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Abstract 

Warm, intermediate-depth Southern Ocean waters are implicated in recent Antarctic ice mass 

loss. Direct observations of Antarctic Ice Sheet (AIS) retreat are temporally limited, necessitating 

paleoceanographic records of ocean-ice interactions during past warm climate intervals. Deep-

sea and ice-proximal sediments record orbitally-paced glacial-interglacial fluctuations in AIS 

volume during the Plio-Pleistocene (last 5 million years; Ma), but the total contribution of the 

AIS and the role of ocean heat in these fluctuations remain unresolved. To address the response 

of Antarctica’s ice sheets to changing ocean temperatures during the Plio-Pleistocene, 

International Ocean Discovery Program (IODP) Expedition 374 recovered sediments from the 

Ross Sea outer-shelf at Site U1523. Site U1523 is close to the shelf break and sensitive to 

incursions of warm intermediate-depth Southern Ocean waters. Site U1523 sediments include 

foraminifer-bearing/rich sands and muds, which enable development of benthic (Trifarina sp.) 

and planktic (N. pachyderma sinistral) foraminifer stable oxygen (δ18O) and carbon (δ13C) 

isotope records. Here we present foraminifer δ18O, δ13C, and Mg/Ca records from the upper 90 m 

of U1523, which spans the late Pliocene to Holocene (last 3.1 Ma). We provide a new 

chronology for the U1523 Pleistocene sedimentary sequence by correlating diatom-bearing muds 

with low magnetic susceptibility (MS) to interglacial periods of the last 0.65 Ma. Benthic and 

planktic foraminifer δ18O values increase by ~1.5‰ up-section, which reflects long-term global 

cooling and ice growth, with orbital-scale ice volume and temperature variability superimposed. 

Our isotope records include an abrupt shift at 16 m CCSF, which we interpret as a hiatus due to 

an increase in ice-volume and bottom water production during the mid-Pleistocene transition. To 
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separate the ice volume and temperature signals contained in the δ18O signal, we analyzed 

Mg/Ca in benthic and planktic foraminifers. Our Mg/Ca records reveal a 4.4oC and 4.8oC cooling 

in deep and surface waters, respectively, over the last 3.1 Ma, consistent with Plio-Pleistocene 

cooling estimated from deep sea Mg/Ca records. This is the first application of Mg/Ca 

paleothermometry in ice-proximal sediment for the Plio-Pleistocene, and although temperature 

reconstructions are high, Mg/Ca fluctuations parallel changes in sedimentology, δ18O, and δ13C, 

suggesting retainment of a primary environmental signal. Pleistocene surface water estimates are 

up to 11oC high, and exhibit a distinct decrease at ~0.40 Ma to values similar to modern. Warm 

perturbations in bottom water temperatures of 4-5oC are synchronous with lithologic transitions 

at depths that may correlate to MIS 31, 13 and 10 through 5. These warm spikes coincide with 

low δ13C and planktic δ18O, and shifts in MS, suggesting a mechanistic link between warm ocean 

temperatures, meltwater input, and ocean circulation. These records provide the first ice-

proximal evidence of paired ocean temperature and ice volume fluctuations during the mid-late 

Pleistocene. We interpret the relationship between low δ13C and high Mg/Ca to reflect intervals 

of stronger modified Circumpolar Deep-Water presence on the Ross Shelf, that may be 

responsible for ice loss suggested by low δ18O. Despite assumptions regarding ocean 

temperatures and the δ18O of glacial ice, our 18Osw records demonstrate ~100 Kyr cyclicity in 

ice sheet fluctuations following the mid Pleistocene Transition, consistent with deep-sea records 

of eccentricity-paced climate oscillations. We conclude that Ross Sea circulation and 

temperature changes coincide with ice volume fluctuations during the mid-late Pleistocene, 

though improvements in the U1523 chronology are necessary to confirm the exact timing of ice-

ocean interactions.   
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1 Introduction 

1.1 The role of ocean heat on Antarctica’s ice sheets: Over the past 40 years, satellite 

observations document thinning and retreat of Antarctica’s marine-terminating glaciers and their 

buttressing ice shelves (Shepherd et al., 2004; Rignot et al., 2013; Rye et al., 2014; Rignot et al., 

2019) (Figure 1). Between 2003 and 2019, ice loss from Antarctica contributed 5.2 mm of sea 

level equivalent from 2003-2019 (Smith et al., 2020), and ice sheet models predict increasing 

Antarctic ice mass loss with the potential to contribute up to ~1 m to global sea level rise by 

2100 (Golledge et al., 2015; DeConto and Pollard. 2016). Presently, ice mass loss is often 

associated with Circumpolar Deep Water (CDW), a warm (>1oC), nutrient-rich intermediate-

depth water mass that upwells on to Antarctica’s continental shelves and accesses glacial 

grounding lines (Rignot and Jacobs, 2002; Pritchard et al., 2012; Cook et al., 2016; Shepherd et 

al., 2018; Gudmundsson et al., 2019). CDW-derived heat over Antarctica’s continental shelves 

increases basal melt rates of ice shelves and glacial grounding line retreat, which threatens the 

stability of Antarctica’s marine terminating ice (Rignot and Jacobs, 2002; DeConto and Pollard, 

2016; Shepherd et al., 2018). Over the last four decades, CDW has warmed (~0.1°C per decade) 

and the frequency of upwelling events may have increased (Schmidtko et al., 2014; Marshall, 

2003; Thompson and Solomon, 2002; Thoma et al., 2008; King et al., 2018).  
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Figure 1. Satellite measurements of Antarctic mass loss (red circles) and gain (blue circles) from 1979-2017 

and ocean temperatures at 310 meters depth. Modified from “Four decades of Antarctic Ice Sheet mass balance 

from 1979–2017,” by Rignot et al. (2019), Proceedings of the National Academy of Sciences, 116 (4), 1095–1103.  

Ice-proximal Southern Ocean temperature observations are limited to the last 50 years, 

and are confined to easily accessible regions (Rignot et al., 2019). Longer-term records of ocean-

ice interactions can be reconstructed from ice-proximal marine sediments. These records are 

essential for constraining the role of ocean temperature on past ice retreat (Escutia et al., 2019). 

However, few proxy-based ocean temperature reconstructions exist from Antarctica’s continental 

margin sediments (Whitehead and Bohaty, 2003; Escutia et al., 2009; Shevenell et al., 2011; 

McKay et al., 2012a; Beltran et al., 2020), limiting understanding of ocean-ice interactions over 

the last 5 million years (Ma).  

1.2 Cenozoic climate and ice sheet evolution: Deep-sea benthic foraminifer stable oxygen 

isotopes (18O) provide insight into Antarctica’s ice sheet history and temperatures over the last 

65 million years (Shackleton and Kennett, 1975; Zachos et al., 2001; Miller et al., 1991; Cramer 

et al., 2009; Westerhold et al., 2020) (Figure 2). Foraminifer 18O is a function of ocean 

temperature and the 18O of seawater (18Osw), and the latter is influenced by global ice volume 
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and local freshwater input. Benthic 18O indicates step-wise growth of Antarctica’s cryosphere at 

the Eocene-Oligocene boundary (~34 Ma) and middle Miocene Climate Transition (14.2-13.8 

Ma), each culminating in a ~1.0‰ increase in benthic 18O records (Kennett, 1977; Coxall et al., 

2005; Shackleton and Kennett, 1975; Flower and Kennett 1994). However, after the onset of 

Northern Hemisphere glaciation at 2.7 Ma (Shackleton et al., 1984; Haug and Tiedemann, 1998; 

Ravelo et al., 2004), benthic foraminifer 18O records cannot be used to differentiate between 

Northern and Southern Hemisphere ice growth because 18O is a function of global ice volume 

and ocean temperature. Pliocene and Pleistocene (Plio-Pleistocene) ice sheet fluctuations are 

orbitally-paced, and switch from 41 thousand year (Kyr) to 100 Kyr pacing at the middle 

Pleistocene Transition (MPT; 1.2-0.6 Ma; Lisiecki and Raymo 2005). Composite benthic 18O 

records reveal pronounced interglacial conditions during several Pleistocene Marine Isotope 

Stages (e.g. MIS 31, 11, 5; Lisiecki and Raymo 2005); however, the magnitude of Antarctic ice 

mass loss during these “super-interglacials” is obscured in the 18O signal, due to the 

convoluting influences of bipolar glaciation and global cooling on far-field 18O records.  

Foraminifer magnesium to calcium (Mg/Ca) is a standard deep-sea paleothermometer 

that can be measured on the same foraminifer calcium carbonate (CaCO3) as 18O to provide 

information on global ice volume and the interactions between oceanic heat and marine-

terminating ice, because Mg/Ca-based temperatures allow us to deconvolve global ice volume 

and temperature in 18O records (Mashiotta et al., 1999; Lear et al., 2000; Billups and Schrag, 

2002; Shevenell et al., 2004). Paired 18O and Mg/Ca records reveal ocean cooling accompanied 

ice growth at the Eocene-Oligocene (Bohaty et al., 2012), middle Miocene (Shevenell et al., 

2004; Shevenell et al., 2008), and Plio-Pleistocene (Billups and Schrag, 2002) transitions. Mg/Ca 

records document deep-sea cooling of ~12 oC throughout the Cenozoic (Lear et al., 2000), and 
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4oC at the Plio-Pleistocene transition (Lear et al., 2000; Billups and Schrag, 2002). Despite its 

utility, Mg/Ca paleothermometry has never been employed in Antarctic margin sediments over 

the Plio-Pleistocene due to a lack of CaCO3 in Antarctic coastal sediment and issues with the 

cold end of Mg/Ca-temperature calibrations. The present-day CaCO3 saturation state in the 

Southern Ocean is low compared to other major ocean basins due to high CO2 solubility in cold 

and saline waters, and high primary productivity (Feely et al., 2009; DeJong et al., 2015; 

Kennett, 1966). In the Ross Sea, the calcium compensation depth is estimated to be shallow 

(350–550 meters; Fillon, 1974; Kennett, 1966) and exhibits regional variability related to 

productivity, water mass presence, and topography (Osterman and Kellogg, 1979; Prothro et al., 

2018). Recovery of foraminifers in Antarctic shelf sediments are rare, and where present are 

limited to specific regions where oceanographic, biologic, and sedimentologic conditions 

facilitate CaCO3 preservation.   

