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Abstract 

 Poisson point process is the most well-known point process with many applications. Unlike Poisson 

point process, which is the random set of non-intersecting points, determinantal point process refers to 

certain class of point processes where the points tend to interact with each other. The interaction often leads 

to more uniformly distributed points compared to those in Poisson point process. 

 In this article, we study the gap distribution of certain class of determinantal point process, L-ensemble 

of O(n) model type, and compare the distribution with the ones from the other known determinantal point 

process that appears in random matrices. Our numerical results suggest that our determinantal point process 

model converges to the known random matrices, hinting at the universality in the statistical limit. 
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1. Introduction 

 A point process is simply speaking the set of random points. For example, one-dimensional point 

process can represent the times of the certain event such as earthquake. The origin of modern point process 

theory can be traced back to Poisson in 1837 (Also See [6], 2020). The Poisson point process is applied in 

cosmology, geodesy, and ecology, and it is commonly used for modeling the point pattern of attraction 

between display points (Afshang, Saha, and Dhillon, 2017).  

 When one wants to understand or to measure a large system, the point process can be used to sample 

data points from the system. The Poisson point process may not be optimal sometimes as it may select too 

many points from some parts of the system while missing out some other points. For instance, an employer 

may want to know the operation of the company by interviewing her employees. If she uses the Poisson 

point process to select the employees, it might happen that all interviews are from a few departments while 

missing other departments. For another example, if a telecommunications company establishes the telecom 

base stations hypothetically after the Poisson point process, then it is quite possible to have two base stations 

close to each other, which is not an effective way to cover the area. To avoid those cases, we need a process 

that selects points more uniformly. Although one can choose points uniformly a low dimensional case such 

as in the above examples, such uniform choice is not possible when the dimension is very large. There the 

determinantal point process can be practically useful tool as a method of selection. 
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 Determinantal point process (DPP) refers to the class of point processes with certain determinantal 

structure. Unlike Poisson point process, locations of the points are affected by each other in such a way that 

they tend to repel each other, hence spread rather uniformly without clumping together. Determinantal point 

process also appeared in random matrices where certain specific DPPs tend to pop up in the thermodynamic 

limit, regardless of the specifics of the models, hence exhibiting a universality. In statistics DPP can be used 

to balance the diversity and the quality of the sample (Mariet and Sra, n.d.). If there are many features in a 

large system, the DPP would choose a sample such that each item in the sample represents different features 

such that any two items do not share the similar features.  

 The uniform versus the clustering natures of the point process may be captured by looking at the gap 

between the neighboring points. For example, let {𝑋1, 𝑋2, … , 𝑋𝑛, … } be a point process on ℝ with the 

order  𝑋1 ≤ 𝑋2 ≤ ⋯ ≤ 𝑋𝑛 ≤ ⋯ . Then 𝑋2 − 𝑋1, 𝑋3 − 𝑋2, … , 𝑋𝑛 − 𝑋𝑛−1, …  are the gaps. In ℝ2 , let 

{𝑋1, 𝑋2, … , 𝑋𝑛, … } be a point process. 𝑑(𝑋𝑖, 𝑋𝑗) is a Euclidean distance between 𝑋𝑖 and 𝑋𝑗 where 𝑖 ≠

𝑗, and 𝑋𝑖 and 𝑋𝑗 are random variables. Then the gap for 𝑖th point is given by 𝑚𝑖𝑛𝑖≠𝑗{𝑑(𝑋𝑖 , 𝑋𝑗)} for 

𝑖, 𝑗 ∈ ℕ . Gap distribution tells us the important information about the point process. We will use gap 

distribution to compare the point processes. In the gap distribution of the Poisson points process, the 

clustering nature leads to the higher concentration near the small gaps comparing to gap distribution of 

determinantal point process. To explore these two point processes, we study the following problems. 
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 1. Numerically confirming exponential gap distribution for Poisson point process. 

 2. Finding what kinds of gap distribution for determinantal point processes. 

 3. Comparing our specific determinantal point processes with those from random matrices 

 4. Checking uniformity of the points in a determinantal point process. 

 In this paper, we just talk about the one-dimensional case and the two-dimensional case as 

mathematical model. In section 2, we will introduce the definition of point process and the definition of 

Poisson point process. We also introduce the way to sample a Poisson point process. For one-dimensional 

case and two-dimensional case, the gap distribution of a Poisson point process is discussed. In section 3, 

the definition of determinantal point process is introduced, and we also introduce L-ensemble to structure 

the kernel of determinantal point process. An algorithm of sampling a DPP was discussed according to 

Kulesza’s (2012) paper. In section 4, we consider the one-dimensional case and two-dimensional case for 

determinantal point process. The factor that affects the number of points of a DPP is discussed. The gap 

distribution of DPPs is explored with the numerical data. In section 5, we use the results of the previous 

sections to answer the above four questions, and we make a little further discussion based on the conclusion 

that we got for one- and two-dimensional cases.  
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2. Poisson Point Process 

 The Poisson point process was named from its natural relation to the Poisson distribution, developed 

by Poisson as a limiting case of the binomial distribution [Last and Penrose, 2018], which is the probability 

of the sum of 𝑛  Bernoulli variables with probability 𝑝 . In stochastic process, a Poisson process is 

frequently used for modeling the times at which arrivals enter a system [Gallager, 1999]. For example, for 

a Poisson point process (𝑋1, 𝑋2, …,), when a point exists at 𝑖th time, we denote the point as 𝑋𝑖 = 1 and 

name it as an “arrival”; on the contrary, we denote it as 𝑋𝑖 = 0 and name it as an “no arrival”. A point 

process is a random collection of at most countably many points, possibly with multiplicities [Last and 

Penrose, 2018]. 

 

2.1 Point process 

 A point process is a random and at most countable collection 𝑍 of points in some space 𝕏 [Last and 

Penrose, 2018]. For example, 𝕏  could be the 𝑑 -dimensional Euclidean space ℝ𝑑 . For an underlying 

probability space (Ω, ℱ, ℙ), the collection 𝑍 could be a mapping 𝜔 ↦ 𝑍(𝜔) from Ω into the system of 

countable subsets of 𝕏. Then we can identify 𝑍 with a family of mappings 

𝜔 ↦ 𝜂(𝜔, 𝐵): = card(𝑍(𝜔)⋂𝐵), 𝐵 ⊂ 𝕏 

counting the number of points that 𝑍 has in 𝐵. 

  



 

5 

 Let (𝕏, 𝒳) be a measurable space, where 𝒳 is the collection of subsets of 𝕏, and let 𝐍<∞(𝕏) ≡

𝐍<∞ denote the space of all measures 𝜇 on 𝕏 such that 𝜇(𝐵) ∈ ℕ0 for all 𝐵 ∈ 𝒳, where ℕ0 means 

ℕ ∪ {0} . Then let 𝐍(𝕏) ≡ 𝐍  be the space of all measures that can be written as a countable sum of 

measures from 𝐍<∞. An example of an element of 𝐍 is the zero measure 0 that is identically zero on 𝒳. 

Another example is the Dirac measure 𝛿𝑥 at a point 𝑥 ∈ 𝕏 given by 𝛿𝑥(𝐵) = 𝟏𝐵(𝑥). More generally, 

any finite or infinite sequence (𝑥𝑛)𝑛=1
𝑘   of elements of 𝕏 , where 𝑘 ∈ ℕ̅ = ℕ ∪ {∞}  is the number of 

terms in the sequence, can be used to define a measure 

𝜇 = ∑ 𝛿𝑥𝑛

𝑘

𝑛=1

. (2.1) 

The 𝜇 ∈ 𝐍 and 

𝜇(𝐵) = ∑ 𝟏𝐵(𝑥𝑛)

𝑘

𝑛=1

,   𝐵 ∈ 𝒳 

We can allow for 𝑘 = 0 in (2.1). In this case 𝜇 is the zero measure. The points 𝑥1, 𝑥2, ⋯ are not assumed 

to be pairwise distinct. If 𝑥𝑖 = 𝑥𝑗 for some 𝑖, 𝑗 ≤ 𝑘 with 𝑖 ≠ 𝑗, then 𝜇 is said to have multiplicities. In 

fact, the multiplicity of 𝑥𝑖 is the number card{j ≤ k: 𝑥𝑖 = 𝑥𝑗}. Any 𝜇 of form (2.1) is interpreted as a 

counting measure with possible multiplicities. 

 Let 𝒩(𝕏) ≡ 𝒩 denote the σ − field generated by the collection of all subsets of 𝐍 of the form 

{𝜇 ∈ 𝐍: 𝜇(𝐵) = 𝑘}, 𝐵 ∈ 𝒳, 𝑘 ∈ ℕ0. 

This means that 𝒩 is the smallest σ − field on 𝐍 such that 𝜇 ↦ 𝜇(𝐵) is measurable for all 𝐵 ∈ 𝒳.   

Definition 2.1 (Last and Brandt, 2005) A point process on 𝕏 is a random element 𝜂 of (𝐍, 𝒩), that is a 

measurable mapping 𝜂: Ω → 𝐍. 
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 If 𝜂  is a point process on 𝕏  and 𝐵 ∈ 𝒳 , then we denote by 𝜂(𝐵)  the mapping 𝜔 ↦ 𝜂(𝜔, 𝐵) =

𝜂(𝜔)(𝐵). By the definitions of 𝜂 and the σ − field 𝒩 these are random variables taking values in ℕ̅0 =

ℕ̅ ∪ {0}, that is, for 𝑘 ∈ ℕ̅0. 

{𝜂(𝐵) = 𝑘} ≡ {𝜔 ∈ Ω: 𝜂(𝜔, 𝐵) = 𝑘} ∈ ℱ. (2.2) 

Conversely, a mapping 𝜂: Ω → 𝐍 is a point process if (2.2) holds. In this case we call 𝜂(𝐵) the number 

of points of 𝜂 in 𝐵. 

Example 2.2 (Last and Brandt, 2005) Let ℚ  be a probability measure on 𝕏  and suppose that 

𝑋1, 𝑋2, ⋯ , 𝑋𝑚 are independent random element in 𝕏 with distribution ℚ. Then 

𝜂 = 𝛿𝑥1
+ 𝛿𝑥2

+ ⋯ + 𝛿𝑥𝑚
 

is a point process on 𝕏. Because 

ℙ(𝜂(𝐵) = 𝑘) = (
𝑚
𝑘

) ℚ(𝐵)𝑘(1 − ℚ(𝐵))𝑚−𝑘 , 𝑘 = 0, ⋯ , 𝑚, 

𝜂 is referred to as a binomial process with sample size 𝑚 and sampling distribution ℚ. 

 

2.2 Poisson process 

 For the Poisson process, arrivals may occur at arbitrary positive times, and the probability of an arrival 

at any instant is 0, which means that we cannot directly describe a Poisson process in terms of the probability 

of an arrival at any given instant. Therefore, we first describe arrival processes. 

Definition 2.3 (Gallager, 1999) An arrival process is a sequence of increasing random variables, 0 < 𝑆1 <

𝑆2 < ⋯, where 𝑆𝑖 < 𝑆𝑖+1 means that 𝑆𝑖+1 − 𝑆𝑖 is a positive random variables, i.e., a random variable 𝑋 

such that F𝑋(0) = 0, which is equal to ℙ(𝑋 ≤ 0) = 0. The random variables 𝑆1, 𝑆2, ⋯, are called arrival 
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epochs and represent the times at which some repeating phenomenon occurs. Then, we let 𝑋1 =

𝑆1 𝑎𝑛𝑑 𝑋𝑖 = 𝑆𝑖 − 𝑆𝑖−1 for 𝑖 > 1, and we get an alternative process 𝑋1, 𝑋2, ⋯, a sequence of interarrival 

times. 

 A Poisson process is an example of an arrival process, which the interarrival times are defined to be 

independent and identically distributed (IID). Therefore, we can theoretically describe the Poisson process 

as follows. 

Definition 2.4 (Gallager, 1999) A renewal process is an arrival process for which the sequence of 

interarrival times is a sequence of IID random variables. 

Definition 2.5 (Gallager, 1999) A Poisson process is a renewal process in which the interarrival intervals 

have an exponential distribution function; i.e., for some real λ > 0 , each 𝑋𝑖  has the density 𝑓𝑋(𝑥) =

𝜆exp(−𝜆𝑥) for 𝑥 ≥ 0. 

 From above definition, we assume that {𝑁(𝑡); 𝑡 > 0} is the Poisson counting process consisting of a 

nonnegative integer random variable 𝑁(𝑡) for each 𝑡 > 0, i.e. 𝑁(𝑡) = 𝑚𝑎𝑥{𝑛|𝑆𝑛 < 𝑡}. 

