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ABSTRACT 

 

A core aim of landscape ecologists as well as conservation and management practices has been 

to understand how processes that structure communities vary as a function of landscape context. 

Landscape heterogeneity (i.e. landscape composition, configuration) and fine-scale habitat 

characteristics can influence ecological interactions across habitat patches at a range of scales. 

Therefore, the main objective of this work is to apply a landscape ecology perspective to 

understand how seascape heterogeneity can influence demographic rates, community patterns, 

and ecological processes. To accomplish this overall goal, I conducted a literature review on 

oyster reefs from a seascape ecology perspective (Chapter 1) and I carried out three independent 

research studies (Chapters 2-4) using observational and experimental approaches. 

In Chapter 2, I assessed demographic rates of oysters in reefs adjacent to various habitat 

types in a transition zone. In northeast Florida, the dominant coastal habitat transitions from 

Smooth Cordgrass (Sporobolus alterniflorus; temperate species) to Black Mangroves (Avicennia 

germinans; tropical species). These two foundation species may affect the demographic rates of 

the Eastern Oyster (Crassostrea virginica), another foundation species commonly located 

adjacent to them. Therefore, I deployed juvenile oysters in cage experiments comprising three 

levels of predator exposure on (a) oyster reefs bordering Smooth Cordgrass, (b) reefs bordering 

Black Mangroves, and (c) isolated oyster bars, to quantify survival and growth rates north and 

south in the Guana Tolomato Matanzas National Estuarine Research Reserve. Additionally, I 

analyzed three datasets with information on the abundances of oysters, associated organisms, 
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potential predators, and other biotic (e.g., chlorophyll a) and abiotic factors (e.g., salinity, 

dissolved oxygen) across the seascape. The results of this chapter indicated that neighboring 

habitats and regional variation in the seascape may influence demographic rates of oysters.  

Although oyster demographic rates across intertidal zones have been examined in oyster 

reefs at higher latitudes, far less is known about them at subtropical locations where desiccation 

stress is expected to be greater due to higher temperature. Furthermore, little is known about 

oyster demographic rates when in association with a macrophyte intertidal habitat, which may 

reduce desiccation stress and positively influence oysters at higher intertidal zones. In Chapter 3, 

I measured demographic rates of oysters along intertidal zones on oyster reefs and on oyster 

clusters associated to Red Mangrove prop roots in Tampa Bay, Florida. This study addressed: (a) 

how do demographic rates of the Eastern Oyster vary along intertidal zones (bottom, middle, and 

top) on oyster reefs and on prop roots and (b) whether the association of oysters with mangroves 

may reduce desiccation stress, thus positively influencing oysters at higher intertidal zones. I 

found oysters on prop roots to be at higher densities and had higher survival. Consistent with 

density and survival, water loss (a proxy for desiccation stress) was lower on the prop roots, 

suggesting that the mangrove canopy may have provided a positive effect on oysters. This 

chapter contributes to our understanding of fine-scale zonation patterns on two biogenic habitats 

that exist in close association. 

 In tropical seascapes, beds of benthic macroalgae occur naturally interspersed within or 

nearby other habitats, but it is unclear what roles they play to support marine fauna. Even less is 

known about how the introduction of non-native macroalgal habitats (e.g., macroalgal farms) 

into tropical seascapes may affect ecological processes that influence ecosystem function and its 

comparison to seascapes with natural macroalgal beds. To address this knowledge gap, in 
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Chapter 4, I surveyed fish assemblages and deployed macroalgal assays to quantify herbivory 

within naturally-occurring macroalgal habitats, macroalgal farms, as well as at varying distances 

in the seascape near Mafia Island, Tanzania. The results showed that macroalgal beds had a 

higher species richness of fish and lower herbivory, while higher herbivory occurred in farmed 

seascapes likely to the farms attracting herbivores. This chapter advances our understanding of 

the effects that alteration of tropical seascapes (due to the introduction of farms) may have on 

patterns of community assembly and ecological processes. 

Overall, the findings of this dissertation suggested that neighboring habitat patches can 

influence demographic characteristics of organisms, but the responses may be contextual upon 

location in the seascape due to variation in regional factors. Moreover, fine-scale variation in 

biotic and abiotic factors in intertidal habitats can affect demographic rates of organisms and the 

presence of other foundation species may influence these patterns. Lastly, seascape alterations 

can influence patterns of community assembly and ecological processes thus affecting ecosystem 

structure and function. As seascapes continue to be altered due to climate change (e.g., poleward 

movement of foundation species) and anthropogenic activities (e.g., farming practices), studies 

that assess the ecological responses of such changes will improve our understanding on the 

cascading effects within ecosystems and the services they provide.



 1 

 

 

CHAPTER 1: INTRODUCTION – OYSTER REEFS FROM A MULTI-SCALE 

PERSPECTIVE  

 

Landscape ecology is a multidisciplinary field that uses concepts derived from geography and 

ecology to understand the causes, changes, and ecological consequences of spatial patterns and 

processes occurring across heterogeneous mosaics at a range of scales (Turner et al. 2001, Turner 

2005). The field of landscape ecology, which started as early as 1940s in Europe and 1980s in 

North America, has developed analytical tools and concepts that have resulted in valuable 

contributions to the understanding and management of terrestrial environments. Given this 

discipline was developed for terrestrial managers, landscape-ecology studies have focused on 

vegetation as the type of land cover that creates spatial structure and composes the landscape 

(e.g., forests, grasslands, agricultural fields). In the early 1990s, landscape-ecology concepts 

were introduced in the study of marine landscapes and thus a sub-discipline formally termed 

“Seascape Ecology” emerged.  