 

 

Figure 2. Cenozoic composite benthic foraminifer 18O record. The timing of major climate transitions and ice 

growth in the Southern (SH) and Northern Hemisphere (NH) are labeled. Modified from “An    

astronomically dated record of Earth's climate and its predictability over the last 66 million years” by Westerhold et 

al. (2020). Science, 369 (6509), 1383-1387.  
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1.3 Unravelling northern and southern hemispheric ice volume signals during the Plio-

Pleistocene 

1.3.1 Antarctic continental margin records: Ice-proximal sediment records are essential for 

assessing the source of global ice volume captured in Pleistocene 18O fluctuations. Marine 

sediments from Antarctica’s continental margins provide direct physical evidence of Antarctic 

ice sheet behavior during the Plio-Pleistocene through seismic (Alonso et al., 1992), lithofacies 

(Naish et al., 2009; McKay et al., 2012b), ice rafted debris (Patterson et al., 2014), and 

provenance data (Cook et al., 2013; Bertram et al., 2018; Wilson et al., 2018). These ice-

proximal records reveal the retreat of Antarctica’s marine terminating outlet glaciers during 

warm climate conditions of the early to middle Pliocene (Naish et al., 2009; Cook et al., 2013; 

Patterson et al., 2014; Bertram et al., 2018) and some Pleistocene interglacials (e.g., MIS 31, 15-

13, 11, 9, 7, and 5e) (Scherer et al., 1998; McKay et al., 2012b; Teitler et al., 2015; Hillenbrand 

et al., 2009; Wilson et al., 2018; Turney et al., 2020; Blackburn et al., 2020).  

Oceanic warming is implicated in modern Antarctic ice sheet mass loss (Pritchard et al., 

2012; Rignot et al., 2013; Cook et al., 2016; Shepherd et al., 2018, Rignot et al., 2019), and 

models paired with Antarctic marine geologic records highlight the importance of relatively 

warm ice-proximal ocean waters on past and future ice retreat (Deconto and Pollard, 2016; 

Golledge et al., 2015). Ranges of ocean temperatures estimates from microfossil assemblages in 

Prydz Bay and Antarctic Peninsula sediment suggest ocean temperatures of >5oC warmer during 

the mid-late Pliocene (4-3.5 Ma) (Escutia et al., 2009). Marine geologic, geochemical, and 

micropaleontologic records from the Ross Sea at AND-1B also document relatively warm Ross 

Sea surface waters during the Pliocene (up to ~10oC), and synchronous cooling and ice growth 

between 4.5 and 2.0 Ma (McKay et al., 2012a). Diatom (Scherer et al., 2008) and 
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coccolithophores (Villa et al., 2012) assemblages in the Ross embayment indicate warm surface 

waters during MIS 31, and a diatomite sedimentary sequence in the AND-1B drill core reveals 

contemporaneous ice retreat (Naish et al., 2009; McKay et al., 2012b). Organic biomarkers in 

ice-proximal and Southern Ocean sediment suggest elevated sea surface temperatures during 

MIS 31 (Beltran et al., 2020), and ice sheet-shelf modelling of MIS 31 suggest a collapse of 

marine-based sectors of the WAIS, largely driven by oceanic heat and sub-ice-shelf melting 

(Pollard and DeConto, 2009; DeConto et al., 2012). Antarctic ice core records indicate warmer-

than-present atmospheric temperatures during late Pleistocene interglacials (Jouzel et al., 2007), 

but the role of oceanic heat in driving Antarctic ice loss during late Pleistocene interglacials 

remains unknown (Wilson et al., 2018).  

1.4 Overarching goal of research, approach, hypothesis testing  

1.4.1 Hypothesis and scientific goal: We hypothesize that changes in wind driven currents 

enhanced heat delivery onto the continental shelf via CDW incursions, which drove ice retreat in 

the Ross Sea during Plio-Pleistocene warm intervals. We test this hypothesis with the first high-

resolution Plio-Pleistocene (3 Ma to Holocene) planktic (Neogloboquadrina pachyderma 

sinistral) and benthic (Trifarina sp.) foraminifer δ18O, δ13C, and Mg/Ca records from coastal 

Antarctic sediment at International Ocean Discovery Program (IODP) Site U1523 on the outer 

Ross Sea continental shelf. Site U1523 provides a unique opportunity to study the influence of 

oceanic heat on Antarctic ice sheet dynamics, because U1523 is close to the Ross Sea shelf break 

and sensitive to incursions of warm intermediate-depth Southern Ocean waters. We hypothesize 

that ambient ocean temperatures are reflected in the Mg/Ca of N. pachyderma and Trifarina. We 

convert Mg/Ca to temperature using established calibrations (Elderfield et al., 2010; Vázquez 

Riveiros et al., 2016) and use temperatures to isolate the ice volume signal from δ18O 
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(Shackleton, 1974). We compare Mg/Ca to δ13C to assess changes in ocean circulation on the 

Ross shelf, and use physical properties of sediment (e.g. magnetic susceptibility) to interpret the 

depths of glacial and interglacial transitions. 

1.4.2 Approach: We compare U1523 lithofacies to foraminifer geochemical records to assess the 

relationship between ice extent on the Ross continental shelf and oceanographic temperature and 

circulation. Magnetic Susceptibility (MS) and Natural Gamma Radiation (NGR) are indicators of 

biogenic and siliciclastic content in sediment, and were analyzed in U1523 sediment during 

Expedition 374 (McKay et al., 2019). MS is a measure of magnetite minerals which have a 

terrigenous source, and NGR reflects radioactive isotopes associated with clays (K, U, Th). We 

use MS and NGR measurements to distinguish between diatom-bearing muds and oozes (low 

MS/NGR) and sands and diamict sediments (high MS/NGR). Diatom-bearing muds and 

mudstone in Antarctic margin sediment cores are associated with ice-distal depositional 

environments conducive to pelagic biosiliceous sedimentation, whereas sands and diamicts are 

related to ice-proximal depositional processes (Camerlenghi et al., 1997; Hepp et al., 2006; 

Hillenbrand et al., 2009; Williams et al., 2012; Patterson et al., 2014; Jimenez-Espejo et al., 

2020; McKay et al., 2019). Because U1523 is a current-drive site, high MS/NGR also reflects 

coarse deposits from winnowing bottom currents. MS and NGR records can thus reveal past 

climate and oceanographic conditions on the Ross shelf.  

Foraminifer 18O is a function of ocean temperatures, global ice volume, and hydrologic 

processes. In ice-proximal settings, the 18Osw is influenced by isotopically light meteoric waters 

from glacial meltwater and precipitation (Grobe et al., 1990; Ravelo and Hillaire-Marcel, 2007), 

which predominantly influence surface waters. We thus use the δ18O of planktic N. pachyderma 

to assess the meltwater input to the Ross shelf. Advection of water masses may also impact 
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foraminifer 18O in the Ross Sea, because Antarctic water masses carry distinct 18Osw signatures 

(Jacobs et al., 2002).Foraminiferal Mg/Ca can be measured on the same CaCO3 as 18O to 

understand changes in global ice volume (benthics) and meltwater (planktics). However, only 

one established Mg/Ca record exists from Antarctic margin sediment (Hillenbrand et al., 2017), 

which is limited to the last 9 Kyr. With abundant foraminifers in recently recovered U1523 

sediment cores, we can now generate long-term ice-proximal Mg/Ca paleotemperatures.  

While temperature is thought to be the primary factor driving incorporation of Mg into 

foraminifer CaCO3, secondary factors influence ratios on ocean-wide and local scales. On time 

scales longer than the residence time of calcium in seawater (1 Ma), secular variations in the 

Mg/Ca of seawater (Mg/Casw) influence the ratio in foraminiferal tests. Reconstructions of Plio-

Pleistocene Mg/Casw provide evidence for lower whole ocean Mg/Casw during the middle 

Pliocene (~4.4 mmol/mol at 3.2 Ma) than at present (5.2 mmol/mol) (Fantle and DePaolo 2006; 

Evans et al., 2016). Because foraminifer Mg/Ca and Mg/Casw have a positive relationship, if we 

were to assume constant Mg/Casw, Pliocene temperatures would be underestimated. Salinity also 

exerts a secondary influence on planktic Mg/Ca (Lea et al., 1999; Arbuszewski et al., 2010; 

Hönisch et al., 2013). On the Ross Sea continental shelf, meltwater released during deglaciation 

could lower the salinity of surface waters, resulting in lower Mg/Ca and a slight underestimation 

of ocean temperatures. The carbonate ion concentration ([CO3
2]) and saturation state of seawater 

also exerts secondary influences on foraminiferal Mg/Ca, through dissolution of Mg-rich 

portions of tests when seawater [CO3
2-] is low (Rosenthal et al., 2006; Elderfield et al., 2006). 

Changes in seawater, particularly bottom water, [CO3
2-] on glacial-interglacial timescales may 

bias Mg/Ca-derived temperatures. We expect low [CO3
2-] to relate to lower Mg/Ca-derived 
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temperatures. Future interpretation of [CO3
2-] indicators, like foraminifer Li/Ca (Lear et al., 

2010), will aid our assessment of the [CO3
2-] influence on Mg/Ca.  
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2 Study setting 

2.1 Site U1523 location and physical oceanography: IODP Expedition 374 recovered a total 

~134 meters of diatom-rich/bearing mud, ooze, and diamict, and foraminifer-bearing sand, 

muddy sand, and diamict (for details see 2.3) from Site U1523 spanning the late Miocene to 

Pleistocene (749.02’S 176°47.70′W, 828 m water depth; McKay et al., 2019). U1523 was 

drilled on the eastern flank of the Iselin Bank, ~18 km south of the Ross Sea shelf break (Figure 

3). The site is presently influenced by both on-shelf transport of Circumpolar Deep Water 

(CDW) and outflow of newly-formed Ross Sea Bottom Water (RSBW) (McKay et al., 2019). 