Theorem 2.6 (Gallager, 1999) For a Poisson process of rate 𝜆, and for any 𝑡 > 0, the PMF for 𝑁(𝑡), 

where 𝑁(𝑡) is the number of arrivals in (0, 𝑡], is given by the Poisson PMF, 

𝑝𝑁(𝑡)(𝑛) =
(𝜆𝑡)𝑛exp(−𝜆𝑡)

𝑛!
(2.3) 

Proof: Recalling the definition 2.3, 2.4 and 2.5, we can obtain that  

𝑆𝑛 = ∑ 𝑋𝑛

𝑛

𝑖=1

(2.4) 

For a Poisson process, 𝑆𝑛 is the sum of 𝑛 IID random variables, which have the same density function 

𝑓𝑋(𝑥) = 𝜆exp(−𝜆𝑥) for 𝑥 ≥ 0. Since the density of the sum of two independent random variables can be 
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found by convolving their densities, we can obtain that for 𝑡 ≥ 0, the density of 𝑆𝑛 is  

𝑓𝑆𝑛
(𝑡) =

𝜆𝑛𝑡𝑛−1exp(−𝜆𝑡)

(𝑛 − 1)!
(2.5) 

 For giving 𝑛 and 𝑡, we have two ways of calculating Pr{𝑡 < 𝑆𝑛+1 ≤ 𝑡 + 𝛿} for some vanishingly 

small 𝛿. The first way is based on the already known density of 𝑆𝑛+1 and gives 

Pr{𝑡 < 𝑆𝑛+1 ≤ 𝑡 + 𝛿} = ∫ 𝑓𝑆𝑛+1
(𝜏)

𝑡+𝛿

𝑡

𝑑𝜏 = 𝑓𝑆𝑛+1
(𝑡)(𝛿 + 𝑜(𝛿)) 

The term 𝑜(𝛿) is used to describe a function of 𝛿 that goes to 0 faster than 𝛿 as 𝛿 → 0. Thus Pr{𝑡 <

𝑆𝑛+1 ≤ 𝑡 + 𝛿} = 𝑓𝑆𝑛+1
(𝑡)(𝛿 + 𝑜(𝛿))  is simply a consequence of the fact that 𝑆𝑛  has a continuous 

probability density in the interval (𝑡, 𝑡 + 𝛿]. 

 The second way to calculate Pr{𝑡 < 𝑆𝑛+1 ≤ 𝑡 + 𝛿} is to first observe that the probability of more 

than 1 arrival in (𝑡, 𝑡 + 𝛿]  is 𝑜(𝛿) . Ignoring this possibility, {𝑡 < 𝑆𝑛+1 ≤ 𝑡 + 𝛿}  occurs if exactly 𝑛 

arrivals are in the interval (0, 𝑡] and one arrival occurs in (𝑡, 𝑡 + 𝛿]. Because of the independent increment 

property, this is an event of probability 𝑝𝑁(𝑡)(𝑛)(𝜆𝛿 + 𝑜(𝛿)). Thus 

𝑝𝑁(𝑡)(𝑛)(𝜆𝛿 + 𝑜(𝛿)) +  𝑜(𝛿) = 𝑓𝑆𝑛+1
(𝑡)(𝛿 + 𝑜(𝛿)). 

Dividing by 𝛿 and taking the limit 𝛿 → 0, we get 

𝜆𝑝𝑁(𝑡)(𝑛) = 𝑓𝑆𝑛+1
(𝑡) 

From 2.5, we can obtain that 

𝑝𝑁(𝑡)(𝑛) =
(𝜆𝑡)𝑛𝑒𝑥𝑝(−𝜆𝑡)

𝑛!
. ∎ 

 From theorem 2.6, we can have that the distribution of the Poisson process is related to the Poisson 

distribution, which we can denote that 𝑁(𝑡)~𝑃𝑜𝑖(𝜆𝑡). Therefore, recalling the definition 2.1, we have the 

alternative definition of the Poisson process. 
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Definition 2.7 (Last and Penrose, 2018) A Poisson process with intensity measure 𝜆 is a point process 𝜂 

on 𝕏 with the following two properties: 

(i) For every 𝐵 ∈ 𝒳, the distribution of 𝜂(𝐵) is Poisson with parameter 𝜆(B), that is to say ℙ(𝜂(𝐵) =

𝑘) = Poi(𝜆(𝐵); 𝑘) for all 𝑘 ∈ ℕ0. 

(ii) For every 𝑚 ∈ ℕ  and all pairwise disjoint sets 𝐵1, 𝐵2, ⋯ , 𝐵𝑚 ∈ 𝒳 , the random variables 

𝜂(𝐵1), 𝜂(𝐵2), ⋯ , 𝜂(𝐵𝑚) are independent. 

Property (i) of Definition 2.7 is responsible for the name of the Poisson process. A point process with 

property (ii) is said to be completely independent. One also says that 𝜂 has independent increments or is 

completely random. 

 

2.3 The one-dimensional Poisson process 

 Poisson points process requires that every point needs to be sampled independently. In this section, we 

explore the Poisson points process in one-dimensional case, especially on a unit circle. From section 2.2, 

we know that the interarrival times in a Poisson process are defined to be independent and identical 

distribution. Let 𝑁(𝑡) = 𝑚𝑎𝑥{𝑛|𝑆𝑛 < 𝑡} be the number of arrivals in (0, 𝑡]. According to theorem 2.6 we 

have  

ℙ(𝑁(𝑡) = 0) = 𝑒−𝜆𝑡 and ℙ(𝑁(𝑡) = 1) = 𝜆𝑡𝑒−𝜆𝑡 (2.6) 

Now we let 𝑆1, 𝑆2, … , 𝑆𝑛, …  be a Poisson points process on a real line ℝ  and 𝑋𝑖 = 𝑆𝑖 − 𝑆𝑖−1  be the 

difference between two consecutive points in a Poisson points process. Without loss of generality, we 

assume that the location of 𝑋𝑖 is 𝑠 on a real line. Then 
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ℙ(𝑋𝑖 > 𝑡 | 𝑆𝑖 = 𝑠) = ℙ(no points on(𝑠, 𝑠 + 𝑡]|𝑆𝑖 = 𝑠) 

= ℙ(no points on(𝑠, 𝑠 + 𝑡]) 

= ℙ(𝑁(𝑡) = 0) = 𝑒−𝜆𝑡 (2.7) 

 A sequence 𝑆1, 𝑆2, … , 𝑆𝑛, … of random variables, which have the property that the interarrival times 

𝑆1, 𝑆2 − 𝑆1, 𝑆3 − 𝑆2, ⋯ are independent random variables with an exponential(𝜆) distribution, is the one-

dimensional Poisson process with intensity 𝜆.  

 From (2.3), the distribution of the number of points only depends on the length of the interval rather 

than on its location. Therefore, without loss of generality, we can assume an interval starting at 0. Then we 

consider a Poisson point process on the interval [0, 𝑎]. If there is one point on [0, 𝑎]. Then, for 0 < 𝑠 <

𝑎, 

ℙ(𝑆1 ≤ 𝑠 | 𝑁([0, 𝑎]) = 1) =
ℙ(𝑆1 ≤ 𝑠, 𝑁([0, 𝑎]) = 1)

ℙ(𝑁([0, 𝑎]) = 1)
 

=
𝑃(𝑁([0, 𝑠]) = 1, 𝑁((𝑠, 𝑎]) = 0)

𝑃(𝑁([0, 𝑎]) = 1)
(2.8) 

Since the interarrival times are independent, and from formula 2.6,  

ℙ(𝑆1 ≤ 𝑠 | 𝑁([0, 𝑎]) = 1) =
𝜆𝑠𝑒−𝜆𝑠𝑒−𝜆(𝑎−𝑠)

𝜆𝑎𝑒−𝜆𝑎
=

𝑠

𝑎
(2.9) 

Therefore, for one point of a Poisson process on the interval [0, 𝑎], the random variable 𝑆1 is uniformly 

distributed over the interval [0, 𝑎]. 

 If there are two points on [0, 𝑎]. Then, for 0 < 𝑠 < 𝑡 < 𝑎, 

     ℙ(𝑆1 ≤ 𝑠, 𝑆2 ≤ 𝑡 | 𝑁([0, 𝑎]) = 2) 

=
ℙ(𝑁([0, 𝑡]) = 2, 𝑁((𝑡, 𝑎]) = 0)

ℙ(𝑁([0, 𝑎]) = 2)
−

ℙ(𝑁([0, 𝑠]) = 0, 𝑁((𝑠, 𝑡]) = 2, 𝑁((𝑡, 𝑎]) = 0)

ℙ(𝑁([0, 𝑎]) = 2)
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=

(𝜆𝑡)2

2
𝑒−𝜆𝑡𝑒−𝜆(𝑎−𝑡)

(𝜆𝑎)2

2
𝑒−𝜆𝑎

−
𝑒−𝜆𝑠 (𝜆(𝑡 − 𝑠))

2

2
𝑒−𝜆(𝑡−𝑠)𝑒−𝜆(𝑎−𝑡)

(𝜆𝑎)2

2
𝑒−𝜆𝑎

=
𝑡2 − (𝑡 − 𝑠)2

𝑎2
                                          (2.10) 

Lemma 2.8 If 𝑆1 and 𝑆2 are two independent random variables, both uniformly sampling over [0, 𝑎], 

and let 𝑉 = 𝑚𝑖𝑛{𝑆1, 𝑆2} and 𝑈 = 𝑚𝑎𝑥{𝑆1, 𝑆2}; then, the joint distribution function of 𝑉 and 𝑈 is given 

by 

ℙ(𝑉 ≤ 𝑠, 𝑈 ≤ 𝑡 ) =
𝑡2 − (𝑡 − 𝑠)2

𝑎2
 for 0 ≤ 𝑠 < 𝑡 ≤ 𝑎 (2.11) 

Proof: Since 𝑆1 and 𝑆2 are independent and 𝑉 and 𝑈 just order 𝑆1 and 𝑆2, we can obtain that 

ℙ(𝑉 ≤ 𝑠, 𝑈 ≤ 𝑡 ) = ℙ(𝑉 ≤ 𝑡, 𝑈 ≤ 𝑡 ) − ℙ(𝑠 < 𝑉 ≤ 𝑡) (2.12) 

Since 𝑆1  and 𝑆2  are sampled from the uniformly distribution over [0, 𝑎] , 𝑉  and 𝑈  also follow the 

uniformly distribution and 𝑉 < 𝑈. Therefore, 

ℙ(𝑉 ≤ 𝑡, 𝑈 ≤ 𝑡 ) =
𝑡2

𝑎2
 𝑎𝑛𝑑 ℙ(𝑠 < 𝑉 ≤ 𝑡) =  ℙ(𝑠 < 𝑉 ≤ 𝑡, 𝑠 < 𝑈 ≤ 𝑡) =

(𝑡 − 𝑠)2

𝑎2
. 

Then, we can get the (2.11). 

 From above lemma 2.8, we can find that if we ignore the order of 𝑆1 and 𝑆2 in the Poisson process, 

from (2.10), 𝑆1 and 𝑆2 are independent and uniformly distributed over [0, 𝑎]. With more step checking, 

we have the following inference. 

Corollary 2.9 There is a Poisson process with 𝑛 points over the interval [𝑎, 𝑏]; then, the locations of these 

points are independent and uniformly distributed over [𝑎, 𝑏]. 

 2.3.1 Poisson process on a unit circle 

 A unit circle is a fitting model for doing the Poisson process because every point on the circle could 

be the initial point in a process. From corollary 2.9, we can uniformly sample points on the unit circle, and 
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then we can check the gap distribution of two neighboring points to judge if the process is the Poisson 

process with definition 2.5. 

 (1) Gap distribution with a fixed point 

 Let 𝑛 be the 𝑛 points sampling at each processing and 𝑚 be the 𝑚 samples. For each circulation 

we sample 𝑥1, 𝑥2, … , 𝑥𝑛  from [0,2𝜋] , and let 𝑋𝑖 = {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}  be the ordered points at 𝑖 th 

circulation. Then let 𝑌𝑖 be the gap of a points being closest to point (1,0) with counterclockwise direction. 