Many similarities exist between terrestrial landscapes and seascapes. For example, the spatial 

arrangement that marine biogenic-habitats exhibit produce “patches” which are embedded within 

a background matrix (e.g., sand, mud; Dunning et al. 1992). Seascapes (like landscapes) can also 

be composed of mosaics of habitat patches that result in highly heterogeneous areas. Well-known 

coastal spatial patterns include the dendritic structure that tidal channels form in wetlands, the 

spatial zonation occurring in rocky shores as well as in saltmarsh grass habitats, and the mosaics 

of patches formed by seagrass beds, coral reefs, and mangrove forests (Pittman et al. 2007). 
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Additionally, numerous coastal organisms are often associated with benthic habitat structure, 

similar to that reported for terrestrial environments. Due to the recognition of the spatially 

structured nature of marine habitats and the similarities to terrestrial systems, it is logical that 

many of the concepts and techniques developed by terrestrial ecologists are applicable to aquatic 

benthic environments. 

Even though water and air are two physically and chemically different media that possibly 

influence ecological processes and spatial structure, the application of landscape principles to the 

study of marine environments has gained popularity and the number of studies using such 

approaches has increased over time (Bell and Furman 2017). Consequently, seascape ecology 

has been applied to the study of a variety of shallow and coastal subtidal and intertidal biogenic 

habitats across a range of scales (see Boström et al. 2011 for a review of the literature). 

Seagrasses have been the species/habitat primarily studied from a landscape perspective 

(Boström et al. 2011) due to their resemblance to terrestrial environments (e.g., grasses) and their 

spatial and temporal structure (Robbins and Bell 1994). Seagrasses have been studied generally 

using the patch-matrix model (focal seagrass patches surrounded by unvegetated sand matrix) to 

examine spatial processes and the ecological consequences of fragmentation in terms of patch-

size change, number of patches, and isolation (Bell et al. 2001, Hovel and Regan 2008). Also, 

several studies have revealed that species associated with seagrasses respond to the spatial 

arrangement of the patches. For example, juxtaposition, contiguity, fine-scale complexity (e.g., 

blade density), and inter-patch distances can affect predator-prey relationships by influencing 

refuge, predation risk, and mobility among habitats (Irlandi and Crawford 1997, Micheli and 

Peterson 1999, Grober-Dunsmore et al. 2007, Chacin and Stallings 2016). 
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 Seascape studies on intertidal plants such as saltmarsh grasses and mangroves are also 

available (Costanza et al. 1990). Similarly to studies in seagrass beds, responses especially of 

macroinvertebrates to saltmarsh spatial structure (e.g., patch size, patch density, edge effects) 

have been reported (Baltz et al. 1993, Minello et al. 1994, Peterson and Turner 1994, Cicchetti 

and Diaz 2000, West and Zedler 2000, Minello and Rozas 2002, Haas et al. 2004, Guest and 

Connolly 2006, Long and Burke 2007, Roth et al. 2008). Fewer studies have been conducted on 

mangroves and these have revealed that percent cover of mangroves can influence fish diversity 

in coastal seascapes (Pittman et al. 2004). Other landscape-forming habitats generated by 

animals (e.g., coral reefs and oyster reefs) can also create large spatial structures, and these have 

begun to be studied from a landscape perspective more recently (Boström et al. 2011). 

Oysters are bivalve mollusks that can live in marine or brackish environments, subtidally and 

intertidally, and have been a recent target of landscape investigations (Grabowski et al. 2005, 

Hanke et al. 2017, Ziegler et al. 2018). Oysters aggregate to form clusters, which in turn form 

reefs. Sets of reefs can form small to large spatial structures (1-10s m) embedded within a 

background matrix, typically mud and reefs are the usual elements considered in seascape 

studies. It is this hierarchical spatial nature of oyster reefs that renders them ideal habitats to 

study from a multi-scale perspective. However, in comparison to other coastal habitats, oyster 

reefs have been understudied from a multi-scale perspective (but see Grabowski et al. 2005, 

Hanke et al. 2017), even though the approach has been advocated to provide an advantageous 

conceptual framework for furthering our understanding of oyster reef ecology and restoration 

ecology (Eggleston et al. 1998, 1999, Boström et al. 2011).  

This review builds on the theme of coastal landscapes and discusses (1) variation in spatial 

structure of oyster reefs as landscape-forming habitats, (2) the influence of salinity and 
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hydrodynamics on the development of oyster reefs within coastal settings, and (3) patterns of 

intertidal zonation within oyster reefs that set the stage for ecological investigations and their 

comparison to other well-studied intertidal marine ecosystems.  

1.1. Oyster reef growth and comparison to other landscape-forming habitats 

Oyster reefs share a variety of similarities with other landscape-forming habitats. Oyster 

landscapes can be formed in a hierarchical array (Figure 1.1). At very fine (e.g., millimeter) 

scales, individual oysters may grow away from sediment with the developing edges oriented 

upwards (Figure 1.1a; Bahr and Lanier 1981). Upon this oyster shell many other oysters can 

settle, physically attach, and grow, forming an oyster cluster (Figure 1.1b; Winslow 1882). 

Therefore, the presence of other conspecifics and hard substrate is necessary for starting the 

process of reef formation. The oyster cluster forms a three-dimensional structure composed of 

live oysters and shells from dead oysters creating a hard bottom that can expand laterally and 

upward, the latter which may potentially allow reefs to keep pace with sea-level rise (Figure 

1.1c; DeAlteris 1988, McCormick-Ray 1998, Ridge et al. 2017). This three-dimensional reef 

structure increases habitat complexity and seascape heterogeneity in soft-sediment systems, 

augmenting species abundance and diversity (Meyer and Townsend 2000, Gutiérrez et al. 2003, 

Peterson et al. 2003, Walles 2015). The oyster clusters over time may accumulate more individual 

oysters and form a patch/oyster reef, and at this point, these patches can be visible at scales of 

centimeters to meters (Figure 1.1c). Dynamics of growth contribute to fine-scale habitat 

complexity of the reef patches. Oyster reefs that have a high proportion of live oysters growing 

closely wedged together display high structural complexity, while those in which dead shells 

form a higher proportion of the reef, are less complex.  
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Figure 1. 1. A visual representation of the hierarchical array formed by oysters. (a) An individual 
oyster, (b) an oyster cluster, (c) an oyster patch/reef, and (d) an oyster landscape. These 
representations are not drawn to scale, but each square is characterized by different scales 1-10 
cm, 10-cm -1 m, 1-10s m, 10-100s m respectively. 