Relatively warm, saline, and nutrient-rich CDW originates from the mid-depths of the Antarctic 

Circumpolar Current and flows poleward into the Ross Gyre (Orsi et al., 1995). CDW upwells 

onto the Ross Sea shelf and moves south through deep glacially-carved troughs, mixing with 

Antarctic Surface Water (AASW) to form modified CDW (mCDW), which transports heat to 

regional marine-terminating grounding lines (Dinniman et al., 2011; Orsi and Wiederwohl, 

2009). CDW presence on the Ross Sea continental shelf is modulated by the Antarctic Slope 

Current (ASC), a vigorous along-slope current modulated by the easterly winds (Gill, 1973; 

Ainley and Jacobs, 1981; Jacobs, 1991; Thompson et al., 2018). Recent studies indicate that 

ongoing Antarctic ice mass loss may be associated with a weakening of the ASC, which 

facilitates warm CDW inflow onto continental shelves (Schmidtko et al., 2014; Thompson et al., 

2018). The modern Ross Sea shelf is a cold-water shelf (Schmidtko et al., 2014) due to the 

regional strength of the ASC, but a thin lens of CDW influences the mid-depths of the Iselin 

Bank (Site U1523). RSBW, formed from a mixture of dense shelf waters produced within the 
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Ross Sea polynya southeast of the Iselin Bank (Gill, 1973; Smith et al., 2014) and mCDW, flows 

northward and cascades downslope through Hilary Canyon (located northeast of Site U1523), 

ultimately becoming a significant component of Antarctic Bottom Water (AABW) (Carmack, 

1977; Orsi et al., 1999; Bergamasco et al., 2002; Gordon et al., 2004; Whitworth and Orsi, 2006; 

Gordon et al., 2009). Thus, physical oceanographic processes in the Ross Sea contribute 

substantially to AABW, which ventilates abyssal ocean depths and drives global overturning 

circulation (Orsi et al., 1999; Dinniman et al., 2011; Morrison et al., 2020).  

 

Figure 3: IODP Site U1523 location and oceanography. Site U1523 (yellow box) is located in 828 meters of 

water on the Iselin Bank at the continental shelf edge of the Ross Sea. IODP (red), DSDP (black), ANDRILL 

(green) drill sites are indicated. Inset: Antarctica, with Ross Sea Location (black box) and IODP Expedition 374 

sites (red). Modified from McKay, R.M., De Santis, L., Kulhanek, D.K., and the Expedition 374 Scientists, 2019. 

Ross Sea West Antarctic Ice Sheet History. Proceedings of the International Ocean Discovery Program, 374: 

College Station, TX (International Ocean Discovery Program). 
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2.2 δ13C as a proxy for productivity and water mass presence: We use benthic and planktic 

foraminifer isotopic records to reconstruct water mass influence at Site U1523. Foraminifers 

incorporate stable carbon isotopes in equilibrium with dissolved inorganic carbon (DIC) in 

ambient waters, and δ13CDIC is primarily controlled by local biological cycling of carbon isotopes 

(12C and 13C) (Kroopnick, 1974; Ravelo and Hillaire-Marcel, 2007; Mackensen and Schmiedl, 

2019). Light 12C is preferentially incorporated into organic matter during photosynthesis and 

released during decay, causing δ13CDIC enrichment in surface waters and depletion at depth. As 

water masses age they accumulate respired 12C and gain a depleted δ13C signature. Foraminiferal 

δ13C has been used as a proxy for CDW on Antarctic continental margins because nutrient-rich 

CDW is depleted in δ13C relative to Antarctic shelf waters (Shevenell and Kennett, 2002; 

Hillenbrand et al., 2017). At present-day U1523, benthic foraminifers are under the influence of 

RSBW, which occupies depths greater than 500 meters (Conte et al., submitted). The planktic 

species N. pachyderma calcifies in the mixed layer and is thought to reproduce below the 

pycnocline, gaining gametogenic calcite with a geochemical signature reflecting the top 200 

meters (Kohfeld et al., 1996; Nyland et al., 2006). At U1523, the modern N. pachyderma depth 

habitat occupies Antarctic Surface Water (AASW) in the top 150 meters and mCDW below 

(Conte et al., submitted). If foraminifer δ13C records are primarily influenced by water masses in 

the Ross Sea, we expect low δ13C values to reflect intervals of greater mCDW presence.      

2.3 Lithostratigraphy and depositional environment: Site U1523 (Holes U1523A, U1523B, 

and U1523E) was drilled to 170 m core depth below seafloor (CSF-A). Holes A (0-43 core depth 

below sea floor; CSF-A m) and B (45-90 CSF-A m) were drilled to recover a long sedimentary 

sequence, with Hole E designed to targeted gaps in recovery in Holes A and B. This research 

focuses on the upper 90 m of sediment, which is divided into two lithostratigraphic units: Unit I 
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(0-35 m; CSF-A;) is Pleistocene to Holocene age (~2.1 Ma-~5 ka) and consists of diatom-

bearing/-rich mud interbedded with foraminifer-bearing sands and diamicts (McKay et al., 2019). 

Unit II (35-95 m CSF-A) spans the late Pliocene to early Pleistocene (~2.2-3.2 Ma) and consists 

of diatom-bearing/-rich mud to muddy diatom ooze interbedded with diamict (McKay et al., 

2019).  

Sediments recovered from Site U1523 were likely deposited by hemipelagic 

sedimentation, ice rafting, and downslope transport (McKay et al., 2019). Bottom currents may 

have influenced sediments by winnowing fines, resulting in concentrations of foraminifers in 

sand and diamict beds (McKay et al., 2019). This interpretation is further supported by the 

presence of glauconite in the sands and diamicts between 10 and 20 and from 80 to 90 m CSF-A, 

indicating slow sedimentation rates (Odin, 1988; López-Quirós et al., 2019). Large clasts may 

reflect ice rafting from icebergs entrained in the polar easterlies, downslope transport, and/or 

winnowing (McKay et al., 2019).  
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3 Materials and methods 

3.1 Foraminifer sampling and preparation for geochemical analyses: Between 0 and 20 m 

CSF-A we sampled 20 ccs (2 cm) every ~5 cm. Between 20 and 90 m CCSF, we sampled 20 ccs 

(2 cm) every ~20 cm. The 20 cc samples were washed over a 65 µm sieve and the >63 um 

fraction was oven dried overnight at 50°C. We picked Trifarina sp. and N. pachyderma from the 

125-250 and 250-355 µm size fractions. If foraminifers were present in both size fractions, we 

preferentially picked the larger size fraction. We picked whole tests and, whenever possible, we 

selected translucent glassy Trifarina sp. and non-encrusted N. pachyderma (s). We picked 

between 1-111 (average 17) Trifaria sp. and 2-195 N. pachyderma (average 50) tests per sample 

and gently crushed tests between glass slides to ensure that all chambers were opened. Samples 

were then homogenized with a brush and split into two aliquots for stable isotope and trace 

element analyses.  

3.2 Foraminifer stable isotope analyses: Foraminifer tests were prepared for oxygen (δ18O) and 

carbon (δ13C) stable isotope analyses using standard techniques. Foraminifer fragments were 

rinsed with methanol, decanted, and oven dried at 50C. Between 30 and 85 µg of foraminifer 

CaCO3 was treated with 50C orthophosphoric acid and generated CO2 was analyzed at the 

University of South Florida College of Marine Science (USF-CMS) using a Thermo Scientific 

MAT 253 light stable isotope ratio mass spectrometer equipped with a Gas Bench II preparatory 

device. Stable isotope data were generated in random stratigraphic order. Secondary reference 

materials Borba, TSF-1, and LECO-CaCO3 were used to correct for drift and amplitude, and 

normalize measurements to the Pee Dee Belemnite (PDB) scale. Reference material Atlantis-3 
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was used for quality control/assurance. δ18O and δ13C are expressed using standard delta (δ) 

notation in per mil (‰). Measurement uncertainty, expressed as ±1 standard deviation of n=207 

measurements of the TSF-1 laboratory reference material was 0.03‰ and 0.02‰ for δ18O and 

δ13C, respectively. Long-term analytical precision over the course of the study for the USF-CMS 

MAT 253 is 0.01‰ for δ18O and 0.08‰ for δ13C.  