Algorithm 2.10 Sampling m times Poisson process on a unit circle 

    Input 𝑛, 𝑚 

    For 𝑖 = 1,2, … , 𝑚 

        𝑋𝑖 = sampling 𝑛 order points from 𝑢𝑛𝑖𝑓[0,2𝜋] 

         𝑌𝑖 = the gap of a point closest to point (1,0) 

    End 

    Output 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑚} 

 We fixed 𝑚 = 100000  and separately set 𝑛 = 1000, 2000, 3000, 4000 . Then we obtain the 

histograms whose bin width follows Freedman-Diaconis rule (Bin is 2 ∙ IQR ∙ 𝑛−1/3, IQR is interquartile 

range), i.e. figure 2.2. Here we let our 𝑥-axis as 

𝑥 − 𝑎𝑥𝑖𝑠: 𝑔𝑎𝑝𝑠 × 𝜆 = 𝑔𝑎𝑝𝑠 ×
𝑛

2𝜋
 

The lines in the histograms are the theoretical gap distribution exponential(1). 

Table 2.1 The information of gaps distribution for different 𝑛 on a unit circle 

𝑛 𝑚 𝑚𝑒𝑎𝑛 (𝜇) 𝜆 = 1/𝜇 𝜆 = 𝑛/2𝜋 

1000 100000 0.0062933 158.9002 159.1549 

2000 100000 0.0031313 319.3574 318.3099 

3000 100000 0.0020899 478.4841 477.4648 

4000 100000 0.0015665 638.3852 636.6198 



 

13 

 

Figure 2.2 Histograms of gaps between (1,0) and the closest point with counterclockwise direction, in the condition of 𝑛 =

1000, 2000, 3000, 4000 and 𝑚 = 100000. 

 

 From table 2.1, the numerical 𝜆 is almost equal to the theoretical value of 𝜆. Through doing the Z 

statistic test, the z values for 𝑛 = 1000, 2000, 3000, 4000 are 0.507, -1.039, -0.674 and -0.880. The p-

values for 𝑛 = 1000, 2000, 3000, 4000 are 0.612, 0.299, 0.500 and 0.378. Therefore, we cannot reject 

the null hypothesis that the simulation 𝜆 is equal to the theoretical 𝜆 at a significant level 0.95 for 𝑛 =

1000, 2000, 3000, 4000.  

 (2) Gap distribution with all random points 

 Let 𝑛 be the 𝑛 points sampling at each processing and 𝑚 be the 𝑚 samples. For each circulation 

we sample 𝑥1, 𝑥2, … , 𝑥𝑛  from [0,2𝜋] , and let 𝑋𝑖 = {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}  be the ordered points at 𝑖 th 

circulation. Then let 𝑌𝑖 be the gaps of two neighboring points with counterclockwise direction, i.e. 𝑌𝑖 =

{𝑦1, 𝑦2, … 𝑦𝑛}, where 𝑦𝑗 = 𝑥(𝑗+1) − 𝑥(𝑗) for 𝑗 = 1,2, … , 𝑛 − 1 and 𝑦𝑛 = 2𝜋 − (𝑥(𝑛) − 𝑥(1)). 
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Algorithm 2.11 Sampling m times Poisson process on a unit circle 

    Input 𝑛, 𝑚 

    For 𝑖 = 1,2, … , 𝑚 

        𝑋𝑖 = sampling 𝑛 order points from 𝑢𝑛𝑖𝑓[0,2𝜋] 

         𝑌𝑖 = the gaps of two neighboring points 

    End 

    Output 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑚} 

 We fix 𝑚 = 100 and separately set 𝑛 = 1000, 2000, 3000, 4000. Then we get the histograms with 

breaks of Freedman-Diaconis rule (Bin is 2 ∙ IQR ∙ 𝑛−1/3), i.e. figure 2.3.  

𝑥 − 𝑎𝑥𝑖𝑠: 𝑔𝑎𝑝𝑠 × 𝜆 = 𝑔𝑎𝑝𝑠 ×
𝑛

2𝜋
 

If these processes are Poisson processes, we have 𝑦1, 𝑦2, ⋯ 𝑦𝑛 are independent and identical distribution. 

Then from (2.6), we have 

ℙ(𝑁(𝑦1) = 0, 𝑁(𝑦2) = 0, … , 𝑁(𝑦𝑛) = 0) = ∏ ℙ(𝑁(𝑦𝑗) = 0)

𝑛

𝑗=1

= ∏ 𝑒−𝜆𝑦𝑗

𝑛

𝑗=1

= 𝑒−𝑛𝜆𝑦1 (2.13) 

Since this process is on a unit circle, every point could be the initial point of a process. From (2.13), we 

have the theoretical 𝜆 for this exponential distribution, which is 𝑛/2𝜋. In figure 2.3, the histograms show 

the numerical data density, and the red lines show the theoretical exponential density function. In table 

2.4(a), we can find that the simulate 𝜆 is the same as the theoretical 𝜆. In table 2.4(b) and (2.13), we can 

find that 𝑛  has effects on the distribution. If we use 𝑛  to time the gaps, we can get the same gap 

distribution on the unit circle, i.e. figure 2.5.  
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Figure 2.3 Histograms of gaps between neighboring points with 𝑛 = 1000, 2000, 3000, 4000 and 𝑚 = 100. 

 

Table 2.4(a) The information of gaps distribution for different 𝑛 on a unit circle 

𝑛 𝑚 𝑚𝑒𝑎𝑛 (𝜇) 𝜆 = 1/𝜇 𝜆 = 𝑛/2𝜋 

1000 100 0.0062832 159.1549 159.1549 

2000 100 0.0031416 318.3099 318.3099 

3000 100 0.0020944 477.4648 477.4648 

4000 100 0.0015708 636.6198 636.6198 

 

Table 2.4(b) The information of gaps distribution for different 𝑛 on a unit circle 

simulate 𝜆 = 1/𝜇 𝑎 = 𝜆/𝑛 𝑏 = 1/𝑎 

159.1549 0.1591549 6.283185 

318.3099 0.1591549 6.283185 

477.4648 0.1591549 6.283185 

636.6198 0.1591549 6.283185 
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Figure 2.5 Histograms of gaps∗ 𝑛 between neighboring points with 𝑛 = 1000, 2000, 3000, 4000 and 𝑚 = 100. 

 Through the results of (1) and (2) cases, we can find that for the same 𝑛, the gap distribution with a 

fixed point is equal to the gap distribution with all random points. The reason is that every random point 

on the circle is independent with other points. For example, a Poisson process on a circle (𝑥1, 𝑥2, … , 𝑥𝑛), 

the 𝑥1 could be considered as a fixed initial point as the point (1,0) and (𝑥2, … , 𝑥𝑛) could be 

considered as a new Poisson process. Then we cycle through this perspective. Hence the gap distribution 

for this Poisson process is similar with the gap distribution that we do 𝑛 times Poisson process with a 

fixed initial point (1,0). 

 In one dimensional case, when we sample a Poisson point process, we can sample a series of points 

with a uniform distribution. Besides, these points should be sampled independently which could ensure 

the gaps between near points are independents satisfying the definition 2.5. 
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2.4 The two-dimensional Poisson process 

 In the above section, we use a unit circle to discuss the one-dimensional Poisson process. because 

every point on the circle can be considered as the initial point in the Poisson process. Therefore, in this 

section, we could use a similar model to explore the two-dimensional Poisson process, i.e. we can sample 

points on the unit sphere. 

 In the one-dimensional case, we can generate points with exponentially distributed gaps. We can have 

a similar procedure for the two-dimensional case. In a real plane, without loss of generality, we assume the 

initial point 𝑋1 is the reference point. Let 𝑠 > 0 be the linear distance between 𝑋1 and 𝑋2. Let  

𝑀𝑠 = 𝑁(𝐶𝑠) (2.14) 

where 𝐶𝑠 is the circular region of radius s, i.e. 𝐶𝑠 has area 𝜋𝑠2, and 𝑁(𝐶𝑠) is number of particles in 

region 𝐶𝑠. Therefore, 

ℙ(𝑀𝑠 = 𝑛) =
(𝜆𝜋𝑠2)𝑛𝑒𝑥𝑝(−𝜆𝜋𝑠2)

𝑛!
(2.15) 

Let 𝑅𝑖 be the linear distance between 𝑋1 and 𝑋𝑖+1. We want 𝑅𝑖 ≤ 𝑠 if and only if 𝑀𝑠 ≥ 𝑖. Let 𝑖 = 1; 

then,  

ℙ(𝑅1
2 ≤ 𝑠2) = ℙ(𝑅1 ≤ 𝑠) = ℙ(𝑀𝑠 ≥ 1) = 1 − 𝑒−𝜆𝜋𝑠2

(2.16) 

In other words, 𝑅1
2 is exponential(𝜆𝜋) distribution. For general 𝑖, we can similarly write 

ℙ(𝑅𝑖
2 ≤ 𝑠2) = ℙ(𝑅𝑖 ≤ 𝑠) = ℙ(𝑀𝑠 ≥ 𝑖) = 1 − ∑

(𝜆𝜋𝑠2)𝑗𝑒𝑥𝑝(−𝜆𝜋𝑠2)

𝑗!

𝑖−1

𝑗=0

(2.17) 

Hence 𝑅𝑖
2 has a 𝐺𝑎𝑚𝑚𝑎(𝑖, 𝜆𝜋) distribution.  
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Figure 2.6 The Poisson process in the plane with two gaps of the two points closest to the origin. 

  

 2.4.1 Poisson process on a unit sphere 

 For a Poisson process, similar to the case of the unit circle, we sample 𝑛 points on a unit sphere. Then 

for each point 𝐴, we find the point 𝐵 ≠ 𝐴 that is closest to the point 𝐴. Next, we collect the gap distance 

between 𝐴 and 𝐵. Finally, we repeat this processing 𝑚 times to get the data of gap distribution of the 

Poisson process on the sphere. 

Algorithm 2.12 Sampling m times Poisson process on a unit sphere 

    Input 𝑛, 𝑚 

    For 𝑖 = 1,2, … , 𝑚 

       𝑋𝑖 = a set of 𝑛 points from a sphere 

         𝐷𝑖 = a set of the gaps of two closest points 

    End 

    Output D= {𝐷1, 𝐷2, … , 𝐷𝑚} 

 We fix 𝑚 = 100 and separately set 𝑛 = 1000, 2000, 3000, 4000. Then we get the histograms with 

breaks of Freedman-Diaconis rule (Bin is 2 ∙ IQR ∙ 𝑛−1/3), i.e. figure 2.7. 
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𝑥 − 𝑎𝑥𝑖𝑠:  𝑔𝑎𝑝𝑠2 × 𝜆 = 𝑔𝑎𝑝𝑠2 ×
𝑛

4
 

On the sphere, every point could be the reference point. From (2.16), the squares of the gaps between two 

closest points follow the exponential(𝜆𝜋) distribution. For a circle centered at point 𝐴 with radius 𝐴𝐵 

on the sphere, there does not exist any points in this circle except the point 𝐴. For a Poisson process, 𝜆 is 

given by the number of points on the unit sphere by (2.15). 

𝔼(𝑅𝑗
2𝜋) =

4𝜋

𝑛
(2.18) 

𝔼(𝑅𝑗
2) =

4

𝑛
=

1

𝜆
(2.19) 

Therefore, the theoretical 𝜆 is 𝑛/4. From figure 2.7, we can directly see that the gaps of closest points on 

the sphere follow exponential distribution. Then the simulate 𝜆s are approximately equal to the theoretical 

𝜆.  

 
Figure 2.7 Histograms of gaps between closest points with 𝑛 = 1000, 2000, 3000, 4000 and 𝑚 = 200. 
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Table 2.8 The information of square gaps distribution for different 𝑛 on a unit sphere 

𝑛 𝑚 𝑚𝑒𝑎𝑛 (𝜇) 𝜆 = 1/𝜇 𝜆 = 𝑛/4 

1000 200 0.004009029 249.437 250 

2000 200 0.002000778 499.8055 500 

3000 200 0.001336522 748.2104 750 

4000 200 0.0009996887 1000.311 1000 

  

 In both one-dimensional case and in two-dimensional case, the gaps between neighboring points follow 

the exponential distribution. If we uniformly sample points from a space, the process is a Poisson process. 

For one-dimensional case with region [𝑎, 𝑏], the gaps between neighboring points follow exponential(𝑛/

(𝑏 − 𝑎))  distribution. For two-dimensional case with region [𝑎, 𝑏] × [𝑐, 𝑑] , the square gaps between 

closest points follow exponential(𝑛𝜋/[(𝑏 − 𝑎)(𝑐 − 𝑑)]) distribution.
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3. Determinantal Point Process 

 The exponential distribution shows that gaps between two neighbor points could be smaller with a 

higher probability, which means that it is easy to sample a series of points gathering in one location. If we 

want these points could cover the full space, we need to sample many points. With these points, if we want 

to deal with the information of these points, it is difficult, and it would take a long time. Therefore, we need 

to find another process such that the points that we sample can be evenly distributed in the space. 