 
Spatial configuration of oyster reefs (Eggleston et al. 1998) range from sparse and 

fragmented reefs, to aggregated clusters that form large continuous reefs (extending over 1 km; 

Figure 1.1d; Eggleston et al. 1999) across the seascape. Oysters are found in nearshore coastal 

areas and the reefs they create are distinct from the surrounding sediment matrix, making their 

boundaries/edges visually identifiable. Oysters also form reefs adjacently to other habitats 

creating a patchwork of mosaics within the coastal matrix. For example, in the northern Gulf of 

Mexico and the east coast of the United States of America (USA), oyster reefs formed by 

Crassostrea virginica can be found juxtaposed to saltmarsh grass (Figure 1.2a) and seagrass beds 
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(McCormick-Ray 2005, van de Koppel et al. 2015). In Florida, oysters can grow attached to prop 

roots of Red Mangroves (Rhizophora mangle) and reefs can be found adjacent to mangroves 

(Figure 1.2b). 

a 

 

b 

 

Figure 1. 2. Oyster reefs adjacent to (a) Smooth Cordgrass and (b) Red Mangroves. 
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Oyster reefs differ from other landscape-forming habitats in terms of the growth pattern of 

patch expansion. In terrestrial settings, canopy elements of vegetation are a main characteristic 

often measured. Change in the vertical range and structure of the canopy is typically of interest, 

as this metric is reported to influence foliage diversity, structural complexity, and epiphytic 

cover (Spies 1998, Robbins and Bell 1994, Zellweger et al. 2013). Seascapes shaped by coral 

reefs are formed by the settlement of free-swimming coral larvae onto submerged hard 

structures. Once settled, the coral polyps build skeletons beneath the tissue creating and offering 

more substrate for other coral larvae to settle as well as increasing the surface area upon which 

other organisms (e.g., calcifying macroalgae and benthic invertebrates) may attach. On the other 

hand, oyster reefs expand by the settlement of new oyster recruits into the reefs and through the 

accumulation of biodeposits. Suspended small inorganic particles are repackaged by oysters and 

other bivalves into feces and pseudofeces and oysters biodeposit them into the sediments 

(Widdows et al. 1998). The deposition of biodeposits is an important process, which contributes 

to reef stability and modulates reef sediment supply on and around reefs (Widdows et al. 1998). 

Biodeposition and shell material contribute to reef accretion by filling the interstitial space, 

which helps elevate the reef structure. Oyster reefs also offer substrate for many organisms, such 

as mussels, sponges, anemones, and barnacles, to settle (Wells 1959) and this further contributes 

to the cementing process of the reef structure. Therefore, the combination of oyster recruitment, 

biodeposition, and the settlement of other benthic organisms over time allow the oyster reefs to 

expand three-dimensionally.  
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1.2. Factors that mold oyster seascapes: salinity and hydrodynamics influence location and 

development of oyster reefs 

It has been well established that salinity and hydrodynamic processes can play an important role 

in the distribution, growth, and recruitment processes of most estuarine organisms (Zeineldin 

1963, Barletta et al. 2005). Cyrus and Blaber (1992) identified salinity as one of the major 

factors driving fish distributional patterns in the Embley estuary, Australia. Furthermore, 

hydrodynamic processes such as freshwater inflow have the potential to transport larvae towards 

or away from settlement habitats influencing recruitment and survival of organisms (Tolley et al. 

2012). Oysters are known for thriving in the transition zone between freshwater and saltwater 

environments (Galtsoff 1964, Wilber 1992). At broad scales, variation in salinity and 

hydrodynamic processes are well established. Therefore, it is expected that oyster reef 

development, distribution, persistence, and location would be related to the salinity regimes and 

the hydrodynamics of estuarine systems.  

At the population level, oysters can survive highly variable salinity regimes, including low 

and high salinity events (Butler 1952, Pollack et al. 2011). However, the frequency, timing, and 

duration of salinity extremes can affect oyster physiology, alter the distribution of oyster 

predators, and influence the prevalence of disease-carrying pathogens. The effects of salinity 

regimes on such factors can affect oyster survival and population success, thereby impacting the 

development and location of oyster reefs within the seascape. 

Salinity is one of the main factors affecting oyster physiology. The timing and duration of 

low extreme salinities may result in dramatic changes in oyster population dynamics by affecting 

recruitment, growth, and mortality of different life stages. For example, in the Northern Gulf of 

Mexico, La Peyre et al. (2013) observed that extended low salinities (< 5 ppt) in combination to 
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high temperatures (>25 °C) during the summer season negatively impacted oyster recruitment, 

survival, and growth. Examination of the oyster plasma showed evidence that these oysters were 

not able to osmoconform and lower their plasma osmolality, resulting in excessive valve closure 

to minimize energetic demands. The extended period of valve closure caused hypoxia, acidosis 

of the hemolymph or starvation, leading to oyster death (de Zwaan and Wijsman 1976, Lombardi 

et al. 2013). Lack of feeding in oysters has also been reported in salinity levels under 3 ppt and 

reduced growth at salinities under 7.5 ppt (Loosanoff 1953, 1965). Low salinities, in general, 

make oysters depress or arrest gametogenesis (Loosanoff 1953), delay spawning (Allen and 

Turner 1989), and reabsorb gonadal material (Livingston 1997). Oysters may experience 100% 

mortality within one week of exposure to 1 ppt (Rybovich et al. 2016) and result in low spat 

production and extremely high valve closure at salinities levels below 14 ppt (Shumway 1996, 

Volety et al. 2008). All of these effects ultimately can lead to recruitment failure or post 

settlement mortality, deterring oyster reef growth and, consequently, reef persistence. 

In addition to strongly affecting oyster physiology, salinity may also influence oyster reef 

structure and location of oyster reef formation. Disarticulation rate of oysters has been shown to 

be higher in increased salinity areas than in those within low salinity locations (Christmas et al. 