3.3 Trace element/Calcium preparation and analyses 

3.3.1 Foraminifer cleaning: Foraminifer CaCO3 from the second sample aliquot of each sample 

was weighed and loaded into microcentrifuge tubes in a plexiglass cleaning rack. Initial sample 

weights ranged between 300 and 400 µm of CaCO3. Samples were cleaned using the full 

oxidative and reductive cleaning protocol of Martin and Lea (2002), which is modified from 

Boyle and Keigwin, (1985/86), and eliminates the corrosive chelating agent DTPA to avoid Ba 

removal. Contamination from adherent clays was removed via rinses and ultrasonifications with 

deionized n-pure water (x3) and methanol (x2). Samples then underwent a reductive process to 

remove metal oxides (Mn- and Fe-oxides). In this step, 100 l of a solution of hydrous (1%) 

hydrazine, ammonium hydroxide, and ammonium citrate was added to each vial, and caps were 

sealed, and the rack lid was screwed on. Racks were placed into sub-boiling hot water baths for 

30 minutes; every 2 minutes, the racks were removed, flipped, ultrasonicated for 2 seconds, and 

returned to the water baths. This process is designed to agitate the sample, make sure the reagent 

gets into all parts of the sample, and discourage dissolved oxides from reprecipitating. After 30 

minutes, we removed the rack lids, opened the vials, rinsed the vials and lids with n-pure water 

and siphoned (3x). Samples then underwent an oxidative step, using a solution of hydrogen 

peroxide and sodium hydroxide. We added 250 l of the oxidative solution to each sample, 

capped the samples, and screwed the rack lid on. We placed the racks in the sub-boiling hot 



18 

water baths for 10 minutes; during the 10 minutes, we removed the racks at 3 and 6 minutes, 

flipped, and sonicated them for two seconds. After 10 minutes, we removed the rack lids, opened 

the vials, rinsed the vials and lids with n-pure water and siphoned (3x). Following the oxidative 

step, samples were transferred to acid-leached microcentrifuge tubes (submerged in warm 2N 

HCl for 24 hours) and treated with a weak acid leach in 0.01 M distilled HNO3 (100 µl); vials 

were filled with n-pure, agitated, and siphoned (2x). Immediately prior to analysis, samples were 

dissolved in a standard containing all elements of interest (Sample Matrix Standard; SMS). 

Samples were then ultrasonicated for 10 minutes, centrifuged for 5 minutes, and loaded for 

analysis in random stratigraphic order.   

3.3.2 Blank and standard preparation: All standards were made in an Airclean 5000 Clean 

Bench with high-purity Spex Certiprep single element standard solutions gravimetrically 

combined in triple distilled 2% HNO3. We used single element standards with concentrations of 

1000 µg/mL for all elements, with the exception of Ca (10,000 µg/mL) and U (1 µg/mL), to 

match expected concentrations in foraminifers. All blanks and standards were stored in HDPE 

bottles heated in 8 M HNO3 for ~1 hour, soaked overnight in 2 M HCl, and rinsed five times with 

n-pure H2O after each cleaning step. We pipetted single element standard solutions into acid-

cleaned bottles with acid-cleaned tips (flushed 3 times with distilled 2% HNO3) and recorded the 

mass. To calculate concentrations, we converted mass (g) to volume (mL) using the density of 

each standard reported in Certificates of Analysis. All standards were made in a 2% HNO3 blank. 

Trace metal grade Fisher HNO3 was distilled for 10 hours (50 mL distilled per hour) and diluted 

with n-pure water. To accurately dilute to 2%, we converted weight (g) to volume (mL) using 

1.51 g/cm3 as the density of concentrated HNO3 at room temperature (Lide, 2007). 
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Elemental ratios in samples were determined using a suite of standards with varying 

concentrations of Ca, Mg, Sr, Li, Na, Ba, U, Al, Mn, and Fe, prepared to achieve a range of 

elemental ratios similar to those of foraminifers (Extended data table 1A). We made four multi-

element calibration standards with ~100 µg/mL Ca and increasing concentrations of all elements 

of interest. We designed the multi-element standards to mimic typical trace element/Ca values in 

foraminifers (Lea, 1999) with a focus on ratios in high-latitude foraminifers (Lear et al., 2002; 

Shevenell et al., 2008; Hendry et al., 2009). We performed three serial dilutions of two of the 

multi-element standards to monitor matrix-related effects (see section 3.4.5), and included these 

dilutions in calibrations lines. To ensure accurate Mg/Ca analysis, we made an additional four 

standards containing only Ca (~100 µg/mL) and increasing concentrations of Mg. Calibration 

lines for Mg and Ca thus include a total of fourteen standards ranging in concentration from 

0.01-0.7 µg/mL Mg and 30-200 µg/mL Ca. To monitor accuracy, we also measured the solid 

carbonate reference materials ECRM 752-1 (Bureau of Analyzed Samples Ltd, UK), BAM RS3 

(Bundesanstalt fur Materialforschung und -prufung, Germany), and CM 1767 (China 

Metallurgical Standardization Research Institute, Beijing) at a Ca concentration of ~100 µg/mL. 

Finally, we added Yttrium (Y) to all standards to match the Y concentration in the SMS (~20 

ng/mL). In hindsight, we recognize that a more efficient method would include spiking the blank 

with Y and using the Y-spiked blank to make all standards and dissolve samples.  

3.3.3 Instrumentation: Minor and trace elements were measured between March and June, 2020 

(23 runs) on the USF-CMS Thermo Element Extended Range Inductively Coupled Plasma Mass 

Spectrometer (XR ICP-MS) fitted with Thermo Scientific nickel sample and skimmer cones. The 

XR ICP-MS is equipped with an ESI SC-4 DX autosampler, and we used a concentric PFA-ST 

microflow nebulizer and a quartz cyclonic spray chamber for sample introduction. We calculated 
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flow rate after tuning and prior to the start of each run, and found an average of ~120 μL min-1 

(n=23) over the four-month analysis interval. Prior to each run, we cleaned cone orifices with a 

soft brush to remove metal deposits that could block ion transmission. All isotopes were 

measured in low resolution (R=300), with the exception of 45Sc, 55Mn, and 56Fe, which were 

measured in medium resolution (R=4000) to avoid spectral interferences. We measured all 

isotopes in analog mode to avoid errors associated with cross-calibration (Rosenthal et al., 1999). 

We report Mg/Ca from 24Mg due to its high natural abundance and ratio all minor and trace 

elements to 43Ca. Mg/Ca is on average ~1% greater when calculated from 24Mg compared to 

25Mg, which may relate to potential interference on 24Mg from 48++Ca. A typical run sequence 

consisted of 30 unknowns and standard blocks run at the beginning, middle, and end (Extended 

data figure 1A). 

3.3.4 Data processing: We observed progressively lower signals (counts per second; cps) in 

standards throughout each run, likely due to changes in instrument performance and/or metal 

deposition on cones. To correct for drift, we applied an internal standard factor on samples and 

standards cps, defined as the ratio between the 88Y in the first sequence line to the 88Y in each 

subsequent sequence line. We divided each isotope measurement by the sequence line-specific 

internal standard factor. This correction is predicated on the assumption that isotopes of interest 

(43Ca, 24Mg, etc.) react to changing instrument conditions in the same manner as 88Y. We 

observed slightly different drift patterns in standards and samples, because we individually 

spiked standards with Y, and dissolved samples with the same solution of the Sample Matrix 

Standard (SMS). To correct for different drift patterns, we treated standards with an internal 

standard factor based on the first sequence line of the run, and samples with a factor based on the 

first SMS measurement. 
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We ran the SMS after every third sample, and removed the influence of SMS on samples 

by subtracting the average isotope signal in bracketed SMS from sample isotopes in cps. We then 

converted raw counts to concentrations using linear calibration lines. To remove the influence of 

the blank on standards and samples, we included blank measurements in calibration lines. We 

used isotopic concentrations in calibration lines and subsequently converted isotopic to elemental 

concentrations using natural isotope abundances. Across all runs, coefficients of determination 

(R2) for Mg and Ca calibration lines are >0.99, and between 0.95-0.99 for other elements of 

interest, with the exception of Al. We observed noise in Al calibration lines when testing the 

multi-element ratio standards, and thus prepared three additional single element Al standards for 

calibrations. Coefficients of determinations for single element Al standards were initially good 

(0.94), but degraded over the course of the study interval (average 0.82).  

The relative standard deviation (RSD) for Mg/Ca in SMS across all runs, an indicator of 

long-term precision, is 5.7% (n=188). To improve precision, we applied a noise correction factor 

to sample trace element (TE) ratios using the ratio between known and measured concentrations 

in the SMS bracketing samples (Schrag, 1999; Rosenthal et al., 1999): 

(TE/Ca)corrected sample = (TE/Ca)uncorrected sample * (Actual TE/Ca)SMS / (Average measured TE/Ca)SMS   

This correction lowers the RSD of all SMS Mg/Ca measurements to 1.1%, which is comparable 

to standard solution Mg/Ca RSDs of Yu et al. (2005) and Lear et al. (2010) (~1%), but greater 

than those calculated by de Villiers et al. (2002) (<0.3%), Rosenthal et al. (2004) (0.3-0.5%), and 

Marchitto (2006) (0.55%).  

We monitored Mg/Ca accuracy and precision with the community reference materials 

ECRM 752-1, BAM RS3, and CM 1767 (Table 1; Greaves et al., 2008). Measured Mg/Ca of 
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calibrated and noise corrected reference materials are ~2-4% higher in this study than the 

interlaboratory mean in Greaves et al. (2008) (Table 1).  

 

Table 1: Measures of accuracy and precision in Mg/Ca reference materials. Mean Mg/Ca are based on 

measurements across the four-month analysis period (n=67 per standard).   