 Determinantal point processes (DPPs) were first called “fermion process”, which give the distribution 

of fermion systems at thermal equilibrium [Macchi, 1975, Kulesza and Taskar, 2012]. Although DPPs are 

initially applied in physics, the specific DPPs appeared in major results in random matrix theory and 

continue working in random matrix as an important role [Diaconis, 2003, Johansson, 2002, Kulesza and 

Taskar, 2012]. The term “determinantal” was first used by Borodin and Olshanski [2000] and has become 

a standard concept. The aspects of DPPS are described including definition, structures, and algorithms. 

 

3.1 Determinantal point process 

 Let 𝒫 be a point process on a ground set 𝒴, which is the probability measure of the finite subsets of 

𝒴. For the remainder of this paper, we assume that 𝒫 is discrete finite point processes. Then without loss 

of generality, we can also assume that 𝒴 = {1,2, ⋯ , 𝑁}; in this setting we sometimes refer to elements of 

𝒴 as items. 
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 In the discrete case, a point process in simply a probability measure on 2𝒴 (power set), the set of all 

subsets of 𝒴. A sample from 𝒫 might be the empty set, the entirety of 𝒴, or anything in between. 

Definition 3.1 (Kulesza and Taskar, 2012) 𝒫  is called a determinantal point process if, when 𝒀  is a 

random subset drawn according to 𝒫, we have, for every 𝐴 ⊆ 𝒴, 

𝒫(A ⊆ 𝒀) = det(𝐾𝐴) (3.1) 

for some real, symmetric 𝑁 × 𝑁  matrix 𝐾  indexed by the elements of 𝒴 . Here, 𝐾𝐴 ≡ [𝐾𝑖,𝑗]𝑖,𝑗∈𝐴 

denotes the restriction of 𝐾 to the entries indexed by elements of 𝐴, and we adopt det(𝐾∅) = 1. 

 For instance, let 𝒴 = {1,2,3,4} and 𝐾 = [

𝑘11

𝑘21

𝑘31

𝑘41

𝑘12

𝑘22

𝑘32

𝑘42

𝑘13

𝑘23

𝑘33

𝑘43

𝑘14

𝑘24

𝑘34

𝑘44

]. If we assume 𝐴 = {1,3}, then we have 

the probability measure 𝒫(A ⊆ 𝒀) = 𝒫{1,∗ ,3,∗} = det(𝐾𝐴) = |
𝑘11 𝑘13

𝑘31 𝑘33
|.  

 Since 𝒫  is a probability measure, all principal minors det(𝐾𝐴)  of 𝐾  must be nonnegative. 

Therefore, 𝐾  itself must be positive semidefinite. In other words, for every 𝐴 ⊆ 𝒴 , 𝒫(A ⊆ 𝒀) =

det(𝐾𝐴) ∈ [0,1], and thus the eigenvalues and minors of 𝐾 must satisfy [0,1]. Therefore, for any 𝐾, 0 ≼

𝐾 ≼ 𝐼. 

 From the above example, we can see that 𝒫(𝐴 ⊆ 𝒀) is to compute the probability of any subset 𝐴 

being included in 𝒀. In other words, 𝒫(𝐴 ⊆ 𝒀) compute the marginal probability of 𝐴 belongs to 𝒀. 

Since 𝐾 contains all the information of computing marginal probabilities, 𝐾 is called marginal kernel. If 

𝐴 = {𝑖} is a singleton, then we have 

𝒫({𝑖} ⊆ 𝒀) = 𝐾𝑖𝑖 (3.2) 

That is, the diagonal of 𝐾 gives the marginal probabilities of 𝒀 containing the individual elements of 𝒴. 
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Diagonal entries close to 1 correspond to elements of 𝒴 that are almost always selected by the DPP. If 

𝐴 = {𝑖, 𝑗} is a two-element set, then 

𝒫(𝑖, 𝑗 ⊆ 𝒀) = |
𝐾𝑖𝑖 𝐾𝑖𝑗

𝐾𝑗𝑖 𝐾𝑗𝑗
| = 𝐾𝑖𝑖𝐾𝑗𝑗 − 𝐾𝑖𝑗𝐾𝑗𝑖 = 𝒫(𝑖 ⊆ 𝒀)𝒫(𝑗 ⊆ 𝒀) − 𝐾𝑖𝑗

2 (3.3) 

Thus, the pairs of off-diagonal elements determine the negative correlations. That is, large values of 𝐾𝑖𝑗 

imply that 𝑖𝑡ℎ term and 𝑗𝑡ℎ term tend not to be chosen by a DPP. 

 From (3.3), if we set the marginal kernel as measurements of similarity between pairs of elements in 

𝒴, then the highly similar elements are rarely to appear together in DPPs. If 𝐾𝑖𝑗 = √𝐾𝑖𝑖𝐾𝑗𝑗, then 𝑖𝑡ℎ term 

and 𝑗𝑡ℎ term do not appear together almost surely in a DPP. On the contrary, if 𝐾 is diagonal, which 

means that there are no correlations, the elements appear independently in DPPs. Overall, correlations, i.e. 

the degree of similarity between two terms, are always negative in DPPs. 

Example 3.2 Let 𝐾 measure the distance between points on the plane, which we divide the [0,1] of x-

axis and y-axis both to 40 terms, i.e. 𝑥 =
1

40
,

2

40
, … ,

40

40
  and 𝑦 =

1

40
,

2

40
, … ,

40

40
 . Then combining the x 

coordinates and y coordinated to get the 1600 points, i.e. (𝑥1, 𝑦1), … , (𝑥1600, 𝑦1600). Then we use the DPP 

algorithm to get the series of points in figure 3.1 left, which 𝐿-ensemble is a 1600 × 1600 matrix with 

𝐿𝑖𝑗 = 𝑒𝑥𝑝{−((𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2)/0.05} 

Finally, we use the Poisson processing to independently get the series of points in figure 3.1 right. From 

these two graphs, we can see that the DPP points seem to uniformly fall in the plane. On the contrary, for 

the Poisson process, some points assemble in a place. 
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Figure 3.1 A set of points in the plane drawn from a DPP (left), and the same number of points sampled independently. 

 

3.2 L-ensemble 

 For modeling real data, it is difficult to structure the marginal kernel 𝐾 ; therefore, 𝐿 -ensemble is 

useful to define a DPP, where 𝐿 is a real and symmetric matrix indexed by the elements of 𝒴: 

𝒫𝐿(𝒀 = 𝑌) ∝ det(𝐿𝑌) (3.4) 

As for 𝐾, it obviously shows that 𝐿 must be positive semidefinite. However, since the equation 3.4 is only 

a statement of proportionality, the eigenvalues of 𝐿 need not be less than one. In conclusion, any positive 

semidefinite 𝐿 defines an 𝐿-ensemble. 

 From (3.4), we can explore the relationship between 𝒫𝐿(𝒀 = 𝑌) 𝑎𝑛𝑑 det(𝐿𝑌). First, we assume 𝑁 =

2, then we can obtain 

det(𝐿 + 𝐼) = |
𝐿11 + 1 𝐿12

𝐿21 𝐿22 + 1
| = |

𝐿11 𝐿12

𝐿21 𝐿22 + 1
| + |

1 0
𝐿21 𝐿22 + 1

| 

       = |
𝐿11 𝐿12

𝐿21 𝐿22
| + |

𝐿11 𝐿12

0 1
| + |

1 0
𝐿21 𝐿22

| + |
1 0
0 1

| 

= det(𝐿1,2) + det(𝐿1) + det(𝐿2) + det(𝐿∅)     (3.5) 
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Then, we continue assuming 𝑁 =  3,4,5, ⋯. We can final obtain that 

det(𝐿 + 𝐼) = ∑ det(𝐿𝑌)

𝑌⊆𝒴

(3.6) 

From (3.6), we can also obtain that  

𝒫𝐿(𝒀 = 𝑌) =
det(𝐿𝑌)

∑ det(𝐿𝑌)𝑌⊆𝒴
=

det(𝐿𝑌)

det(𝐿 + 𝐼)
(3.7) 

Theorem 3.4 (Kulesza and Taskar, 2012) For any 𝐴 ⊆ 𝒴, 

∑ det(𝐿𝑌)

𝐴⊆𝑌⊆𝒴

= det(𝐿 + 𝐼𝐴̅) (3.8) 

Where 𝐼𝐴̅ is the diagonal matrix with ones in the diagonal positions corresponding to elements of 𝐴̅ =

𝒴 − 𝐴, and zeros everywhere else. 

Proof: If 𝐴= 𝒴, (3.8) holds trivially. Now suppose that when we give 𝐴, |𝐴̅| = 𝑘 > 0, then we let 𝑖 be 

an element of 𝒴 where 𝑖 ∈ 𝐴̅. Then we can write: 

𝐿 + 𝐼𝐴̅ = (
𝐿𝑖𝑖 + 1 𝐿𝑖𝑖̅

𝐿𝑖𝑖̅ 𝐿𝒴−{𝑖} + 𝐼𝒴−{𝑖}−𝐴
) (3.9) 

where 𝐿𝑖𝑖̅ is the sub-column of the 𝑖th column of 𝐿 whose rows correspond to 𝑖,̅ and similarly for 𝐿𝑖𝑖̅. 

Using the same way of equation 3.5, then, 

det(𝐿 + 𝐼𝐴̅) = |
𝐿𝑖𝑖 𝐿𝑖𝑖̅

𝐿𝑖𝑖̅ 𝐿𝒴−{𝑖} + 𝐼𝒴−{𝑖}−𝐴
| + |

1 0
𝐿𝑖𝑖̅ 𝐿𝒴−{𝑖} + 𝐼𝒴−{𝑖}−𝐴

|      

= det(𝐿 + 𝐼𝐴∪{𝑖}̅̅ ̅̅ ̅̅ ̅̅ ) + det(𝐿𝒴−{𝑖} + 𝐼𝒴−{𝑖}−𝐴) (3.10) 

We can now apply the inductive hypothesis separately to each term, giving 

det(𝐿 + 𝐼𝐴̅) = ∑ det(𝐿𝑌)

𝐴∪{𝑖}⊆𝑌⊆𝒴

+ ∑ det(𝐿𝑌)

𝐴⊆𝑌⊆𝒴−{𝑖}

 

= ∑ det(𝐿𝑌)

𝐴⊆𝑌⊆𝒴

                    (3.11) 

Where we observe that every 𝑌 either contains 𝑖 and is included only in the first sum or does not contain 

𝑖 and is included only in the second sum.  
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 From (3.1) and (3.8), we have 

𝒫(𝐴 ⊆ 𝒀) = ∑ 𝒫𝐿(𝒀 = 𝑌)

𝐴⊆𝑌⊆𝒴

= det(𝐾𝐴) (3.12) 

= ∑
det(𝐿𝑌)

det(𝐿 + 𝐼)
𝐴⊆𝑌⊆𝒴

=
1

det(𝐿 + 𝐼)
∑ det(𝐿𝑌)

𝐴⊆𝑌⊆𝒴

(3.13) 

=
det(𝐿 + 𝐼𝐴̅)

det(𝐿 + 𝐼)
= det{(𝐿 + 𝐼𝐴̅)(𝐿 + 𝐼)−1}                (3.14) 

When 𝐴 is equal to 𝒴, we have  

det(𝐾) = det{(𝐿 + 0)(𝐿 + 𝐼)−1} (3.15) 

Therefore, for a DPP, we can directly let: 

𝐾 = 𝐿(𝐿 + 𝐼)−1 = (𝐿 + 𝐼 − 𝐼)(𝐿 + 𝐼)−1 = 𝐼 − (𝐿 + 𝐼)−1 (3.16) 

𝐿 = 𝐾(𝐼 − 𝐾)−1 (3.17) 

Then we can obtain that: 

𝒫(𝐴 ⊆ 𝒀) = det{(𝐿 + 𝐼𝐴̅)(𝐿 + 𝐼)−1} 

= det{𝐼𝐴̅(𝐿 + 𝐼)−1 + 𝐼 − (𝐿 + 𝐼)−1} 

= det{𝐼 − 𝐼𝐴(𝐿 + 𝐼)−1} 

= det{𝐼𝐴̅ + 𝐼𝐴𝐾} 

= |
𝐼|𝐴|×|𝐴| 0

𝐾𝐴𝐴 𝐾𝐴
| 

= det(𝐾𝐴) 

The inverse part of (3.16) always exists due to the positive coefficient on the identity matrix. However, the 

inverse part of equation 3.17 may not exists if any eigenvalue of 𝐾 achieve the upper bound of 1. For this 

circumstance, the DPP is not a 𝐿 -ensemble. When we do the eigendecomposition of 𝐿  to get 𝐿 =

∑ 𝜆𝑛𝒗𝑛𝒗𝑛
𝑇𝑁

𝑛=1 , then we can also obtain the eigendecomposition of 𝐾 = ∑
𝜆𝑛

𝜆𝑛+1
𝒗𝑛𝒗𝑛

𝑇𝑁
𝑛=1 . 
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3.3 Example of L-ensemble  

 𝐿-ensemble of a DPP gives that 𝐿 is a positive semidefinite matrix. Then we can find a 𝐵 being a 

𝐷 × 𝑁 matrix such that 𝐿 = 𝐵T𝐵, where 𝐷 ≤ 𝑁. Denote the columns of 𝐵 by 𝐵𝑖 for 𝑖 = 1,2, ⋯ , 𝑁. 