1997). Possible explanations included the more diverse proteolytic bacteria (found in high 

salinity settings), which can mediate degradation of the hinge ligament and influence reef 

complexity and structure. Salinity has also been identified as a major driver of intertidal oyster 

reefs distribution in North Carolina (Theuerkauf 2017) given that intertidal reefs have not been 

found below a salinity threshold of ~27 ppt in Pamlico and Core Sound. Conversely, Eleuterius 

(1977) found that oyster reefs were distributed in salinity-suitable locations in the Mississippi 

Sound within salinity range of 2 to 22 ppt that average between 10 and 16 ppt. They concluded 
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that salinity levels under such threshold could affect reef persistence due to unsuccessful 

reproduction, whereas higher values could expose the oysters the predator, Thais haemastoma.  

Diseases caused by parasites have the potential to cause extensive mortalities of oysters (Has 

kin and Andrews 1988, Andrews 1996) and have been associated with increased salinities levels. 

Volety (2008) found high prevalence and infection intensity of C. virginica oyster by the highly 

pathogenic parasite Perkinsus marinus in locations downstream of the Caloosahatchee Estuary 

where salinity was higher compared to upstream locations. Possible explanations included 

physiological limitations of the pathogens in lower salinity environments. The transmission and 

progression of infections by P. marinus have also been related to variability in rainfall, which 

alters salinity patterns and temperature (Ford and Tripp 1996, Powell et al. 1996, Kim and 

Powell 1998, Malek 2010, Soniat et al. 2006). In the Gulf of Mexico, reduced rainfall and 

warmer waters during La Niña events have also lead to epizootic events of P. marinus (Powell et 

al. 1996, Kim and Powell 1998). Furthermore, oyster infections and mortality caused by P. 

marinus in Chesapeake Bay tend to increase in the summer season, which corresponds to higher 

temperatures and elevated salinities. Infections by P. marinus can result in alterations to 

individual oyster morphology such as smaller shells and decreased tissue growth (Menzel and 

Hopkins 1955, Paynter and Burreson 1991). Infections can also affect the biochemical 

composition of the oyster mantle tissue (Soniat and Koenig 1982), reduce the oyster gametogenic 

development, and result in mortality of the host. Therefore, by affecting oyster morphology 

diseases can influence the structural complexity of reefs, and by inducing high mortality rates 

diseases also affect reef persistence. 

High salinity levels can also impact oyster population success through the effects of 

predation. Predators whose distribution is dictated by salinity have the potential to decimate 
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oyster reefs. When salinities exceed 15 ppt predation can overwhelm recruitment in subtidal 

oyster reefs. For instance, the Southern Oyster Drill (Stramonita haemastoma) is an oyster 

predator known for occurring when salinities rise over 15 ppt (Garton and Stickle 1980). Other 

predators such as the Stone Crab (Menippe adina and Menippe mercenaria) and the Blue Crab 

(Callinectes sapidus) prey on small oysters and are also found in marine (higher salinity) 

environments (Menzel et al. 1966, Eggleston 1990, Brown and Haight 1992). Studies have also 

shown that predators can influence reef persistence. Miller et al. (2017) developed an oyster 

suitability model by studying oyster growth, mortality, and recruitment across a salinity gradient 

in the Louisiana coast, Gulf of Mexico. The authors found that over a two-year period the highest 

salinity study sites demonstrated a low likelihood for sustainable reef development over time due 

to the high oyster mortality resulting from predation. A decline of oyster reefs in the Matanzas 

River estuary in northeast Florida occurred in 2008 (Garland and Kimbro 2015). The primary 

cause for the loss of reefs was an increase in water salinity due to a regional drought, which 

positively influenced the reproductive success of the oyster predator, the Crown Conch, 

(Melongena corona). Similarly, Kimbro et al. (2017) showed through in situ experiments that 

regional drought in combination with water withdrawals led to elevated salinity levels in 

Apalachicola Bay. Under these conditions, abundance of predatory snails increased and high 

mortality of oysters due to intense predation followed, thus contributing to the collapse of the 

oyster fishery. Consequently, it may be advantageous for oyster reef restoration efforts to target 

locations with moderate salinities in order to reduce oyster mortality associated with the high and 

low salinity conditions thus preventing oyster reef decimation and ensuring reef persistence.  

Oyster bed morphology can be highly variable at the individual bed scale reflecting variation 

within and among beds and the complex relationships with hydrodynamic processes 
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(McCormick-Ray 1988). However, oyster bed morphology and orientation has been related to 

hydrodynamic processes. For example, long linear reefs have been shown to form oriented 

perpendicularly to tidal currents (Grinnell 1974, Grave 1905). The suggested mechanism is that 

small oyster clusters along the shoreline undergo high flow rates at the leading edge and 

consequently experience ideal conditions for settlement and growth. The shortest axis on this 

type of reefs is in the direction of tidal flow and turbulent eddies that slow flow are minor. Water 

velocity over the reefs increases due to restriction of space in the water column as the water 

travels over the reef crest (Colden 2014). The higher water flow may lead to increased food 

delivery and may result in higher survival and growth, enhancing vertical reef accretion 

(Kennedy and Sanford 1999, Lenihan 1999). These conditions result in elongation of the oyster 

reef away from the shoreline (Colden 2014, Grave 1905). Lastly, oyster clusters falling from the 

crest into adjacent locations, due to fast water flow, can initiate the formation of another reef in a 

similar process. 

Oyster reef orientation and axial position can also be influenced by channel conditions 

(Colden 2014). Fringing oyster reefs can border tidal channels. Oyster clusters in these locations 

might experience fast flow produced by the water that travels in the channels. The fast-flowing 

water through the channel might be rich in food source for oysters, presenting ideal conditions 

for fast growth (Powell et al. 1995, Kennedy and Sanford 1999, Smith et al. 2003). Moreover, as 

oyster larvae are transported through the channel, the closely located oysters might be the first 

available substrate the larvae encounter resulting in the elongation and development of the 

fringing reefs (Colden 2014).  

Oyster patch reefs are another type of oyster reef morphology. They are characterized by not 

having a clearly defined shape, which causes them to propagate out from the center of 
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development (Haven and Whitcomb 1983, Kennedy and Sanford 1999, Smith et al. 2003). 