Reference 

material 

Mean Mg/Ca  

(mmol/mol) 

This study  

Mean Mg/Ca  

(mmol/mol)  

Greaves et al. (2008)  

RSD (%) 

ECRM 752-1 3.91 3.75 2.9 

BAM RS3 0.80 0.78 2.6 

CMSI 1767 5.69 5.59 3.0 

 

3.3.5 Matrix effects: Changes in the composition (matrix) of samples can cause deviations 

between measured and actual Mg/Ca in mass spectrometry (Rosenthal et al., 1999; Lear et al., 

2002; de Villiers et al., 2002). To monitor matrix-related mass discrimination, we measured four 

serial dilutions of two multi-element standards with Mg/Ca values similar to those predicted for 

Antarctic foraminifers (Figure 4). In the absence of matrix effects, standard dilutions should have 

the same Mg/Ca values despite varying Mg and Ca concentrations. Instead, there is a significant 

matrix effect on Mg/Ca (R2= 0.6-0.7) in standards with higher Mg/Ca values, which reflect 

higher Ca concentrations. This relationship is the opposite of the negative relationships between 

Mg/Ca and Ca concentration found by Rosenthal et al. (1999), Lear et al. (2002), de Villiers et 

al. (2002), and Marchitto (2006). We removed matrix effects on sample Mg/Ca via corrections 

based on the ratio of known Mg/Ca to measured Mg/Ca in the Sample Matrix Standard 

(Rosenthal et al., 1999; Schrag, 1999) and in community standards (Greaves et al., 2008). 
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Figure 4: Calcium matrix effects on Mg/Ca in standards and samples. Measured Mg/Ca (mmol/mol) is shown 

as a function of measured Ca concentration (µg/mL) in two multi-element ratio standards (top) and all U1523 

benthic and planktic samples (bottom). Multi-element ratio standards were diluted to expected Ca concentrations of 

~200, 100, 150, and 30 µg/mL. In the bottom panel, sample Mg/Ca have undergone corrections that account for 

matrix-effects. Standards and samples were run over a four-month period (March-June 2020).   
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4 Composite depth scale 

We correlated Holes U1523A, B, and E to construct a composite depth scale in the top 90 m of 

Site U1523, which maximizes coverage by accounting for gaps in core recovery, coring offsets, 

and disturbance. We correlated cores with X-ray fluorescence (XRF) Rb/Sr, Ca/Ti, Br/Ti, and 

Zr/Rb counts across holes in Igor Pro software (Wavemetrics, Inc.) with Code for Ocean Drilling 

Data (Wilkens et al., 2017). XRF counts were measured on the Avaatech XRF Core Scanner at 

the IODP Gulf Coast Repository (Texas, USA), at 10, 30, and 50 kV, with measurements taken 

every 1-2 cm. After correlating cores with XRF data, we used Zr/Rb and MS to identify the least 

disturbed portion of overlapping cores to develop the composite section (Extended data figures 

2A and 3A). The splice alternates between Holes A and E in the top 40 m and between Holes E 

and B from 40-90 m CSF-A (Extended data table 2A). We added offsets to the original CSF-A 

core depths to create the core composite below sea floor (CCSF; IODP-MI, 2011) depth scale.  
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5 Chronology  

5.1 Shipboard chronology: The IODP Expedition 374 Shipboard Scientific Party developed a 

preliminary chronology for Site U1523 based on biostratigraphic and paleomagnetic datums 

(McKay et al., 2019) (Figure 5). In the top 25 m of Site U1523, biostratigraphic control is poor 

due to reworked microfossils. A single radiolarian Last Appearance Datum (LAD; Antarctissa 

cylindrica) exists within the upper 10 m of Hole U1523E, and is assigned an age of <0.65 Ma 

(McKay et al., 2019). A possible unconformity was identified in the same hole at ~20 m CSF-A 

(McKay et al., 2019). A magnetic reversal at ~19 m CSF-A may represent either the base of the 

Brunhes Chron (0.78 Ma) or the Jaramillo Subchron (1.07 Ma); the reversal was not included in 

the shipboard age model due to insufficient biostratigraphic support (McKay et al., 2019). Two 

magnetic reversals with good biostratigraphic age control constrain the top of the Olduvai Chron 

(1.8 Ma) and Subchron C2r.2r (2.6 Ma) (Table 2). An unconformity at ~95 m CSF-A is 

estimated to be between ~8.5-3.2 Ma and interpreted as Ross Sea Unconformity 3 (RSU3; 

McKay et al., 2019; Conte et al., submitted). 

5.2 Shorebased chronology: To improve the chronology in the top 16 m CCSF of Site U1523, 

we tied Site U1523 MS and Natural Gamma Radiation (NGR) records to the MS record of a 

nearby sediment core (RS15-GC41; Kim et al., 2020) (Figure 6) (Table 2). Kim et al. (2020) 

established the chronology for RS15-GC41 with foraminifer radiocarbon (14C) dates and δ18O, 

and by tying low MS values to interglacial Marine Isotope Stages (MIS) of the global benthic 

LR04 δ18O stack (Lisiecki and Raymo, 2005). High MS during glacial periods is corroborated by 

two 14C dates from Site U1523 at 0.47 m CCSF (21 Kyr) and 0.72 m CCSF (32 Kyr), which 
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places the Last Glacial Maximum in an interval of high MS and NGR. The temperate planktic 

foraminifer species Globigerina bulloides is present in U1523 during some low MS intervals 

(Seidenstein, 2020) (Figure 6). Because G. bulloides occupies a range north of U1523 in warmer 

subpolar waters (Bé and Tolderlund, 1971; Fillon, 1974), its presence supports the interpretation 

that low MS reflects interglacials conditions. 

 

Figure 5: Lithology and chronology in the U1523 Plio-Pleistocene sequence. The U1523 Plio-Pleistocene 

sequence is divided into two lithostratigraphic Units, differentiated by the prevalence of foraminifer-bearing muddy 

sand and diamict in Unit I, and diatom-bearing muds and oozes in Unit II (McKay et al., 2019). Linear age models 

were developed based on foraminifer 14C dates, Magnetic Susceptibility (MS) correlations, and paleomagnetic 

reversals from U1523E 3F-2 (C1r.1n; 19 m CCSF) U1523E 4F-1 (C1r.3r/C2n; 22 m CCSF) and U1523B 3F-2 
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(C2r/C2An; 50 m CCSF) (Table 2). Diatom first (FAD) and last appearance datums (LAD) were used to constrain 

the ages of paleomagnetic reversals. Unconformities exist at ~16 m and 95 m CCSF, the latter interpreted as Ross 

Sea Unconformity 3 (RSU3). Sedimentation rates are listed as meters per million year (m/Myr). The box in Unit I 

highlights the interval in Figure 6.  

 

 

Figure 6: Revised mid-late Pleistocene chronology in the top 16 m CCSF. To improve age control in the top 16 

m CCSF we tie MS in U1523 to RS15-GC41, a sediment core from the Iselin Bank tied to the global benthic δ18O 

stack (LR04) (Figure 3; Kim et al., 2020; Lisecki and Raymo, 2005). Also shown is the EPICA Dome C (EDC) ice 

core deuterium (δD) record (Jouzel et al., 2007), U1523 Natural Gamma Radiation (NGR) cps, and U1523 sample 

depths containing the temperature planktic foraminifer species Globigerina bulloides. Interglacial Marine Isotope 

Stages (MIS) are highlighted. 

We determined depths for warm Marine Isotope Stages 5 through 11 by correlating low 

MS and NGR in U1523 to low MS in RS15-GC41 (Figure 6). We tied the tops and bottoms of 

low MS intervals to the beginning and end of interglacials according to the LR04 chronology 

(Lisiecki and Raymo, 2005) (Figure 6). Extended intervals of high and low MS are easily 

assigned to glacial and interglacial stages in the top 10 m of U1523. MIS 7 is a particularly 
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prolonged and warm interglacial, based on a 3 m sequence of mud and silts containing G. 

bulloides in five samples (Figure 6). We assign MIS 11 to a condensed interval of low MS and 

NGR. From 16-10.5 m CCSF, discrete fluctuations in relatively high MS obscures cycles, and 

NGR progressively decreases upsection from ~14 to 10.5 m CCSF (U1523A 4H-2H), suggesting 

an extended glacial to interglacial transition. We assign MIS 13 and 15 to intervals within this 

sequence with low MS, high CaCO3, and G. bulloides tests. We assign the magnetic reversal 

downcore (~19 m CCSF) to the Matuyama/Jaramillo reversal (1.07 Ma). Depths are converted to 

age using linear interpolations between age control points (Figure 5).   

Table 2. U1523 age control points. We performed linear interpolations between age control points to assign depths 

to ages. MS= magnetic susceptibility. 

Depth CCSF (m) Age (Ma) Chronology data type 

0.5 0.021 14C in foraminifers 

0.7 0.032 14C in foraminifers 

0.9 0.072 MS tie 

1.8 0.13 MS tie 

3.0 0.19 MS tie 

5.9 0.24 MS tie 

7.5 0.31 MS tie 

9.3 0.34 MS tie 

10.1 0.39 MS tie 

10.4 0.42 MS tie 

11.3 0.48 MS tie 

12.4 0.53 MS tie 

14.8 0.57 MS tie 

15.5 0.62 MS tie 

19.3 1.1 Magnetic chron C1r.1n 

21.7 1.8 Magnetic chron C1r.3r/C2n 

49.7 2.6 Magnetic chron C2r/C2An 

93.9 3.2 First appearance of 

Thalassiosira vulnifica 
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6 Results  

6.1 Foraminifer stable isotopes: We present stable oxygen (δ18O) and carbon (δ13C) isotopes in 

Trifarina (n=215) and N. pachyderma (n=275) from the top 90 m CCSF of Site U1523 (Figure 

7). Isotope resolution is best in the top 25 m CCSF due to high sediment recovery and CaCO3 

content. From 0 to 25 m CCSF, benthic foraminifer stable isotope resolution is ~1 sample/10 cm 

(9 Kyr) and from 25 to 90 m CCSF, isotope resolution is ~1 sample/30 cm (25 Kyr). We 

removed two planktic samples from isotope datasets due to clearly outlying δ18O measured on 

few foraminifers. We replicated measurements on 20% of samples and show average values in 

all figures. 

6.1.1 Oxygen Isotopes (δ18O): Trifarina and N. pachyderma δ18O increases by 1.3‰ and 1.4‰ 

upsection through the 90 m sequence, which is consistent with deep-sea benthic foraminifer δ18O 

evidence of a ~1.5-1.7‰ increase across the last 3 Ma (Lear et al., 2000; Billups and Schrag, 

2002; Lisiecki and Raymo, 2005). This U1523 foraminifer δ18O increase is slightly lower than in 

deep-sea records due to the influence of low δ18O meteoric waters from the nearby Ross Ice 

Shelf. Trifarina δ18O is, on average, more positive than N. pachyderma (4.9 ± 0.1‰) and ranges 

from 3.4‰ (87 m CCSF; 3.1 Ma) to 5.7‰ (7 m CCSF; 0.28 Ma). Average N. pachyderma δ18O 

is 4.6 ± 0.1‰ and varies between 2.8‰ (87 m CCSF; 3.1 Ma) to 5.2‰ (8 m CCSF; 0.31 Ma). 