Then  

𝒫𝐿(𝒀 = 𝑌) ∝ det(𝐿𝑌) = det(𝐵𝑖
T𝐵𝑗)

𝑖,𝑗∈𝑌
(3.18) 

Therefore, any real matrix 𝐵 can structure a 𝐿-ensemble for a DPP. 

 In many real situations, we hope the diversity is balanced against some underlying preferences for 

different items in 𝒴. Therefore, we want to do the decomposition of the DPP, which is called quality-

diversity decomposition. From 3.18, we have 𝐿 = 𝐵T𝐵 , where 𝐵  is a 𝐷 × 𝑁  matrix. Then we can 

continue to decompose 𝐵𝑖 for 𝑖 = 1,2, ⋯ , 𝑁. Then 

𝐵𝑖 = 𝑞𝑖𝜙𝑖 (3.19) 

where 𝑞𝑖 ∈ ℝ+  is a quality term, and 𝜙𝑖 ∈ ℝ𝐷  is a diversity feature vector and ‖𝜙𝑖‖2 = 1 . For this 

decomposition, the quality term represents the “goodness” of an item 𝑖. Then the kernel 𝐿 is changed to 

𝐿𝑖𝑗 = 𝐵𝑖
T𝐵𝑗 = 𝑞𝑖𝜙𝑖

T𝜙𝑗𝑞𝑗 (3.20) 

Since ‖𝜙𝑖‖2 = 1, 𝜙𝑖
T𝜙𝑗 ∈ [−1,1]. We denote 𝑆𝑖𝑗 = 𝜙𝑖

T𝜙𝑗, where 𝑆 ∈ ℝ𝑁×𝑁. Then 

𝑆𝑖𝑖 = 𝜙𝑖
T𝜙𝑖 = 1 (3.21) 

𝐿𝑖𝑖 = 𝑞𝑖𝜙𝑖
T𝜙𝑖𝑞𝑖 = 𝑞𝑖

2 (3.22) 

𝑆𝑖𝑗 = 𝜙𝑖
T𝜙𝑗 =

𝑞𝑖𝜙𝑖
T𝜙𝑗𝑞𝑗

𝑞𝑖𝑞𝑗
=

𝐿𝑖𝑗

√𝐿𝑖𝑖𝐿𝑗𝑗

(3.23) 

Therefore, we can use 𝑆 and 𝑞𝑖 to rewrite the equation 3.18: 
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𝒫𝐿(𝒀 = 𝑌) ∝ det(𝐿𝑌) = det(𝑞𝑖𝜙𝑖
T𝜙𝑗𝑞𝑗)

𝑖,𝑗∈𝑌
= (∏ 𝑞𝑖

2

𝑖∈𝑌

) det(𝑆𝑌) (3.24) 

where the first term represents the quality part, and the second term represents the diversity of the selected 

items.  

 From above analysis, we can find that it is convenient and efficient to structure a 𝐿-ensemble of a DPP 

rather than directly finding the kernel 𝐾. Therefore, in this research, we focus on using the kernel 𝐿 for 

sampling 𝑌 from a DPP. 

 

3.4 Algorithm – Sample DPP 

 Due to Hough et al. [2009, Kulesza and Taskar, 2012], we have an efficient algorithm to sample a 

configuration 𝑌 from a DPP. The input to the algorithm is an eigendecomposition of the DPP kernel 𝐿, 

and 𝒆𝑖 is the 𝑖th standard basis 𝑁-vector, which is all zeros except for a one in the 𝑖th position. 

Algorithm 3.1 (Kulesza and Taskar, 2012) Sampling from a DPP 

Input: eigendecomposition {(𝒗𝑛, 𝜆𝑛)}𝑛=1
𝑁  of 𝐿 

𝐽 ⟵ ∅  

For 𝑛 = 1,2, ⋯ , 𝑁 

   𝐽 ⟵ 𝐽 ∪ {𝑛} with probability 
𝜆𝑛

𝜆𝑛+1
 

End 

𝑉 ⟵ {𝒗𝑛}𝑛∈𝐽  

𝑌 ⟵ ∅  

While |𝑉| > 0 

   Select 𝑖 from 𝒴 with probability 
1

|𝑉|
∑ (𝒗T𝒆𝑖)

2
𝒗∈𝑉  

   𝑌 ⟵ 𝑌 ∪ 𝑖 

   𝑉 ⟵ 𝑉⊥, an orthonormal basis for the subspace of 𝑉 orthogonal to 𝒆𝑖 

End 

Output: 𝑌 
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 In this algorithm, we have two main loops. The first loop is to help us ensure how many points that we 

need to sample from a DPP. The second loop is that based on a set of orthonormal vectors 𝑉, we can sample 

𝑌 from 𝒴. To ensure the result of this algorithm sampled from 𝒫𝐿. We separate this algorithm to two parts. 

Definition 3.5 (Kulesza and Taskar, 2012) A DPP is called elementary if every eigenvalue of its marginal 

kernel is in {0,1}. We write 𝒫𝑉, where 𝑉 is a set of orthonormal vectors, to denote an elementary DPP 

with marginal kernel 𝐾𝑉 = ∑ 𝒗𝒗T
𝒗∈𝑉  

 From this definition, now we assume that there is a DPP kernel 𝐿 . When we do orthonormal 

eigendecomposition, we can get 𝐿 = ∑ 𝜆𝑛𝒗𝑛𝒗𝑛
𝑇𝑁

𝑛=1  . Then 𝐾 = ∑
𝜆𝑛

𝜆𝑛+1
𝒗𝑛𝒗𝑛

𝑇𝑁
𝑛=1  . For each 𝑛 , we get a 

number 𝑎 from [0,1]. If the 𝑎 is less than 
𝜆𝑛

𝜆𝑛+1
, we denote 𝜆𝑛

′ = 1; otherwise, 𝜆𝑛
′ = 0. Then the new 

kernel 𝐾′ = ∑ 𝜆𝑛
′ 𝒗𝑛𝒗𝑛

𝑇𝑁
𝑛=1 , which is the elementary DPP kernel. 

Lemma 3.6 (Kulesza and Taskar, 2012) Let 𝑊𝑛  for 𝑛 = 1,2, ⋯ , 𝑁 be an arbitrary sequence of 𝑘 × 𝑘 

rank-one matrices, and let (𝑊𝑛)𝑖 denote the 𝑖th column of 𝑊𝑛. Let 𝑊𝐽 = ∑ 𝑊𝑛𝑛∈𝐽 . Then 

det(𝑊𝐽) = ∑ 𝑑𝑒𝑡 ([(𝑊𝑛1
)

1
(𝑊𝑛2

)
2

⋯ (𝑊𝑛𝑘
)

𝑘
])

𝑛1,𝑛2,⋯,𝑛𝑘∈𝐽,𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

(3.25) 

Proof: Since 𝑊𝐽 = ∑ 𝑊𝑛𝒏∈𝐽 , we can expand the first column of 𝑊𝐽 as 

det(𝑊𝐽) = ∑ 𝑑𝑒𝑡 ([(𝑊𝑛)1(𝑊𝐽)
2

⋯ (𝑊𝐽)
𝑘

])

𝑛∈𝐽

(3.26) 

Then we continue to expand the 2nd, 3rd, ⋯ , 𝑘th column of 𝑊𝐽. Then 

det(𝑊𝐽) = ∑ 𝑑𝑒𝑡 ([(𝑊𝑛1
)

1
(𝑊𝑛2

)
2

⋯ (𝑊𝑛𝑘
)

𝑘
])

𝑛1,𝑛2,⋯,𝑛𝑘∈𝐽

(3.27) 

Since 𝑊𝑛 is the rank-one matrix, the determinant of the mixture matrix is zero if it contains two or more 

columns of the same 𝑊𝑛. Therefore, 𝑛1, 𝑛2, ⋯ , 𝑛𝑘 should be distinct. 
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Lemma 3.7 (Kulesza and Taskar, 2012) A DPP with kernel 𝐿 = ∑ 𝜆𝑛𝒗𝑛𝒗𝑛
T𝑁

𝑛=1  is a mixture of elementary 

DPPs: 

𝒫𝐿 =
1

det(𝐿 + 𝐼)
∑ 𝒫𝑉𝐽

𝐽⊆1,2,⋯,𝑁

∏ 𝜆𝑛

𝑛∈𝐽

(3.28) 

Where 𝑉𝐽 denotes the set {𝒗𝑛}𝑛∈𝐽. 

Proof: Let 𝐴 ∈ 𝒴 be an arbitrary set with |𝐴| = 𝑘. Denote 𝑊𝑛 = [𝒗𝑛𝒗𝑛
T]𝐴 for 𝑛 = 1,2, ⋯ , 𝑁. Here all 

of the 𝑊𝑛  have rank one. From the definition of the elementary DPP, the kernel 𝐾𝑉𝐽 = ∑ 𝑊𝑛𝒏∈𝐽 . 

Therefore, the right-hand side of 3.28 should be 

1

det(𝐿 + 𝐼)
∑ 𝑑𝑒𝑡 (∑ 𝑊𝑛

𝒏∈𝐽
)

𝐽⊆1,2,⋯,𝑁

∏ 𝜆𝑛

𝑛∈𝐽

=
1

det(𝐿 + 𝐼)
∑ ∑ 𝑑𝑒𝑡 ([(𝑊𝑛1

)
1

(𝑊𝑛2
)

2
⋯ (𝑊𝑛𝑘

)
𝑘

])

𝑛1,𝑛2,⋯,𝑛𝑘∈𝐽,𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐽⊆1,2,⋯,𝑁

∏ 𝜆𝑛

𝑛∈𝐽

=
1

det(𝐿 + 𝐼)
∑ det ([(𝑊𝑛1

)
1

(𝑊𝑛2
)

2
⋯ (𝑊𝑛𝑘

)
𝑘

])

𝑁

𝑛1,𝑛2,⋯,𝑛𝑘=1,𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

∑ ∏ 𝜆𝑛

𝑛∈𝐽{𝑛1,𝑛2,⋯,𝑛𝑘}∈𝐽

=
1

det(𝐿 + 𝐼)
∑ det ([(𝑊𝑛1

)
1

⋯ (𝑊𝑛𝑘
)

𝑘
])

𝑁

𝑛1,𝑛2,⋯,𝑛𝑘=1,𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

𝜆𝑛1

𝜆𝑛1
+ 1

⋯
𝜆𝑛𝑘

𝜆𝑛𝑘
+ 1

∏(𝜆𝑛

𝑁

𝑛=1

+ 1) 

= ∑ det ([
𝜆𝑛1

𝜆𝑛1
+ 1

(𝑊𝑛1
)

1
⋯

𝜆𝑛𝑘

𝜆𝑛𝑘
+ 1

(𝑊𝑛𝑘
)

𝑘
])

𝑁

𝑛1,𝑛2,⋯,𝑛𝑘=1,𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

                                  (3.29) 

Here, we use the fact det(𝐿 + 𝐼) = ∏ (𝜆𝑛 + 1)𝑁
𝑛=1 . By the definition of marginal kernel 𝐾 in terms of the 

eigendecomposition of 𝐿, we have 

𝑑𝑒𝑡 (∑
𝜆𝑛

𝜆𝑛 + 1
𝑊𝑛

𝑁

𝑛=1

) = 𝑑𝑒𝑡(𝐾𝐴) (3.30) 

Since 𝐴 is an arbitrary set, (3.28) holds. 
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 As we proof of lemma 3.7, we can see that it is equal to sample 𝑌 from an elementary DPP comparing 

with sampled from an original DPP.  

Lemma 3.8 (Kulesza and Taskar, 2012) If 𝒀 is drawn according to an elementary DPP 𝒫𝑉, then |𝒀| =

|𝑉| with probability one. 