Oyster patch reefs have been described historically to form in locations where there is no strong 

bidirectional flow, such as in the mouth of rivers (Haven and Whitcomb 1983, Kennedy and 

Sanford 1999). Overall, estuarine hydrodynamics are able to influence oyster reef patch shape 

while salinity influences patch structural complexity and oyster reef distribution. 

1.3. Oyster reefs; intertidal systems in a seascape 

Models of community organization have shown that biotic and abiotic factors can affect the 

spatio-temporal patterns of abundance and distribution of organisms (Menge and Sutherland 

1987, Menge and Olson 1990). Biotic factors such as the presence of consumers might affect an 

organism’s distribution by their direct consumption and by influencing their selection of habitats 

(Turner and Mittelbach 1990, Pawlik 1998, Johnson and Smee 2014). Abiotic factors such as 

temperature and oxygen levels can also pose physiological stress on organisms, which can 

increase susceptibility to infections and lead to mortality (Menge 1976, Menge and Olson 1990, 

Lenihan et al. 1999, La Peyre et al. 2009). The interplay of biotic and abiotic factors and their 

influence on zonation of benthic marine organisms has been widely investigated in intertidal 

systems such as rocky shores and saltmarsh grass habitats.  

Experimental work on the rocky intertidal shores has shown the upper limits in vertical 

zonation can be determined by direct effects of the physical environments such as high wave 

energy, high temperature due to increased solar radiation, and freezing conditions (Connell 

1972). For example, the upper level distribution of barnacles in a variety of studies has been 

related to desiccation stress (Hatton 1938, Foster 1969, Wethey 1983). Menge (1976) observed 

that the barnacle Balanus balanoides abundance in the high intertidal zone during long-term 

experiments decreased significantly during the summer season due to desiccation stress produced 
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by a series of neap tides occurring on calm warm days. Meanwhile, biological interactions such 

as competition (Connell 1961), predation (Paine 1966), or disturbance (Dayton 1971) may be 

more important in setting the lower limits of species distributions in vertical zonation in rocky 

intertidal shores. For instance, while Chthamalu stellatus can survive at different shore levels, its 

restriction to high shore levels in Scotland is caused by competition with another barnacle B. 

balanoides for space in the lower intertidal zone. Furthermore, in the intertidal rocky shores of 

Washington, Paine (1974) showed that Mytilus californianus and Balanus glandula were able to 

survive at lower shore levels if predators such as Pisaster ochraceus were removed. 

Alternatively, in saltmarsh grass habitats the upper limits are set by competition between plant 

species (e.g., Spartina alterniflora and Spartina patens) while the lower limits are set by their 

tolerance to inundation (Bertness 1991, Pennings and Bertness 2001). Overall biotic and abiotic 

factors have been shown to vary across intertidal habitats and structure community patterns in a 

variety of coastal systems (see appendix A, Box 1). 

Similar factors to those mentioned above, which have been shown to influence community 

distribution in intertidal systems such as rocky shores, may possibly operate in other systems 

such as those formed by oyster reefs. Oysters are sessile and thrive within the intertidal zone and 

subtidal habitats worldwide. Intertidal oyster reef patches can protrude above the water during 

ebb tides becoming aerially exposed and become completely submerged during high tide. This 

vertical tidal gradient can influence biotic and abiotic factors that shape oyster reef ecology and 

may produce patterns of intertidal zonation (Figure 1.3). In contrast to rocky intertidal systems, 

only one species (the oyster) is the main occupant of reefs across all tidal elevations. In this 

sense, interspecific competition for space may not be as strong as in rocky intertidal systems in 

driving spatial patterns of distribution along tidal elevations.  
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Figure 1. 3. Conceptual framework depicting processes and factors that might generate spatial 
zonation within intertidal oyster reefs (a), and how the factors might change if the reef is subtidal 
(b). The relative influence of these factors may vary spatially and temporally. These factors 
might influence oysters differently depending on the intertidal elevation. Oysters located on an 
intertidal oyster reef above mean water level can experience higher desiccation stress. Boat 
wakes may affect oysters that settle on the reef crest but have a lesser impact on the oysters that 
are located below water level. Settlement of oyster larvae might depict a vertical gradient in 
which more larvae can settle in lower sections of oyster reefs. Similarly, oysters that settle in the 
lower section of the reef might experience higher food delivery in comparison to oysters in the 
reef crest. Oysters at lower intertidal elevations that are subtidal may be exposed longer to 
diseases transmitted through the water column. Oysters living in the lower intertidal zone may 
also experience smothering by sedimentation. At lower intertidal zones oysters might experience 
increased competition for space with other intertidal organisms and higher predation. 
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Intraspecific differences in oyster survivorship across tidal elevations may exist however. 

Oysters located within the high intertidal portions of reefs are exposed to more stressful physical 

conditions such as higher temperatures and higher wave energy, while subtidal oysters and those 

oysters in lower intertidal elevations experience longer submersion period, which could lead to 

increased intra and interspecific competition and consumer pressure (Ortega 1981, Fodrie et al. 

2014).  

Tidal emersion may influence a variety of factors and processes that affect fine-scale 

structure in oyster reefs (Figure 1.3). Larval delivery is one of these processes. Settlement and 

early recruitment of C. virginica oyster larvae in North Carolina (Fodrie et al. 2014), 

Connecticut, New York (Prytherch 1929), and Virginia (Loosanoff 1932, Mackin 1946, Roegner 

and Mann 1990, Bartol and Mann 1997) while found at all depths studied, were higher subtidally 

and near mean low water in intertidal oyster reefs. Furthermore, studies of vertical distribution of 

settlement of Ostrea denselamellosa, O. edulis, and C. gigas have shown similar patterns of 

higher oyster larval recruitment towards subtidal locations (Suki and Tanaka 1931, Korringa 

1940, Cahn 1950). Numerous possible explanations have been related to the observed patterns of 

higher settlement in the lower tidal zone and one of them is longer submergence time. Prolonged 

submergence allows oyster larvae in the water column become exposed to subtidal substrate 

substantially longer than intertidal substrate and consequently the larvae can experience a wider 

period in which to settle. Another possible explanation is the vertical segregation of different 

stages of oyster larvae within the water column. The pediveliger larvae are more abundant near 

the benthos compared to surface waters (Carriker 1951, Kunkle 1957, Baker 1994, Bartol and 