Researchers have found an offset between predicted and measured δ18O in N. pachyderma of 

~1.0‰ (Kohfield et al., 1996; Bauch et al., 1997; Volkmann and Mensch, 2001; Smith et al., 

2005; Nyland et al., 2006). However, these vital effect estimates are all derived from North 

Atlantic and Arctic Ocean N. pachyderma, and ignore influences on stable isotope incorporation 
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specific to Antarctic shelves. We therefore do not apply a pre-existing vital effect correction to 

Ross Sea N. pachyderma stable isotope records. 

 

Figure 7: Foraminifer δ18O and δ13C from U1523 spanning the Plio-Pleistocene. (A) core photos and (B) 

lithologic graphic, which reflects the predominance of foraminifers in muddy sands and diamict in Unit I (~33-0 m 

CCSF), and diatom-bearing muds and oozes in Unit II (McKay et al., 2019). Lithology legend is in Figure 5. White 

spaces represent gaps in sediment recovery, and are inferred to reflect unconsolidated sands and gravels. (C) benthic 
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Trifarina sp. and (D) planktic Neogloboquadrina pachyderma (sinistral) δ18O, and (E) benthic and planktic (F) δ13C. 

Isotope resolution is best in the top 25 m CCSF (1.9-0 Ma) (see Figure 8 for high resolution isotopes from 25-0 m).  

Fluctuations are superimposed on the long-term ice growth and cooling trend. If these 

spikes are not a relic of sample aliasing, they may reflect local variations in Ross Sea 

temperature and ice volume. The upsection δ18O increase is interrupted by low Trifarina and N. 

pachyderma δ18O from 43-41 m CCSF (2.4-2.3 Ma) and 19-17 m CCSF (1.1-0.9 Ma) (Figure 7). 

At these depths δ18O values are similar to those at the base of the sequence, suggesting a return 

to climate and oceanographic conditions similar to the warm Pliocene during the early and mid-

Pleistocene. In the former interval at ~41 m CCSF, decreasing δ18O occurs in samples containing 

G. bulloides, indicating relatively warm waters at Site U1523 (Seidenstein, 2020). The latter 

interval (19-17 m CCSF) is characterized by large Trifarina and N. pachyderma δ18O 

fluctuations of up to 1.0‰ and 1.5‰. Trifarina and N. pachyderma δ18O increases abruptly by 

0.5‰ and 0.8‰ from 17 to 16 m CCSF. This rapid shift in δ18O is mirrored in δ13C records 

(Figure 7). A final trend toward lower δ18O occurs at 4.9 m CCSF (0.21 Ma) where δ18O in both 

species decreases by ~0.7‰.  

6.1.2 Carbon isotopes (δ13C): Large fluctuations in Trifarina δ13C, ranging from -3.7‰ (41.5 m 

CCSF) to 0.16‰ (41.1 m CCSF), occur between 42 and 30 m CCSF (2.0-2.4 Ma) (Figure 7). 

Trifarina δ13C values are <-1.5‰ in seven samples within this interval; more negative N. 

pachyderma δ13C values (<-1.0‰) also occur at 41.9, 41.5, and 35.3 m CCSF. In the high-

resolution foraminifer record in the top 25 m, Trifarina δ13C fluctuations are much more subtle, 

ranging from -1.8‰ (9.7 m CCSF) to -0.12‰ (0.45 m CCSF).  

The average δ13C in N. pachyderma (-0.48‰) is more positive than in Trifarina (-

0.79‰), and N. pachyderma exhibits more muted negative δ13C excursions, ranging from -2.0‰ 

(64 m CCSF; 2.8 Ma) to 0.48‰ (0.1 m CCSF; 30 Kyr) across the 90 m sequence. Pliocene δ13C 
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values are generally more negative in N. pachyderma and positive in Trifarina compared to the 

Pleistocene. N. pachyderma δ13C exhibit an overall upsection increase of ~1.3‰. Low N. 

pachyderma δ13C from 89-87 m CCSF occurs in small (250-125 µm) individuals, and may 

reflect the positive relationship between test size and δ13C in planktic foraminifers (Elderfield et 

al., 2002). The δ13C in both species steadily increases prior to the mid-Pleistocene unconformity 

from 21-17 m CCSF (1.6-0.8 Ma). Trifarina δ13C exhibits a distinct increase by ~0.5‰ above 

the mid-Pleistocene unconformity at 16 m CCSF. Two more intervals of particularly negative 

δ13C occurs in benthics and planktics from 11-10 m CCSF (0.44-0.35 Kyr) and at ~6 m CCSF 

(0.24 Ma), below which is an upsection δ13C increase toward the Site U1523 coretop beginning 

at ~3 m CCSF (0.15 Ma) in Trifarina and 2 m CCSF (60 Kyr) in N. pachyderma.  

We interpret the abrupt shift in isotope records at 16 m CCSF to be the depth of the 

unconformity assigned to 20 m CSF-A in the shipboard age model. Based on overlying MS 

tiepoints, we estimate ~1 Ma missing in unconformity across MIS 16 (0.75-0.65 Ma). This 

corresponds to the estimated age of RSU1 (0.65 Ma) in DSDP Leg 28 Sites 270, 272, and 273 

(Hayes and Frakes, 1975; Savage and Ciesielski, 1983). In the AND-1B site drilled north of 

U1523, an unconformity at ~0.78 Ma, together with a major shift in sedimentary facies, is 

associated with more persistent ice shelves during late Pleistocene interglacials (McKay et al., 

2012b). MIS 16 is thus tentatively assigned to the unconformity at 16 m CCSF, because MIS 16 

marks the end of the MPT in deep-sea δ18O records (Mudelsee and Schulz, 1997).  

6.2 δ18O, δ13C, and MS records from 0-25 m CCSF: MS is a reliable recorder of grain size in 

U1523, and thus can be used to infer changes in bottom current strength. In the top 25 m of 

U1523, high MS intervals are characterized by foraminifer-bearing/rich sand and diamict facies 

deposited under high velocity currents, whereas low MS reflects diatom-bearing/rich muds 
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deposited via hemipelagic sedimentation under slow currents. Samples from low MS intervals 

contain few foraminifers, which are concentrated in the smaller size fraction (250-125 µm). 

Foraminifers predominance in coarse grained sediment may be due to winnowing by strong 

bottom currents, nutrient delivery via mCDW (Osterman and Kellogg, 1979), and/or enhanced 

CaCO3 preservation due to fast-moving currents removing detrital material that would otherwise 

undergo respiration and contribute to corrosivity (Kennett, 1968; Prothro et al., 2018).   

High-resolution isotope records in the upper 25 m of Site U1523 allows us to trace the 

relationship between MS, δ18O, and δ13C (Figure 8). We broadly delineate three intervals in the 

top 26 m based on MS and isotope patterns. Benthic and planktic δ18O is generally highest in the 

deepest interval (25-17 m CCSF), indicating warmer ocean temperatures and reduced ice volume 

relative to upsection. An extended period of low MS (~23-19 m CCSF) is bounded by coarse 

grained facies. Immediately above the inferred unconformity (~19-18 m CCSF) fluctuations in 

MS pair well with isotopes, with low δ18O and δ13C values occurring in high MS sediment. 

Below the unconformity, large negative peaks in N. pachyderma δ18O yield to an interval of low 

variability in MS and δ18O from ~14-11 m CCSF. Relatively uniform isotope values are 

disrupted by a rapid decrease in planktic and benthic δ13C at 11 m CCSF and more negative 

planktic δ18O. A condensed interval of low MS at 10.3 m CCSF (MIS 11) pairs with a brief 

increase in δ13C and Trifarina δ18O. The base of the upper highlighted interval (9.3-0 m CCSF) is 

marked by an abrupt return to more positive δ13C values. This upper interval is characterized by 

extended MS sequences similar to downsection (25-16 m CCSF) and low δ18O and δ13C values 

bounding high MS intervals.  
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Figure 8: High-resolution MS and isotopes in the top 25 m CCSF (1.9-0 Ma) of U1523. Bold lines are 5-point 

moving averages. Vertical grey bars delineate broad oceanographic and climate states in the Ross Sea evident in 

isotope and lithographic records.  

6.3 Foraminifer Mg/Ca  

6.3.1 Monitoring Mg/Ca contaminants: We measured Mn, Fe, and Al to assess the post-

cleaning influence of secondary mineral phases and aluminosilicates on Mg/Ca. Authigenic Mn 

and Fe-rich carbonate coatings in foraminifer tests are associated with high Mg concentrations 
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(Boyle, 1983; Martin and Lea, 2002; Pena et al., 2005), and are a major source of contamination 

in Mg/Ca-temperature reconstructions (Lea, 1999). U1523 interstitial water profiles document 

increasing Mn concentrations from 90-0 m (McKay et al., 2019), indicating Mn2+ release and 

migration through pore waters in the suboxic-anoxic transition zone (Boyle, 1983). Mn/Ca and 

Fe/Ca in U1523 foraminifers are higher than the >0.1 mmol/mol threshold set by Barker et al. 

(2005) and Lear et al. (2010) (Figure 9). Trifarina Mg/Ca values are not correlated with 

contaminant indicators, and N. pachyderma Mg/Ca values are weakly correlated with Mn/Ca and 

Fe/Ca.  

 

Figure 9: Linear correlations between Mg/Ca, Mn/Ca and Fe/Ca in foraminifers. Top panel shows Mn/Ca and 

bottom panel is Fe/Ca. Relationships in benthic Trifarina are shown in blue and planktic N. pachyderma in red. 



36 

Coefficients of determination demonstrate statistically significant relationships between Mg/Ca and contaminant 

indicators in N. pachyderma. 