Proof: By the definition of DPP kernel, 𝐾𝑉 has rank |𝑉|. Therefore, 𝒫𝑉(𝑌 ⊆ 𝒀) = 0 whenever |𝒀| >

|𝑉|. Hence, |𝒀| ≤ |𝑉|. Then 

𝔼(|𝒀|) = ∑ 𝕀(𝑛 ∈ 𝒀)

𝑁

𝑛=1

= ∑ 𝐾𝑛𝑛
𝑉

𝑁

𝑛=1

= tr(𝐾𝑉) = ∑‖𝒗𝑛‖2

𝑛∈𝑉

= |𝑉| (3.31) 

Therefore, ℙ(|𝒀| = |𝑉|) = 1, i.e., |𝒀| = |𝑉| almost surely. 

 Based on the lemma 3.7 and 3.8, we can see that the first loop of algorithm helps us ensure the 

elementary DPP 𝒫𝑉 with the orthonormal eigendecomposition of 𝐿. Since the elementary DPP has the 

fixed cardinality, the first loop also assures the numbers of items that we choose from the DPP. The second 

loop of algorithm is sampling 𝑌 from the elementary DPP 𝒫𝑉. 

 Let us give an example how the algorithm works on the circle as figure 3.2. We first uniformly get 100 

points on a unit circle and use the distance between points as the feature to structure the kernel 𝐿. For 

example, there are 100 points (𝑥1, 𝑥2, … , 𝑥100) on a unit circle. Then we can define the 𝐿-ensemble as 

𝐿𝑖𝑗 = 𝑒𝑥𝑝{〈𝑥𝑖, 𝑥𝑗〉/0.1} 

where 〈𝑥𝑖, 𝑥𝑗〉 is the dot product of coordinates of points 𝑥𝑖 and 𝑥𝑗. The figure 3.2 shows the probability 

of catching a point in next loop of algorithm. The x-axis is the location for each point on the circle. The 

range is [0,2𝜋]. From this picture, we can see that after we sample a point from the elementary DPP, the 

probability around this point has decreased. Here we use distance between points as our feature; therefore, 
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this result directly shows that if the features of two items are more similar, it is less likely to sample them 

in a DPP.  

 

Figure 3.2 A DPP on a unit circle. The upper left is probability of sampling a point at the beginning. The upper right is the probability of sampling 

a point after 1 time. 
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4. Gap Distribution in Determinantal Point Process 

 Gap distribution is roughly speaking the distribution of the distance between two neighboring points. 

Gap distribution is an important aspect of the point process. For example, one-dimensional Poisson point 

process can be characterized in terms of the gap distribution done (definition 2.5). Therefore, we will study 

the gap distribution of determinantal point process (DPP) and compare it with the gap distribution from 

other DPP. 

 In the Poisson point process, the gap distribution shows that the sample points may gather in one 

location. For example, in figure 4.1, we sample a DPP and a Poisson point process with 42 points on the 

unit circle. Compared to the Poisson point process through the graphs, we can obviously see that the gaps 

of determinantal point process are almost uniform size. Therefore, we can roughly state that the DPP gives 

the balance gap distribution comparing with the Poisson point process. 

 

Figure 4.1 A DPP and a Poisson point processing form the same population with 10,000 points on a unit circle. 
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 In this section we will explore the one-dimensional case and the two-dimensional case of the DPP. 

Same as what we assumed in the Poisson point process, we will sample the points from the population on 

the unit circle and on the unit sphere. For each case, we want to find three aspects of DPP. First, how many 

points will be sampled with different population sizes or scales? Second, for each case what distribution 

does the gap distribution of a DPP satisfy? Third, we will test if the gap distribution equals the distribution 

that we find in the second question. 

 In the Poisson point process, we simulate the points on a unit circle and a unit sphere because any point 

on a unit circle or a unit sphere could be considered as the initial/reference point. It is convenience for us 

to measure a point process without considering the bound of the population space. Therefore, a unit circle 

and a unit sphere can also be considered as the environment for exploring the gap distribution in the 

determinantal point process. 

 

4.1 Gap distribution in one-dimensional DPP 

 We first explore the one-dimensional case. We randomly sample 𝑛 points on the unit circle and use 

these 𝑛 points to structure the 𝐿-ensemble. We then perform eigen-decomposition on the 𝐿-ensemble. 

Finally, we use the algorithm 3.1 to sample a determinantal point process. Since the 𝑛 points are on the 

unit circle, we can use 𝜃’s with the range [0,2𝜋] to express their locations. For each point 𝑋𝑖 it has a 

coordinate vector 𝑋𝑖 = (𝑐𝑜𝑠(𝜃𝑖), 𝑠𝑖𝑛(𝜃𝑖))
𝑇

. For our case we want to sample the points almost uniformly 

on the circle; therefore, we can use the distance between points as the feature in 𝐿-ensemble. Given two 

points 𝑋𝑖, 𝑋𝑗 from 𝑋1, … , 𝑋𝑛, we write the inner product of these two points: 
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〈𝑋𝑖, 𝑋𝑗〉 = |𝑋𝑖||𝑋𝑗|𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗) = 𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗) = 𝑐𝑜𝑠(𝜃𝑗 − 𝜃𝑖). (4.1) 

Since they are on the unit circle, |𝑋𝑖| = |𝑋𝑗| = 1 and |𝜃𝑖 − 𝜃𝑗| is the arclength distance between 𝑋𝑖 and 

𝑋𝑗. We structure our 𝐿-ensemble as follows: 

𝐿𝑖𝑗 = 𝑒𝑥𝑝 (
〈𝑋𝑖, 𝑋𝑗〉

𝜎
) (4.2) 

where 𝜎 is a positive parameter. Then we can sample a DPP on a unit circle with the algorithm 4.1. 

Algorithm 4.1 Sampling a DPP on a unit circle 

Input: 𝑁, 𝜎 

Sample 𝑁 points 𝑋1, … , 𝑋𝑁 from [0,2𝜋] 

Structure the 𝐿-ensemble 𝐿𝑖𝑗 = 𝑒𝑥𝑝 (
𝑐𝑜𝑠(𝑋𝑖−𝑋𝑗)

𝜎
) 

Eigendecomposition {(𝒗𝑛, 𝜆𝑛)}𝑛=1
𝑁  of 𝐿 

Using algorithm 3.1 with {(𝒗𝑛, 𝜆𝑛)}𝑛=1
𝑁  to get 𝑌 

Output: 𝑋𝑌 

 From algorithm 3.1, we can find that the number of points in a DPP depends on the number of elements 

in 𝐽 . For an matrix 𝐿  we have that 𝔼(𝐽) = ∑
𝜆𝑖

𝜆𝑖+1
𝑁
𝑖=1  . Here, we assume that 𝑁 =

1000, 2000, 3000, 4000 and 𝜎 = 0.1. Then we operate algorithm 4.1, repeat the step “using algorithm 

3.1” for a fixed matrix 𝐿 and get table 4.2 (a). We continue operating algorithm 4.1 with the same repeating 

times and get table 4.2(b). 

Table 4.2(a) The information of number of points in the DPP with an 𝐿 

𝑁 𝜎 𝑚 𝑚𝑒𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) 𝑣𝑎𝑟(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) 𝔼(𝐽) 

1000 0.1 100 36.8 1.1717 36.9669 

2000 0.1 100 37.86 1.3135 37.9892 

3000 0.1 100 38.46 1.1196 38.5799 

4000 0.1 100 38.89 1.7151 38.9847 

 

Table 4.2(b) The information of 𝔼(𝐽) in the DPP with random 𝐿. 

𝑁 𝜎 𝑚 𝑚𝑒𝑎𝑛(𝔼(𝐽)) 𝑣𝑎𝑟(𝔼(𝐽)) 

1000 0.1 100 36.9797 0.00013 

2000 0.1 100 37.9979 0.00002 

3000 0.1 100 38.5775 0.00001 

4000 0.1 100 38.983 0.000006 
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 From table 4.2(a), we can have a null hypothesis that the average number of points in the DPP with an 

𝐿 is equal to the expectation of 𝐽, i.e. 𝑚𝑒𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) = 𝔼(𝐽). Since for each DPP with the same 𝐿, 

the number of points in DPPs are independent and identically distributed. Hence, we can use the statistics 

method called 𝑧 − 𝑡𝑒𝑠𝑡. 

𝑍 =
𝑚𝑒𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) − 𝔼(𝐽)

√𝑣𝑎𝑟(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌))/𝑚

~𝑁(0,1) (4.3)
 

where 𝑣𝑎𝑟(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) is the variance of number of points in the DPP with an 𝐿, and 𝑚 is the number 

of the DPPs. Then, for 𝑁 = 1000, 2000, 3000, 4000  and 𝜎 = 0.1 , |𝑍𝑁| = 1.54, 1.13, 1.13, 0.723 . 

Since 𝑧 = 1.96 at the significant level 0.05, |𝑍𝑁| < 𝑧 shows that the average number of points in DPP 

with an 𝐿 is equal to the expectation 𝐽 at the significant level of 0.05. Then from table 4.2(b), we can 

have another null hypothesis that the average expectation of 𝐽 with random 𝐿 is equal to the average 

number of points in the DPP with an 𝐿 , i.e. 𝑚𝑒𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) = 𝑚𝑒𝑎𝑛(𝔼(𝐽)). Since 𝑁  points are 

sampled randomly, 𝐿 ’s are independent and identically distributed. 𝔼(𝐽) ’s are also independent and 

identically distributed. Hence, we can also use the statistics z-test 

𝑍 =
𝑚𝑒𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) − 𝑚𝑒𝑎𝑛(𝔼(𝐽))

√𝑣𝑎𝑟(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌))/𝑚 + 𝑣𝑎𝑟(𝔼(𝐽))/𝑚

~𝑁(0,1) (4.4)
 

Where 𝑣𝑎𝑟(𝔼(𝐽)) is the variance of expectation of 𝐽. Then, for 𝑁 = 1000, 2000, 3000, 4000 and 𝜎 =

0.1 , |𝑍𝑁| = 1.66, 1.20, 1.11, 0.71,  . Since 𝑧 = 1.96  at the significant level 0.05, |𝑍𝑁| < 𝑧  shows that 

the average expectation 𝐽 with random 𝐿 is equal to the average number of points in the DPP with an 𝐿 

at the significant level of 0.05. Combine the above two hypotheses, we can have that the average number 

of points is equal for random 𝐿’s. 



 

37 

 From the above tests, we have that when we sample a DPP, the number of points in the DPP with the 

same 𝑁 and 𝜎 do not depend on the random 𝐿. Therefore, we can let the following DPPs be sampled 

from the random 𝐿’s. 

 For 𝑁 = 1000, 2000, 3000  and 𝜎 = 0.05, 0.1, 0.15, 0.2 , we separately sample 𝑚 = 200  times 

DPP for each case. Then we can get the gap distribution with counterclockwise direction as table 4.3 and 

figure 4.4. Like the way that we work on the Poisson process, for each situation we use 𝑚𝑒𝑎𝑛(𝔼(𝐽)) to 

time the gaps and over the circumference. 

𝑥 − 𝑎𝑥𝑖𝑠: 𝑔𝑎𝑝𝑠 ×
𝑛

2𝜋
(4.5) 

From table 4.3, the histograms show that for different 𝑁 and 𝜎 the gap distributions give the almost same 

means and similar standard deviations, and the skewness and kurtosis are tiny different. Furthermore, from 

figure 4.4, we can see that the histograms for different 𝑁 and 𝜎 show the similarity of curves. Then we 

can use the Gaussian kernel to estimate the density function for each gap distribution, and we can plot the 

density function and the cumulative distribution function for each gap distribution as figure 4.5. Then we 

can directly see that whatever density function or cumulative distribution function the gap distributions 

seem to be the same for different 𝑁 and 𝜎. Therefore, we can state a null hypothesis that for different 𝑁 

and 𝜎 the gap distribution gives the same shape. 