Mann 1997), which might contribute to the higher settlement patterns observed in subtidal oyster 

substrate. In addition, since later stages of oyster larvae have higher sinking rates (Dekshenieks 
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et al. 1996), prefer low energy areas (Ortega 1981, Abbe 1986), and lower flow (Bushek 1988) 

the larvae might actively seek oyster substrate located closer to the benthos when settling. The 

input of oyster settlers into the reefs allows for substrate to be created and for reef structure to be 

persistent in the seascape over time. While several invertebrates settle on the reef and may 

influence the reef complexity, the settling and cementing process carried out by oysters allow the 

reef structure to be generally created by oysters. This contrasts with rocky reef intertidal systems 

in which zones of multiple organismal distribution can be observed as distinct horizontal bands 

influenced by predation and competition. 

Tidal emersion may also influence competition and predation in oyster reefs. Despite 

increased settlement of oyster larvae towards the bottom substrates of reefs, oyster reefs 

developed in intertidal zones have been shown to support greater densities of adult oysters 

compared to those in subtidal locations. This is possibly related to higher oyster survival in 

intertidal reefs as a result of shorter exposure to marine predators and biofouling organisms 

compared to oyster substrate located below mean water level in intertidal oyster reefs or in 

subtidal reefs (Nichy and Menzel 1967). For example, Fodrie et al. (2014) used predator surveys 

and faunal sampling to quantify Stone Crab burrows and predatory gastropods and recorded 

higher abundances in deep versus mid intertidal zones. Correspondingly, oyster abundance was 

higher in mid intertidal zones thereby suggesting that higher predation occurs at lower intertidal 

zones. Johnson and Smee (2014) also found that oyster mortality rate was higher in subtidal 

habitats compared to intertidal reefs. Additionally, oyster spat was able to survive and grow in 

subtidal areas but only when protected from consumers, suggesting that predation was higher in 

subtidal habitats (Johnson and Smee 2014). It is also possible, that oysters located below mean 

water level are closer to the boundaries of reefs thus experiencing edge effects (Ries et al. 2004, 
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Gorman et al. 2009) as shell cover and habitat complexity can be lower along reef edges, leading 

to increased predation pressure (Hanke et al. 2017). Therefore, it appears to be well established 

that oysters living below mean water level will most likely experience higher mortality rates due 

to predation pressure than that recorded in mid or intertidal locations. 

Overgrowth by marine organisms might also be more predominant for oysters located in the 

lower portions of oyster reefs or deeper reefs due to prolonged submergence periods (Bahr and 

Lanier 1981, Johnson and Smee 2014). MacDougall (1943) found that no oyster spat survived 

below low water level due to smothering caused by hydroids, tunicates, sponges, and encrusting 

organisms. Similarly, Chestnut and Fahy (1953) after a month of exposing oysters at low water 

level and below mean water level, found that the shells were heavily encrusted with bryozoans, 

hydroids, barnacles, and tunicates with the highest mortality of oysters produced by Oyster Drills 

(Urosalpinx cinerea) near the bottom. Furthermore, interference competition of oyster spat with 

canopy-forming fouling organisms has been shown to increase with decreasing aerial exposure 

(Brodeur 2016). Hence, biological interactions such as consumer pressure and competition can 

influence structural complexity of oyster reefs at lower intertidal zones.  

Oysters located in subtidal oyster reefs and below mean water level might be exposed to 

higher food delivery due to prolonged submergence compared to oysters located higher on 

intertidal oyster reefs (e.g., reef crest). The difference in submergence may result in differential 

growth patterns observed at relatively fine scales in the reefs. For example, Roegner and Mann 

(1955) found that oysters area growth was slower in reefs that became 25% percent aerially 

exposed, compared to those located in the lower intertidal and subtidal reefs that were 

submerged longer. Likewise, Kingsley-Smith and Luckenbach (2008) observed that growth rates 

of C. virginica and C. ariakensis across tidal treatments were the greatest in the subtidal 
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treatments compared to higher tidal levels. On the other hand, longer submergence may also lead 

to intense development of fouling suspension feeding organisms, which may locally compete for 

food resources, add energetic costs, and reduce growth of hosts resulting in reverse or 

paradoxical patterns of expected growth and distribution across the tidal gradient (Peterson and 

Black 1987, Bishop and Peterson 2006, Brodeur 2016). Ultimately, different levels of aerial 

exposure can result in variation in food availability and competitive interactions at lower 

intertidal locations. 

The deposition of sediments and erosion have been identified as some of the leading causes 

of oyster reef failure, reef burial, and lack of persistence (Bahr and Lanier 1981, Taylor and 

Bushek 2008, Powers et al. 2009). Sediments both suspended and deposited can harm gill tissue, 

induce metabolic stress, and cause oyster mortality (Suedel et al. 2014). Despite the critical role 

sediments may play in reef persistence, few studies have conducted experimental manipulations 

to investigate the effects of sedimentation on oyster survival (but see Colden and Lipcius 2015), 

and no studies to my knowledge have experimentally examined the effects of sedimentation on 

oyster reef demography across tidal gradients. Oysters positioned closer to reef edges could 

experience higher sedimentation rates where flow is the slowest causing mortality and leading to 

a localized decrease in oyster shell cover and complexity (Hanke 2017, Lenihan 1999). Intertidal 

reefs can experience higher shifting of sediments, due to storms (Taylor and Bushek 2008), 

which could affect reef accretion and elevation. Further experimental work is needed however to 

tease apart the possible relationship of sedimentation with tidal elevation and its effects on fine 

and broader landscape structure of oyster reefs.  