6.3.2 Mg/Ca in the top 25 m CCSF: We present Mg/Ca in benthic Trifarina (n=219) and 

planktic N. pachyderma (n=188) from the upper 25 m of U1523 (Figure 10). Mg/Ca resolution 

for Trifarina is ~1 sample/13 cm (10 Kyr), and for N. pachyderma, ~1 sample/14 cm (10 Kyr). 

We removed 20 benthic and planktic Mg/Ca data due to low sample weights, high Fe, Mn, 

and/or Al concentrations, and outlying Mg/Ca. Replicates were measured on 31% and 48% of 

benthic and planktic samples and used to calculate standard deviations. Benthic Mg/Ca is on 

average 1.76 ± 0.16 mmol/mol and ranges between 1.3 (17.6 m CCSF; 0.9 Ma) to 3.6 (3 m 

CCSF; 0.17 Ma) mmol/mol. Planktic Mg/Ca is on average 1.0 ± 0.10 mmol/mol and ranges 

between 0.3 (5 m CCSF; 0.21 Ma) to 2.9 mmol/mol (9.9 m CCSF; 0.36 Ma).   

Benthic and planktic Mg/Ca fluctuations accompany changes in MS and δ13C. Benthic 

Mg/Ca is generally high in sands and diamicts indicated by high MS (Figure 10). Planktic Mg/Ca 

and δ13C are well correlated (R2=0.42) and high planktic Mg/Ca (>2 mmol/mol) occur in 

intervals of low δ13C (<-1‰) (11 and 10 m CCSF). Mg/Ca in benthic and planktics do not 

consistently track δ18O. For example, the shift in δ18O toward more positive values above the 16 

m CCSF unconformity is not accompanied by lower benthic Mg/Ca. Planktic Mg/Ca does 

decrease above 16 m CCSF by ~0.2 mmol/mol, but planktic Mg/Ca and δ18O changes do not 

track at 8 m CCSF, where Mg/Ca decreases by ~0.6 mmol/mol upsection, despite δ18O becoming 

more negative.  
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Figure 10: MS, Mg/Ca, and δ18O in the top 25 m CCSF (1.9-0 Ma). Bold lines are 5-point moving averages. 

Vertical grey bars are identical to the those in Figure 7.   
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7 Discussion 

7.1 Fidelity of stable isotopes and Mg/Ca measurements: 

7.1.1 Mg/Ca-temperature calculations: We generate U1523 bottom and surface water 

temperature records with genus and species-specific Mg/Ca temperature calibrations (Figure 11). 

We convert Mg/Ca to temperature with the Uvigerina sp. calibration of Elderfield et al. (2010), 

which is linear because of a low temperature range in Antarctic bottom waters, and Uvigerina’s 

relatively low temperature sensitivity. Nürnberg (1995) first developed a high latitude Mg/Ca-

temperature calibration for planktic N. pachyderma, which was refined by Elderfield and 

Ganssen (2000). To reconstruct surface water temperatures, we used the calibration of Vázquez 

Riveiros et al. (2016), which incorporates data from the two aforementioned calibrations, and 

covers the Plio-Pleistocene sea surface temperature range reconstructed by McKay et al. (2012a). 

There is a weak correlation (R2= 0.35) between Mg/Ca and temperature in N. pachyderma when 

Southern Ocean sites close to the sea ice edge are included in the Vázquez Riveiros et al. (2016) 

calibration. This relationship improves when sites close to Antarctica are excluded from the 

calibration (R2=0.70), suggesting a poor response of Mg/Ca to temperature in ice-proximal N. 

pachyderma. We thus calculated surface water temperatures with the Vázquez Riveiros et al. 

(2016) calibration that excludes cores close to sea ice (Figure 11). We applied the temperature 

calibrations of Trifarina (Elderfield et al., 2010) and planktic N. pachyderma (Vázquez Riveiros 

et al., 2016) to Mg/Ca measured in the reference material BAM RS3, the community standard 

with Mg/Ca closest to those expected in Antarctic foraminifers, and average standard deviations 
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(n= 67) translate to a temperature error of ~0.35oC, which is well within the temperature 

calibration errors.  

 

 

Figure 11: Mg/Ca-temperatures spanning the last 1.4 Ma. Horizontal bars highlight the present-day temperature 

ranges of AASW (-1.0-0.5oC), CDW (-0.5-1.5oC), and RSBW (-0.5-0.50oC) at U1523 (Conte et al., submitted). 

Equations are the calibrations used to convert Mg/Ca to temperatures.   

U1523 Trifarina and N. pachyderma Mg/Ca values are high and convert to warm 

temperatures that exceed 10oC (Figure 11). Mg/Ca-bottom water temperature reconstructions are 

consistently higher than modern temperature estimates at U1523, and reach maxima of ~27oC. 

Mg/Ca-surface water temperatures are also elevated compared to present-day estimates, but 

decrease to more reasonable values beginning at 0.32 Ma. U1523 Mg/Ca-surface water 

temperatures in older sediment (3.2-2.0) Ma are also higher (3-12oC) than TEX86-surface 
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temperature reconstructions from AND-1B in the Ross Sea (-2.5-7.5oC) (McKay et al., 2012a). 

Our overestimation of ocean temperatures is probably not due to an analytical error, given our 

close approximation of Mg/Ca in reference materials (Table 1), or calibration choice, because we 

calculate high temperatures in both species across multiple calibrations (Mawbey et al., 2020; 

Nürnberg, 1995; Elderfield and Ganssen, 2000; Kozdon et al., 2009). Our Holocene Mg/Ca 

values are ~1.0 mmol/mol for Trifarina and 0.82 mmol/mol for N. pachyderma, which are 

similar to Holocene Mg/Ca in Trifarina (Mawbey et al., 2020; Hillenbrand et al., 2017) and N. 

pachyderma (Hendry et al., 2009) from Antarctic margin sediment. However, because 

foraminifer Mg/Ca records from Antarctic shelves do not exist for the Plio-Pleistocene, we 

cannot use comparisons to determine how reasonable Mg/Ca values are downcore. To 

understand why Mg/Ca-temperatures are high in Ross Sea foraminifers during the Plio-

Pleistocene, we consider potential influences on Mg/Ca that are alternative to temperature.  

7.1.2 Dissolution and diagenetic influence: The primary stable isotope and Mg/Ca signal in 

foraminifers can be corrupted by dissolution in the water column or on the sediment surface 

when exposed to waters undersaturated with respect to CaCO3 (Spero et al., 1997; Lorens et al., 

1977; Brown and Elderfield, 1996; Regenberg et al., 2014; Lea, 2014). Dissolution enriches δ18O 

and δ13C via preferential removal of the lighter isotopes (Rosenthal et al., 2000; Dekens et al., 

2002; Wu et al., 1990) and lowers foraminifer Mg/Ca (Brown and Elderfield, 1996). Hence, 

dissolution cannot explain high Ross Sea temperature. Instead, we consider the possibility that 

diagenesis influences stable isotope records.  

U1523 foraminifer preservation varies between excellent to poor based on visual 

inspection via light microscopy. Excellent preservation is characterized by glassy and translucent 

tests, whereas dull, chalky, slightly pink, and perforated tests reflect poor preservation. We 
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selectively picked the best-preserved foraminifers, but true preservation is difficult to determine 

solely through light microscopy, and few foraminifers in some samples precluded selective 

picking. Samples with less foraminifers may reflect a shallow lysocline, and thus may have been 

deposited under relatively corrosive waters. Foraminifers are generally low throughout lithologic 

Unit II (3.1-2.2 Ma), with the exception of shell hashes at the base of the sequence (3.1 Ma) 

containing numerous juvenile N. pachyderma, likely reflecting penecontemporaneous reworking 

(McKay et al., 2019). In Unit I, we note few Trifarina and N. pachyderma in low MS intervals at 

0.20 Ma and from 0.40 Ma to 0.30 Ma. Because δ18O and δ13C are generally depleted at these 

depths, the observed trends are probably not due to dissolution despite low foraminifer 

abundance. Large negative benthic foraminifer δ13C excursions between ~41 and 30 m CCSF 

(2.4-2.0 Ma) are not accompanied by anomalous δ18O values, and thus are likely not related to 

diagenetic alteration (Figure 7). We attribute these anomalously negative δ13C values during the 

early Pleistocene to phytodetrital accumulation on the seafloor, which depletes the δ13CDIC of 

porewaters in which infaunal Trifarina calcifies (Grossman, 1984; Mackensen et al., 1993). This 

phytodetrital accumulation may reflect sluggish currents over U1523 during the early 

Pleistocene.  

Although high Mg/Ca in U1523 foraminifers is likely to be at least partially influenced 

by contamination via diagenetic overgrowths and clays, we are reluctant to attribute diagenetic 

overgrowths as the principle driver of Mg/Ca due to our vigorous reductive cleaning protocol, 

the lack of covariance between Trifarina Mg/Ca, Mn/Ca, and the relatively weak correlation 

between N. pachyderma Mg/Ca and Mn/Ca compared to other Antarctic foraminifer studies 

(Figure 9) (Hillenbrand et al., 2017). Additionally, neither species Mg/Ca is correlated 

significantly correlated with Sr/Ca. Whereas we cannot exclude the possibility that U1523 
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foraminifer geochemical trends are influenced by diagenesis, there is evidence that the primary 

composition of the tests has been retained. Namely, fluctuations in Mg/Ca are visually correlated 

with δ13C, suggesting a similar mechanism driving both signals. Low δ13C pairs with high 

Mg/Ca, which could reflect recrystallization in low δ13C porewaters. However, intervals with 

low δ13C and high Mg/Ca (notably around 0.40 Ma) are not accompanied by anomalous δ18O. If 

Mg/Ca is driven by temperature in N. pachyderma, a common environmental mechanism to 

explain the δ13C and Mg/Ca covariance is warm mCDW, which imparts a light δ13C signature on 

foraminifers (Shevenell and Kennett, 2002; Hillenbrand et al., 2017).  