 According to Kolmogorov-Smirnov two-sample tests in Pratt’s and Gibbons’ (1981) book “Concepts 

of nonparametric theory”, we can test two histograms have the same shape. Then we can get the P-values 

for different combinations of 𝑁 and 𝜎 as table 4.6. From the results, we can find that there are no P-

values less than 0.1 even though no P-values less than 0.05. Therefore, we cannot reject the null hypothesis. 
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Table 4.3 The statistic information of gap distribution for 𝑁 = 1000, 2000, 3000 and 𝜎 = 0.05, 0.1, 0.15, 0.2 

𝑁 𝜎 𝑚 mean standard deviation skewness kurtosis 

1000 0.05 200 1 0.4219 0.5289 3.2375 

1000 0.1 200 1 0.4330 0.5787 3.2675 

1000 0.15 200 1 0.4334 0.5973 3.3295 

1000 0.2 200 1 0.4213 0.5904 3.3322 

2000 0.05 200 1 0.4279 0.5082 3.1369 

2000 0.1 200 1 0.4272 0.4985 3.1179 

2000 0.15 200 1 0.4334 0.5426 3.1878 

2000 0.2 200 1 0.4290 0.5593 3.2697 

3000 0.05 200 1 0.4282 0.5238 3.1587 

3000 0.1 200 1 0.4270 0.4979 3.1033 

3000 0.15 200 1 0.4247 0.5125 3.2221 

3000 0.2 200 1 0.4311 0.5789 3.2590 

 

Figure 4.4 The histograms of gaps between neighboring points with counterclockwise direction for 𝑁 = 1000, 2000, 3000  and 𝜎 =

0.05, 0.1, 0.15, 0.2. 
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Figure 4.5 The plots of density function and cumulative distribution function (CDF) for 𝑁 = 1000, 2000, 3000 and 𝜎 = 0.05, 0.1, 0.15, 0.2. 

 

Table 4.6 The P-value of Kolmogorov-Smirnov two-sample tests for different combination of 𝑁1,2,3 = 1000, 2000, 3000  and 𝜎1,2,3,4 =

0.05, 0.1, 0.15, 0.2. 

𝑁&𝜎 𝑁1&𝜎1 𝑁1&𝜎2 𝑁1&𝜎3 𝑁1&𝜎4 𝑁2&𝜎1 𝑁2&𝜎2 𝑁2&𝜎3 𝑁2&𝜎4 𝑁3&𝜎1 𝑁3&𝜎2 𝑁3&𝜎3 𝑁3&𝜎4 

𝑁1&𝜎1 1            

𝑁1&𝜎2 0.3869 1           

𝑁1&𝜎3 0.2353 0.9019 1          

𝑁1&𝜎4 0.963 0.668 0.7461 1         

𝑁2&𝜎1 0.3523 0.3731 0.3852 0.7154 1        

𝑁2&𝜎2 0.5196 0.2809 0.4376 0.7808 1.0000 1       

𝑁2&𝜎3 0.3542 0.7243 0.8225 0.6067 0.7837 0.8671 1      

𝑁2&𝜎4 0.7154 0.9601 0.6793 0.8957 0.7525 0.7647 0.7818 1     

𝑁3&𝜎1 0.2839 0.1755 0.3939 0.7217 0.9831 0.996 0.9032 0.6849 1    

𝑁3&𝜎2 0.8351 0.7342 0.4698 0.5317 0.8165 0.8386 0.7415 0.9047 0.6019 1   

𝑁3&𝜎3 0.8026 0.4422 0.3063 0.8311 0.836 0.8633 0.3481 0.6352 0.5876 0.8924 1  

𝑁3&𝜎4 0.3276 0.8835 0.8817 0.7536 0.579 0.6232 0.8046 0.6519 0.6588 0.7398 0.3049 1 

 Following our algorithm for sampling DPPs, we first randomly choose 𝑁  points to structure the 

matrix 𝐿. Therefore, each DPP is sampled from the random matrix 𝐿. Circular unitary ensemble is a type 

of random complex matrix whose eigenvalues are uniformly on the unit circle. We can guess that the gap 

distribution of points that are sampled from the circular unitary ensemble (CUE) may give the same shape 
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as the gap distribution of a DPP. Then using the wolfram language and system, we can sample 100 points 

from the circular unitary ensemble (CUE) 100 times. Then same as what we do for the gaps of DPP, we use 

100 to time the gaps of points sampled from the CUE. We can get the histogram of gap distribution, the 

graph of a density function, and the graph of cumulative distribution function as in figure 4.7. Comparing 

with the gap distribution of DPP, we can state a null hypothesis that the gap distribution of DPP has the 

same shape with the gap distribution of CUE. We can do Kolmogorov-Smirnov two-sample tests for this 

hypothesis. The P-values of comparing CUE with DPP for different 𝑁 = 1000, 2000, 3000 and 𝜎 =

0.05, 0.1, 0.15, 0.2 are 0.8116, 0.3293, 0.5848, 0.7963, 0.6616, 0.7789, 0.3778, 0.7956, 0.5334, 0.7357, 

0.9739, 0.6089. Since each P-value is not less than 0.05, we cannot reject our null hypothesis at a significant 

level of 0.05. Therefore, we can obtain that the gap distributions of DPP and CUE have the same shape at 

the significant level 0.05. 

 

Figure 4.7 The histogram of gap distribution for CUE, graph of density function and graph of cumulative distribution function for CUE and DPP 

with 𝑁 = 1000 & 𝜎 = 0.05. 
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 For the Poisson point process, we have the gap distribution as an exponential distribution. For 

exponential distribution, the random gaps fall near the 0 with a higher probability. This situation makes 

many random points of the Poisson point process fall in the same place. However, if we do the determinantal 

point process, we can transfer the exponential distribution to the other distribution that gaps have a higher 

probability of falling around the mean of gaps like figure 4.8. Besides, according to table 4.3 and table 

2.4(b), the means of gap distributions of these two point processes are the same. Therefore, the DPP improve 

the Poisson point process. 

 

Figure 4.8 The gaps distributions for Poisson point process and DPP with mean. 

 In the one-dimensional case, we can find that the number of points sampled from a DPP is related to 

the expectation 𝐽 , 𝔼(𝐽) = ∑
𝜆𝑖

𝜆𝑖+1
𝑁
𝑖=1  , where 𝜆𝑖  is the eigenvalue of 𝐿. Through Kolmogorov-Smirnov 

two-sample tests, we find that for different 𝑁  and 𝜎 , the gap distribution of DPPs gives the same 

distribution as the circular unitary ensemble distribution. Comparing with the Poisson point process, the 

DPP gives the better gap distribution that gaps fall around the mean of gaps, which means that the points 

that we sampled nearly uniformly fall in the space. 



 

42 

4.2 Gap distribution in two-dimensional DPP 

 For the one-dimensional case, we find that the DPP optimizes the Poisson point process. Then for a 

higher-dimensional case such as the two-dimensional case, we do not ensure the statement also being true. 

Therefore, we need also to check the three aspects of DPPs mentioned at the beginning of this section. 

 For the two-dimensional case, we can sample a DPP from a unit sphere because every point on the unit 

sphere could be considered as the reference point such that it is convenience for us to measure the gaps 

between the closest points as what we do in the Poisson point process. Since we want the DPP to optimize 

the Poisson point process, we first sample 𝑛 random points on the unit sphere. Then we use these points 

to structure the 𝐿. We continue doing eigen-decomposition on the 𝐿. Finally, using algorithm 3.1 to sample 

a determinantal point process on a unit sphere. Since the points are on the unit sphere, we can uniformly 

sample 𝜃  from [0,2𝜋]  and ℎ  from [−1,1] . The coordinate vector of each point can be created by 

(√1 − ℎ2𝑐𝑜𝑠(𝜃), √1 − ℎ2𝑠𝑖𝑛(𝜃), ℎ); then we can use the inner product of coordinate vectors of points as 

the elements of 𝐿, same as (4.1) and (4.2). Therefore, for a unit sphere, we can sample a DPP with algorithm 

4.2. 

Algorithm 4.2 Sampling a DPP on a unit sphere 

Input: 𝑁, 𝜎 

Sample 𝑁 points 𝑋1, … , 𝑋𝑁 with 𝜃 ∈ [0,2𝜋] and ℎ ∈ [−1,1] 

Structure the 𝐿-ensemble 𝐿𝑖𝑗 = 𝑒𝑥𝑝 (
√1−ℎ𝑖

2√1−ℎ𝑗
2𝑐𝑜𝑠(𝜃𝑖−𝜃𝑗)+ℎ𝑖ℎ𝑗

𝜎
) 

Eigendecomposition {(𝒗𝑛, 𝜆𝑛)}𝑛=1
𝑁  of 𝐿 

Using algorithm 3.1 with {(𝒗𝑛, 𝜆𝑛)}𝑛=1
𝑁  to get 𝑌 

Output: 𝑋𝑌 

 Since we also use algorithm 3.1 in algorithm 4.2, we can obtain that the number of DPP depends on 

the expectation 𝐽 , i.e. 𝔼(𝐽) = ∑
𝜆𝑖

𝜆𝑖+1
𝑁
𝑖=1   where 𝜆𝑖  is the eigenvalues of 𝐿 . We assume that 𝑁 =
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1000, 2000, 3000, 4000 and 𝜎 = 0.1 and then do the same operation as the one-dimensional case to get 

table 4.9(a) and 4.9(b). 

 

Table 4.9(a) The information of number of points in the DPP with a 𝐿 

𝑁 𝜎 𝑚 𝑚𝑒𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) 𝑣𝑎𝑟(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) 𝔼(𝐽) 

1000 0.1 100 309.86 25.4125 309.8348 

2000 0.1 100 333.65 31.3207 333.4854 

3000 0.1 100 346.09 27.7999 345.7298 

4000 0.1 100 355.35 21.1995 354.4752 

 

Table 4.9(b) The information of 𝔼(𝐽) in the DPP with random 𝐿. 

𝑁 𝜎 𝑚 𝑚𝑒𝑎𝑛(𝔼(𝐽)) 𝑣𝑎𝑟(𝔼(𝐽)) 

1000 0.1 100 309.0103 0.3635 

2000 0.1 100 333.3693 0.0621 

3000 0.1 100 345.8952 0.0244 

4000 0.1 100 354.4919 0.0121 

 Since for each DPP with the same 𝐿, DPPs are independent and identically distributed. From table 

4.9(a), we can have the null hypothesis that the average number of points in the DPP with an 𝐿 is equal to 

the expectation 𝐽, i.e. 𝑚𝑒𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)) = 𝔼(𝐽). Then by (4.3), for 𝑁 = 1000, 2000, 3000, 4000 and 

𝜎 = 0.1 , |𝑍𝑁| =  0.05, 0.2941, 0.6832,1.90. Since 𝑧 = 1.96  at the significant level 0.05, |𝑍𝑁| < 𝑧 

shows that for the two dimensional case, the average number of points in DPP with an 𝐿 is equal to the 

expectation 𝐽  at the significant level of 0.05. Then we sample 𝑁  points randomly, the matrix 𝐿 ’s are 

independent and identically distributed. By table 4.9(b), we can state a null hypothesis that the average 

number of points in the DPP with an 𝐿  is equal to the average of expectation 𝐽  for different 𝐿 ’s. 

According to (4.4), for 𝑁 = 1000, 2000, 3000, 4000  and 𝜎 = 0.1 , |𝑍𝑁| =

 1.6736, 0.5011, 0.3693, 1.8632 . Since |𝑍𝑁| ≤ 1.96 , we cannot reject the null hypothesis at the 

significant level 0.05. We can state that the average number of points in the DPP with an 𝐿 and the average 
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of expectation 𝐽  for different 𝐿 ’s are equal. Therefore, we can sample DPPs with random 𝐿  for the 

following checking. 

 For 𝑁 = 1000, 2000, 3000 and 𝜎 =  0.1, 0.15, 0.2, we separately sample 100 times DPP for each 

case. Then we can get the gap distribution of closest points as table 4.10 and figure 4.11. Here the 𝑥-axis 

is defined as 

𝑥 − 𝑎𝑥𝑖𝑠: 𝑔𝑎𝑝𝑠 ×
𝑛

4
(4.6) 

According to the Poisson point process in the two-dimensional case, we measure the square gaps timing 

the average number of points in DPPs over the area of the unit sphere as our gap distribution. From table 

4.10, we can see that skewness for each case is positive which shows that the distribution is right-skewed. 

Each case’s kurtosis is higher than 3 which means it has a higher perk than the normal distribution. 

Therefore, the more points fall near the mean. The mean, standard deviation, skewness, and kurtosis for 

each case does not exist big differences, and by figure 4.12, the histograms of all cases look like similar. 