Desiccation stress may also play a role in oyster survival and contribute to zonation patterns 

within oyster reefs. During emersion, intertidal oysters especially those located in the upper 
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locations of reefs, (e.g., reef crests) experience increased solar radiation exposure, which can 

lead to high percentage of tissue water loss and result in mortality (Kingsley-Smith and 

Luckenbach 2008). The intertidal Sydney Rock Oyster (Saccostrea commercialis) suffers from 

heat kills when unusually low tides coincide with abnormally high temperatures (Porter and Hill 

1982). With experimental deployments Nichy and Menzel (1967) found that mortality of C. 

virginica was the highest at the upper tidal level of the reefs during hot weather and low tide. 

Similarly, Roegner and Mann (1995) exposed newly settled C. virginica oysters to subtidal and 

intertidal levels and found that all recruits in the mid intertidal and above died during high 

temperature periods in contrast to low intertidal and subtidal oysters which survived. This is 

likely the reason why the structure of intertidal oyster reefs has a vertical limit and above this 

threshold it is impossible for oysters to survive. Therefore, it is established that similar to rocky 

shore intertidal systems, patterns of zonation at fine scales in oyster reefs can occur with 

mortality at high intertidal zones driven by desiccation stress. 

In rocky intertidal settings the presence of macroalgae can facilitate intertidal organisms by 

ameliorating stressful conditions (Hay 1981, Bertness and Grosholz 1985). It is unclear however, 

whether the presence of macrophytes nearby oysters or adjacent to oyster reefs might influence 

desiccation stress and overall biotic and abiotic factors across the intertidal gradient. For 

instance, oysters located on reefs bordering macrophytes, such as mangroves, may experience 

lower desiccation stress due to amelioration of conditions by the canopy cover (see appendix A 

Box 2). Similarly, mangroves can provide substrate for oyster settlement across the intertidal 

zone and potentially influence biotic and abiotic factors across the intertidal zone. Formal tests of 

these hypotheses remain to be conducted.  
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Diseases affect the survival of oysters potentially influencing oyster reef structure. A variety 

of diseases and parasites infect oysters (see Lauckner 1983, Andrews 1984, Brower et al. 1994 

for detailed reviews), but Perkinsus marinus, Haplosporidium nelsoni (MSX) and H. costale 

(SSO) are among the most common disease-producing protozoans. Despite the prevalence of 

diseases on oysters at broad geographic scales, infections by parasites such as P. marinus have 

been suggested to not vary with intertidal elevation on reefs (Burrell et al. 1984, O'Beirn et al. 

1994, Ybanez 2007, Malek and Breitburg 2016). Tidal elevation (specifically duration of 

emersion of oysters) however might influence parasite infection (Malek 2010). The duration of 

emersion dictates how long the oysters can be exposed to parasites in the water column. Oysters 

that are exposed less to parasites (e.g., those located of reef crests or above mean water level) 

could potentially have lower infection rates. Increased internal temperatures, large temperature 

fluctuations, and increased CO2 levels experienced by intertidal oysters (especially on reef 

crests), may reduce the ability of parasites (e.g., P. marinus) to proliferate at fast rates (Milardo 

2001). On the other hand, bivalves when exposed to air can stop oxygen exchange with the 

atmosphere and might experience physiologically challenging conditions, becoming stressed 

(Burnett 1997) and more susceptible to infection (Allen and Burnett 2008). Malek and Byers 

(2017) through experimental manipulations of C. virginica in the southeastern USA, investigated 

the effect of tidal elevation on the heterogeneity of P. marinus prevalence, the intensity in 

prevalence of H. nelsoni, and the co-occurrence of both parasites. The results indicated that tidal 

elevation affected the intensity of P. marinus and the prevalence of H. nelsoni, which were 

significantly higher intertidally than subtidally. The authors attributed the patterns to the extreme 

variability that host oysters in the intertidal zone can experience in abiotic conditions (e.g., 

temperature, oxygen) at fine spatial scales, which can negatively affect the host physiology and 
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consequently host-parasite interactions. Conversely, a study conducted in Delaware Bay by 

Littlewood et al. (1992), investigated the effect of 5 different intertidal elevations on H. nelsoni 

and found no effect on parasite infection intensity or prevalence. However, abiotic conditions 

such as temperature in intertidal reefs can vary significantly between northeastern USA and 

southeastern locations such as South Florida and the Gulf of Mexico. Therefore, the effect of 

tidal elevation on host-parasite interactions might vary geographically. Since studies have found 

contrasting results, further research is needed in order to understand patterns of parasite 

infections across scales and tidal elevations. Furthermore, oysters of the same age heavily 

infected with P. marinus have shown to cease growth and oysters lightly infected grow slower 

than uninfected oysters (Menzel and Hopkins 1955). Differential oyster growth produced by 

parasites in combination with parasite variation at fine scales within reefs need to be investigated 

as it may result in structural complexity alterations of oyster reefs, an important feature that 

mediates predator-prey interactions and food web ecology in oyster reefs (Grabowski 2004, 

Grabowski and Kimbro 2005, Grabowski et al. 2008, Hesterberg et al. 2017).  

Wave action and boating activity may also result in fine-scale spatial patterns in vertical 

zonation on intertidal oyster reefs and may also alter overall reef distribution and reefs patterns 

throughout the seascape. Vertical reef growth and morphology may be strongly related to wave 

action (Bahr and Lanier 1981). Waves and currents can transport sediment to and from the oyster 

reefs. High wave energy might also clear substrates, create substrate instability, inhibit the 

settlement of oyster larvae, and consequently prevent reef development. For instance, at exposed 

mid and high intertidal seawall locations in Beaufort, North Carolina where wave action is high, 

C. virginica only covered 10% of the structure while other species more resistant to wave action 

such as the mussels, barnacles, and algae occupied most of the available space (Ortega 1981). 
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Furthermore, consistent boating activity and accompanying wake effects might also alter oyster 

reef patterns in the seascape at broader scales. Grizzle et al. (2002) using historical aerial 

photography showed that oyster reefs in the vicinity of major navigation channels in the 

Mosquito Lagoon displayed evidence of dead margins. At fine scales, the dead margins of reefs 

consisted of empty and disarticulated shells that mounded up to a meter above the high water 

level. At broader scales, reefs initially located next to the channels migrated over time away from 

the channels, while those located far from the channel remained in the same location. Wall et al. 

