aldrich) was used as a positive control.  Protein was measured 

using a Bio-Rad RC DC Protein Assay Kit. 

Results 

Bands corresponding to alpha and beta subunits of ACL were not visible in SDS PAGE 

gels of extracts from strain 6 or 7, despite confirmation of the presence of the genes encoding them 

by PCR in the E.coli transformants (Figure 1a).  Protein bands of construct 6 were 

indistinguishable from construct 7, the negative control.  The presence of neither the ACL alpha 

nor the beta subunit was detected in the insoluble portion of the construct 6 pellet.   

Discussion 

Successful uptake of the “Ca.  E. persephone” ACL gene into the E. coli plasmid was 

accomplished, but the proteins are not expressed.  Experiments with qRT-PCR could be performed 

to detect transcription of the gene by the E. coli construct in the presence of different 

concentrations of arabinose inducer over time. 
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(a)  (b)  
Figure A1.  SDS PAGE gels of (a) construct 6 (C6) and construct 7 (C7) for detection of differential expression of 
protein bands at 96 kD (ACL alpha subunit) and 44 kD (ACL beta subunit), and (b) construct 6 supernatant (S) and 
pellet (P) for detection of inclusion bodies in the insoluble portion of the cell pellet.  
 

 

Figure A2.  Citrate cleaving activity by ACL E.coli construct 6 in the (+) presence and absence (-) of sodium citrate.  
Klebsiella citrate lyase was used as a positive control.   

   

C6
 

C7 Protein standard 

170 kD  
150 
95 
 
72 
55 
 
43 
 

 

96 kD 

44 kD 

S P 