We can make a guess that the gap distribution for different 𝑁 and 𝜎 can be the same. Then we plot graph 

of density function and cumulative distribution function as figure 4.11 shows. The graphs for different cases 

in figure 4.11 are overlapped. Therefore, we can make a null hypothesis that the gap distribution for 

different 𝑁 and 𝜎 has the same shape. 
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Table 4.10 The statistic information of gap distribution for 𝑁 = 1000, 2000, 3000 and 𝜎 =  0.1, 0.15, 0.2 

𝑁 𝜎 𝑚 mean standard deviation skewness kurtosis 

1000 0.1 100 1.412 0.2644 0.9096 4.0127 

1000 0.15 100 1.442 0.2669 0.8599 3.8440 

1000 0.2 100 1.423 0.2656 0.9282 3.9630 

2000 0.1 100 1.437 0.2645 0.8639 3.8378 

2000 0.15 100 1.438 0.2650 0.9022 4.0715 

2000 0.2 100 1.431 0.2638 0.8723 3.7995 

3000 0.1 100 1.445 0.2641 0.8617 3.9111 

3000 0.15 100 1.437 0.2631 0.8492 3.7781 

3000 0.2 100 1.429 0.2627 0.8925 3.9164 

 

 

 

 

 

Figure 4.12 The histograms of gaps between closest points with counterclockwise direction for 𝑁 = 1000, 2000, 3000 and 𝜎 =  0.1, 0.15, 0.2. 
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Figure 4.11 The plots of density function and cumulative distribution function (CDF) for 𝑁 = 1000, 2000, 3000 and 𝜎 = 0.1, 0.15, 0.2. 

 According to Kolmogorov-Smirnov two-sample tests in Pratt’s and Gibbons’ (1981) book “Concepts 

of nonparametric theory”, the two histograms with the same shape can be test. Then we combine different 

cases to get the table 4.13 about the P-values of Kolmogorov-Smirnov test. Then we can obtain that for any 

combination of 𝑁 and 𝜎, the gap distribution gives the same shape at the significant level of 0.05 because 

all P-values of Kolmogorov-Smirnov test are more than 0.05. 

 

Table 4.13 The P-value of Kolmogorov-Smirnov two-sample tests for different combination of 𝑁1,2,3 = 1000, 2000, 3000  and 𝜎1,2,3 =

0.1, 0.15, 0.2. 

𝑁&𝜎 𝑁1&𝜎1 𝑁1&𝜎2 𝑁1&𝜎3 𝑁2&𝜎1 𝑁2&𝜎2 𝑁2&𝜎3 𝑁3&𝜎1 𝑁3&𝜎2 𝑁3&𝜎3 

𝑁1&𝜎1 1         

𝑁1&𝜎2 0.5951 1        

𝑁1&𝜎3 0.2050 0.1241 1       

𝑁2&𝜎1 0.8601 0.5666 0.3242 1      

𝑁2&𝜎2 0.8397 0.7362 0.1203 0.8555 1     

𝑁2&𝜎3 0.8047 0.2360 0.1289 0.3645 0.3930 1    

𝑁3&𝜎1 0.7342 0.2822 0.2421 0.2645 0.2795 0.2139 1   

𝑁3&𝜎2 0.5601 0.6235 0.4132 0.7133 0.6067 0.2880 0.3179 1  

𝑁3&𝜎3 0.7244 0.7062 0.2815 0.1919 0.1572 0.5582 0.2043 0.07092 1 
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 From the algorithm 4.2, we know that each DPP has a random 𝐿 which is a matrix. Therefore, for the 

two-dimensional case, the type of random matrix is the Ginibre ensemble. The eigenvalues of a matrix from 

Ginibre ensemble are complex numbers, which fall in a unit circle on the complex plane. There is a 

hypothesis that the gap distribution of DPP in the two-dimensional case has the same shape as the gap 

distribution of Ginibre ensemble. According to Lozeve (2019), we can sample a series of points in a unit 

circle with Ginibre ensemble. Since there exists the bounds, we would delete the points on the bound to 

avoid the errors. The figure 4.14 shows that the density function and the cumulative distribution function 

of gap distribution of Ginibre ensemble compare with gap distributions of the DPPs. Then for different 

𝑁1,2,3 = 1000, 2000, 3000 and 𝜎1,2,3 = 0.1, 0.15, 0.2, we do the Kolmogorov-Smirnov test and get the P-

value as 0.4725, 0.1508, 0.1063, 0.8333, 0.5555, 0.4717, 0.5265, 0.1823, 0.2969. Since all P-values are 

more than 0.05, we can accept the hypothesis that the gap distribution of DPP in the two-dimensional case 

and the gap distribution of Ginibre ensemble have the same shape. 

 

Figure 4.14 The histogram of gap distribution for GE, graph of density function and graph of cumulative distribution function for GE and DPP 

with 𝑁 = 1000 & 𝜎 = 0.05. 
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 For the two-dimensional Poisson points process, the gap distribution of exponential distribution which 

could be shown as the top of figure 4.15. We can also directly see the graph of gap distribution with same 

number of points between lines from the bottom of figure 4.15. Comparing these two graphs, the DPP make 

distances of points fall around the mean rather than near the 0. Although the mean has changed after we do 

DPP in the two-dimensional case, it does not affect showing that DPP improve the Poisson point process 

because the points in a DPP give more higher distance than the points in the Poisson point process. 

 

Figure 4.15 The gaps distributions for Poisson point process and DPP with mean. 

 In the two-dimensional case, we can find that the number of points sampled from a DPP is also related 

to the expectation 𝐽, 𝔼(𝐽) = ∑
𝜆𝑖

𝜆𝑖+1
𝑁
𝑖=1 , where 𝜆𝑖 is the eigenvalue of 𝐿. Through Kolmogorov-Smirnov 

two-sample tests, we find that for different 𝑁  and 𝜎 , the gap distribution of DPPs gives the same 

distribution as the Ginibre ensemble distribution. Comparing with the Poisson point process, the DPP gives 

the better gap distribution that gaps fall around the mean of gaps, which means that the points that we 

sampled nearly uniformly fall in the space.  
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5. Conclusion 

 For the Poisson point process, we theoretically proved that the gap distribution is exponentially 

distributed. By the property of exponential distribution, the density probability decreases when the random 

variable increases. This implies that the points of a Poisson point process can form some clusters. 

 From section 3 and 4, we could see that the number of points in a DPP depends on the kernel matrix. 

The kernel matrix is difficult to be structured because the kernel matrix 𝐾  should satisfy 0 ≼ 𝐾 ≼ 𝐼 , 

which means that for any subset 𝐴 ⊆ 𝒴, det(𝐾𝐴) ∈ [0,1]. According to Kulesza and Taskar (2012), we 

can find the indirect way 𝐿-ensemble instead of the kernel 𝐾, and we have that 𝐾 = 𝐿(𝐿 + 𝐼)−1. 

 We perform the point process on the unit circle for the one-dimensional case and on the unit sphere for 

the two-dimensional case. Such choice has benefits when calculating the gap since these spaces have no 

boundary. For the Poisson point process we confirmed that the gap distributions are the exponential 

distribution. Hence, when we do the determinantal point process on the unit circle, the gap distribution 

converges to one of the circular unitary ensemble; and when we do the determinantal point process on the 

unit sphere, the gap distribution converges to one of Ginibre ensemble. To support this conclusion, we use 

the Kolmogorov-Smirnov two-sample tests in section 4. Through figure 4.7 and 4.14, we can directly see 

that the determinantal point process gives more uniform point distribution the Poisson point process. The 

skewness and kurtosis of the gap distribution of the DPP are approximately 0.5, 3.2 for one-dimensional 

case and 0.9, 3.9 for two-dimensional case. However, the skewness and kurtosis of the gap distribution of 
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the Poisson point process are approximately 2, 9 for one- and two-dimensional case. According to the 

skewness and kurtosis, we can also obtain that the DPP could give more uniformly distributed points than 

those in the Poisson point process. 

 In this paper, we just talked about the one- and two- dimensional cases. Therefore, the above 

conclusions just suit for the one- and two- dimensional cases. However, for 𝑛 dimensional case, we can 

assume to do the point process on the unit 𝑛-sphere. For example, we can do the Poisson point process on 

three-dimensional cases. In the real space, we assume that 𝑋1, … , 𝑋𝑛, … is a Poisson point process, and we 

assume that they have orders by the distance from 𝑋1. We set 𝑋1 as the reference point and let 𝑑 > 0 be 

the linear distance between 𝑋1 and 𝑋2. Let 

𝑀𝑑 = 𝑁(𝑆𝑑) (5.1) 

where 𝑆𝑑 is the sphere volume of radius 𝑑, i.e. 𝑆𝑑 has the volume 
4

3
𝜋𝑑3. Therefore 

ℙ(𝑀𝑑 = 𝑛) =
(𝜆

4
3 𝜋𝑑3)

𝑛

𝑒𝑥𝑝 (−𝜆
4
3 𝜋𝑑3)

𝑛!
(5.2)

 

Let 𝑅𝑖 be the linear distance between 𝑋1 and 𝑋𝑖+1. We want 𝑅𝑖 ≤ 𝑑 if and only if 𝑀𝑑 ≥ 𝑖. Let 𝑖 = 1; 

then,  

ℙ(𝑅1
3 ≤ 𝑑3) = ℙ(𝑅1 ≤ 𝑑) = ℙ(𝑀𝑑 ≥ 1) = 1 − 𝑒−𝜆

4
3

𝜋𝑑3
(5.3) 

In other words, 𝑅1
3 is exponential(

4

3
𝜆𝜋) distribution. Then we can use a Poisson point process on the 4-

sphere to check the gap distribution, which should be exponential distribution. Then we guess that the 

determinantal point process in higher dimension can also give more uniformly distributed points than those 

in the Poisson point process.  
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Appendix A: Codes 

A1. Codes for Sample a Poisson point process on a unit circle (in R) 

Pois = 0                  

N = 1000               # Input N 

a = runif(N,0,2*pi)       # Sample N points from [0,2𝜋] 

a= sort(a) 

a1 = rep(0,N) 

# Calculate the gaps 

for (j in 1:(N-1)) { 

  a1[j]= a[j+1]-a[j] 

} 

a1[N]= 2*pi-a[N]+a[1] 

a1 = sort(a1) 

a1 = N*a1 

Pois = c(Pois,a1) 

Pois = Pois[-1] 

 

A2. Codes for Sample a Poisson point process on a unit sphere (in R) 

N = 1000                 # Input N 

# Sample N points 

z = runif(N,-1,1)            

x = rep(0,N)  

y = rep(0,N) 

for (i in 1:N) { 

  a = runif(1,0,2*pi) 

  x[i] = sqrt(1- z[i]^2)*cos(a) 

  y[i]= sqrt(1- z[i]^2)*sin(a) 

} 

# Calculate the gaps 

Pois = rep(0, N) 

for (i in 1:N) { 

  c = rep(0,N) 

  for (j in 1:N) { 

    if(i==j) { 

      c[j]=0 

    }else{ 
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      a = x[i]*x[j]+y[i]*y[j]+z[i]*z[j] 

      c[j] = acos(a) 

    } 

  } 

  c1 = sort(c) 

  Pois[i] = c1[2] 

} 

 

A3. Codes for Doing the eigendecomposition of L (In R & In MATLAB) 

(1) In R 

DecomposeKernel = function(A) { 

  L1 = A 

  B = eigen(A) 

  L2 = B$values 

  L3 = B$vectors 

  L = list(L1,L2,L3) 

  names(L) = c("L1","L2","L3") 

  return(L) 

} 

 

(2) In MATLAB (Kulesza and Taskar, 2012) 

function L = decompose_kernel(M) 

  L.M = M; 

  [V,D] = eig(M); 

  L.V = real(V); 

  L.D = real(diag(D)); 

 

A4. Codes for sample a DPP (In MATLAB) 

# Codes are from Kulesza and Taskar (2012) 

function Y = sample_dpp(L) 

% sample a set Y from a dpp.  L is a decomposed kernel¡£ 

% choose eigenvectors randomly 

D = L.D ./ (1+L.D); 

v = find(rand(length(D),1) <= D); 

k = length(v);     

V = L.V(:,v); 

% iterate 

Y = zeros(k,1); 

for i = k:-1:1   

  % compute probabilities for each item 

  P = sum(V.^2,2); 
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  P = P / sum(P); 

  % choose a new item to include 

  Y(i) = find(rand <= cumsum(P),1); 

  % choose a vector to eliminate 

  j = find(V(Y(i),:),1); 

  Vj = V(:,j); 

  V = V(:,[1:j-1 j+1:end]); 

  % update V 

  V = V - bsxfun(@times,Vj,V(Y(i),:)/Vj(Y(i))); 

  % orthogonalize 

  for a = 1:i-1 

    for b = 1:a-1 

      V(:,a) = V(:,a) - V(:,a)'*V(:,b)*V(:,b); 

    end 

    V(:,a) = V(:,a) / norm(V(:,a)); 

  end 

end 

Y = sort(Y); 
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