(2005) collected in situ data on oyster recruitment, survival, sediment load data, slit/clay fraction, 

and water motion on reefs that displayed dead margins (impacted reefs) and compared them with 

pristine reefs. Recruitment did not vary among reefs, while survival was low and sediment load, 

percent silt/clay, and water motion were significantly higher in impacted reefs. This suggested 

that impacted reefs experienced lower survival of recruits due to high water motion and sediment 

load that resulted from persistent boating activities. Tank experiments have also found that wave 

energy could move clusters of intertidal oysters and reorient them into positions that result in 

lower survival (Campbell 2015). Therefore, reef structural complexity, shape, persistence, and 

location can be shaped by exposure to wave action and boating activities.  

Based on all the literature surveyed, it is evident that the combination of biotic and abiotic 

factors is able to influence oyster reef seascapes at fine and broad scales. These factors can also 

influence oysters differently depending on the tidal elevation at which oysters are located. This 

renders oyster reefs as ideal study systems in which to evaluate questions regarding patterns of 

zonation across tidal gradients. Furthermore, the fact some species of oysters such as C. virginica 

are present across latitudes it allows the evaluation of the complex interplay between broad- and 

local- scale processes and the consistency of factors in regulating community structure. For 
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example, at lower latitudes desiccation stress may play a larger role in structuring oyster 

demographic rates on higher intertidal zones. However, it is unclear whether or not this effect 

stays consistent as latitude increases and high temperature becomes less extreme. Additional 

multi-scale investigations in oyster reef systems are needed to advance our understanding of 

oyster reef seascapes, their development, and their persistence. Moreover, these studies will 

contribute relevant and critical information (e.g., variation of oyster reef habitat structure and 

landscape context) for consideration in future designs of oyster reef restoration to maximize 

oyster biological output as well as the provision of habitat for other organisms.  

1.4. Dissertation outline 

The overall goal of this dissertation is to apply a seascape ecology perspective to understand how 

seascape heterogeneity can influence demographic rates, community patterns, and ecological 

processes. In general, oyster reefs have been understudied (compared to other coastal habitats) 

from a multi-scale perspective (Pittman et al. 2011) even though 85% of oyster reefs have been 

either lost or degraded (Barbier et al. 2010, Beck et al. 2011) and a spatially explicit approach 

could provide valuable insights for restoration practices (Boström et al. 2011). In addition, oyster 

reefs formed by the Eastern Oyster have proven to be an excellent model system to test questions 

related to zonation patterns along tidal gradients due to some oyster reefs spatial structures being 

located within intertidal locations. Nevertheless, how biotic and abiotic factors across the 

intertidal zone compare between oysters living on oyster reefs and those on mangrove prop root 

systems is not fully understood. Moreover, the patchwork of mosaics that oyster reefs form with 

other coastal habitats also render them ideal to test questions related to habitat adjacency and its 

potential influence on ecological processes. Indeed while information exists on oyster reefs 
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spatial patterns within the seascape, assessments of Eastern Oyster demographic rates in different 

habitat settings including seascapes where mangroves and oysters coexist, remain scarce. 

 In addition to oyster reefs, tropical macroalgal beds are in general understudied coastal 

habitats (compared to temperate macroalgal beds) and have not been investigated from a 

seascape perspective. Even less is known about how the alteration of tropical seascapes, through 

the introduction of non-native macroalgal habitats, may affect ecological processes that influence 

ecosystem function and how it compares to seascapes with natural macroalgal beds. Therefore, 

to address these knowledge gaps, I have divided my dissertation into three main study chapters. 

In northeastern Florida, the dominant coastal habitat transitions from Smooth Cordgrass 

(Sporobolus alterniflorus; temperate species) to Black Mangroves (Avicennia germinans; 

tropical species). These two foundation species may affect the demographic rates of the Eastern 

Oyster (Crassostrea virginica), another foundation species commonly located adjacent to them. 

Therefore, I deployed juvenile oysters in cage experiments comprising three levels of predator 

exposure on (a) oyster reefs bordering Smooth Cordgrass, (b) reefs bordering Black Mangroves, 

and (c) isolated oyster bars, to quantify survival and growth rates north and south in the Guana 

Tolomato Matanzas National Estuarine Research Reserve. The results obtained in this study 

provided insights into the effects the encroachment of Black Mangroves into temperate 

saltmarsh-dominated habitats may have on demographic characteristics of the Eastern Oyster and 

associated fauna. 

Although oyster demographic rates across intertidal zones have been examined in oyster 

reefs at higher latitudes, far less is known about them at subtropical locations where desiccation 

stress is expected to be greater due to higher temperature. Furthermore, little is known about 

oyster demographic rates when in association with a macrophyte intertidal habitat, which may 



 26 

reduce desiccation stress and positively influence oysters at higher intertidal zones. In Chapter 3, 

I measured demographic characteristics of oysters along intertidal zones on oyster reefs and on 

oyster clusters associated to Red Mangrove prop roots in Tampa Bay, Florida. This study 

addressed: (a) how do demographic rates of the Eastern Oyster vary along intertidal zones 

(bottom, middle, and top) on oyster reefs and on prop roots and (b) whether the association of 

oysters with mangroves may reduce desiccation stress, thus positively influencing oysters at 

higher intertidal zones. This chapter contributed to our understanding of oysters and Red 

Mangrove relationships.  

 In tropical seascapes, beds of benthic macroalgae occur naturally interspersed within or 

nearby other habitats, but it is unclear what roles they play to support marine fauna. Even less is 

known about how the introduction of non-native macroalgal habitats (e.g., macroalgal farms) 

into tropical seascapes may affect ecological processes that influence ecosystem function and its 

comparison to seascapes with natural macroalgal beds. To address this knowledge gap, in 

Chapter 4, I surveyed fish assemblages and deployed macroalgal assays to quantify herbivory 

within naturally-occurring macroalgal habitats, macroalgal farms, as well as at varying distances 

in the seascape near Mafia Island, Tanzania. This study helped us understand the ecological roles 

that native macroalgal beds and introduced macroalgal farms play as habitats and food resource 

for fish assemblages in the East African region.  
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