7.1.3 Mg/Ca secondary influences: Secular variations in Mg/Casw cannot explain overestimated 

temperatures, because reconstructions of Plio-Pleistocene Mg/Casw provide evidence for slightly 

smaller Mg/Casw at 1.4 Ma relative to today (Evans et al., 2016), which would create a cold bias 

in mid-Pleistocene temperatures. High N. pachyderma Mg/Ca could reflect higher salinities due 

to less glacial meltwater influence, brine-rejection during sea-ice formation, and/or more mCDW 

influence at U1523. However, typical Mg/Ca-salinity sensitivity estimates are too low (~4-6%; 

Lea et al., 1999; Gray and Evans, 2019) to solely account for high Mg/Ca-temperatures. N. 

pachyderma (sinistral) have been found to live in brine channels of sea ice, which may 

complicate their use in ice-proximal Mg/Ca temperature reconstructions (Lipps and Krebs, 1974; 

Hendry et al., 2009) based on anomalously high Mg/Ca in N. pachyderma from sites covered by 

sea ice (Nürnberg, 1995; Meland et al., 2006; Kozdon et al., 2009; Vázquez Riveiros et al., 

2016). Hendry et al. (2009) found that Mg/Ca-temperatures in N. pachyderma from the Antarctic 

peninsula are ~1oC higher than expected during sea ice cover in austral winter, and attributed this 

result to elevated carbonate ion concentrations during at the ice-water interface. Whereas high 

Mg/Ca in Ross Sea N. pachyderma may partially reflect the influence of sea-ice cover, the 
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temperature deviation quantified in Hendry et al. (2009) is too small to account for temperatures 

that surpass 10oC. Furthermore, Trifarina Mg/Ca also produces overestimated temperatures, 

suggesting an influence on Mg/Ca beyond foraminiferal depth habitat. We ultimately exercise 

caution when interpreting Mg/Ca records by focusing on Mg/Ca trends rather than absolute 

temperatures. 

7.2 Long-term Plio-Pleistocene Ross Sea temperature and ice volume changes: The 

upsection δ18O increases of 1.3-1.4‰ reflects ice growth and cooling over the last 3.2 Ma. If 

60% of this δ18O increase is due to ice expansion (Lear et al., 2000), our δ18O records imply a 

cooling of Ross Sea waters by 4oC (Shackleton, 1974). U1523 Mg/Ca records reveal a 4.4oC and 

4.8oC cooling in deep and surface waters over the last 3.1 Ma, consistent with the δ18O-

temperature estimate and Plio-Pleistocene cooling of 4oC estimated from deep sea Mg/Ca 

records (Billups and Schrag, 2002).  

To isolate the ice volume signal from benthic δ18O, we calculated the δ18O of seawater 

(δ18Osw) using the paleotemperature equation by Shackleton (1974) and the Mg/Ca-temperature 

calibration of Elderfield et al. (2010): δ18Osw =(δ18Ocalcite+0.27) - 0.25 * (16.9-((Mg/Ca-1)/0.1)) 

(Figure 12). To assess meltwater input into the Ross Sea, we calculated planktic δ18Osw as per 

Mashiotta et al. (1999) with the temperature calibration of Vázquez Riveiros et al. (2016): 

δ18Osw = (δ18Ocalcite+0.27) – 4.38 - √(4.38 – 4 * 0.1 * 16.9 – Temp) / (2 * 0.1). Due to high 

Mg/Ca-temperatures, our δ18Osw values are higher than expected (LeGrande and Schmidt, 2006), 

and so we focus on trends rather than absolute values and sea level reconstructions. We aim to 

assess Antarctic ice sheet fluctuations during the Plio-Pleistocene with δ18Osw reconstructions. 

However, because δ18Osw contains a global ice volume signal, δ18Osw records are typically 

incapable of revealing Antarctica’s specific contribution after bipolar glaciation at ~2.6 Ma. Our 
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ice-proximal δ18Osw records contain this global ice volume signal, but overprinting by local 

processes related to surface glacial meltwater and precipitation provides direct information on 

Antarctica ice fluctuations in the Ross embayment. These local hydrologic processes should have 

a greater influence on the δ18Osw in planktics relative to benthics. The correspondence between 

benthic and planktic δ18Osw trends suggests that both records can be used to assess Antarctic ice 

sheet variability (Figure 12). 

 

Figure 12: Antarctica’s contribution to the global ice volume record over the last 3.2 Ma. Dashed lines 

highlight the 100 Kyr pacing of maxima δ18Osw indicative of ice growth during the late Pleistocene.    

Our new benthic and planktic δ18Osw records show increasing ice volume since the late 

Pliocene (3.2 Ma) with step-like expansions at ~2.1 Ma and 0.8 Ma. This pattern of ice-growth is 

consistent with sediment from the AND-1B drill site, which document an increase in sea ice 
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duration and extent in the Ross embayment after ~2.6 Ma (Naish et al., 2009; McKay et al., 

2012b) and ice expansion at the MPT (McKay et al., 2012b). Large clasts are visible in muds 

throughout the late Pliocene to middle Pleistocene U1523 sequence, but are not visible after 0.65 

Ma, probably due to limited ice rafting under more stable ice conditions and ice shelves 

persisting through interglacials. Our new records corroborate hypotheses of Antarctic ice growth 

at the MPT based on ice-proximal foraminifer 18O from the Weddell Sea continental margin 

(Mackensen et al., 1994) and Prydz Bay trough mouth fan (Theissen et al., 2003), as well as 

modeling (Raymo et al., 2006) and deep-sea foraminifer records (Elderfield et al., 2012; Ford 

and Raymo, 2020). Ross Sea benthic δ18Osw peaks are spaced ~100 Kyr apart after the MPT, 

implying an eccentricity-modulation of Antarctic ice variations (Figure 12). This finding 

supports ice-proximal evidence of orbitally forced ice sheets during the Pliocene and early 

Pleistocene from AND-1B (Naish et al., 2009) and Site U1361 in the Wilkes Subglacial Basin 

(Patterson et al., 2014; Wilson et al., 2018). However, improvements in the U1523 chronology 

are necessary to validate this interpretation.  

We attribute the mid-Pleistocene hiatus (0.75-0.65 Ma) to a strengthening of bottom 

currents on the outer Ross continental shelf. Glacial grounding lines did not reach U1523 during 

the Last Glacial Maximum, as indicated by the absence of megascale glacial lineations on the 

Iselin Bank (Anderson et al., 2002; Halberstadt et al., 2016), and seismic profiles of U1523 show 

no evidence of glacial erosion (McKay et al., 2019); thus, this unconformity is likely not the 

product of erosion from glacial overriding. Instead, we infer that the increase in benthic δ13C 

after the hiatus indicates greater RSBW outflow (Figure 13). The concurrent δ18Osw increase may 

reflect enhanced sea-ice formation, which drives polynya-style mixing and dense bottom water 

production. Small gradients between benthic and planktic δ13C and δ18O from 0.60-0.20 Ma 
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lends support to an intensification of water column mixing after the MPT hiatus. Likewise, 

relatively high MS from 0.65 to 0.45 Ma is consistent with stronger bottom current strength, 

based on the fidelity between MS and grain size in U1523 sediment.   
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Figure 13: Paleoceanographic changes in the Ross Sea during the mid-late Pleistocene. From bottom to top: (A) 

Magnetic Susceptibility (MS), (B) benthic Trifarina and (C) planktic N. pachyderma δ18O, (D) benthic and (E) 

planktic Mg/Ca, and (F) benthic and (G) planktic δ13C. Solid lines are 5-point running averages for (C) to (H). 

Vertical dashed lines trace intervals with relatively light δ13C, which we attribute to a greater mCDW presence on 

the Ross Shelf. Interglacial Marine Isotope Stages (MIS) tied to low MS intervals (Figure 6) are numbered on (A). 

Vertical grey bars delineate pre (1.2-0.75 Ma) and post (0.65-0.35 Ma) mid-Pleistocene transition, where the pacing 

of glacial/interglacial cycles switches from 100 Kyr to 40 Kyr durations, and post mid-Brunhes Event (last 0.35 Ma) 

which marks an increase in the amplitude of glacial/interglacial fluctuations. 

The magnitude of Ross Sea benthic δ18Osw fluctuations increases at 0.30 Ma. This shift is 

indicative of the mid-Brunhes Event, which is characterized by a change in the amplitude of 

glacial and interglacial cycles between MIS 13 and 11 (~0.43 Ma) in stacked benthic δ18O 

records (Lisiecki and Raymo, 2005). The apparent mid-Brunhes transition in Ross Sea benthic 

δ18Osw occurs after MIS 10, and due to uncertainties in our age model, it is unclear if this offset 

implies a delayed reaction of Antarctica’s ice sheets or an issue with the U1523 chronology. 

Extended MS sequences after MIS 11 in U1523 sediment suggests a transition to more prolonged 

and distinct glacial and interglacial cycles in the Ross Sea after the mid-Brunhes Event. 

Alternatively, high MS intervals could reflect periodic strengthening of currents during climate 

transitions, rather than full glacial and interglacial periods.   

7.3 Late Pleistocene mCDW presence on the Ross outer shelf: The close correspondence 

between planktic δ13C minima (dashed lines in Figure 13) and Mg/Ca maxima indicates intervals 

of enhanced warmth and nutrient-rich mCDW presence on the Ross shelf edge during the late 

Pleistocene (last 1.2 Ma). The present-day Ross Sea continental shelf is considered a cold shelf 

with limited mCDW-driven melting due to a strong ASC (Thompson et al., 2018; Adusumilli et 

al., 2020). We propose that low δ13C and high Mg/Ca reflect intervals of stronger mCDW 

influence on U1523, potentially due to a weaker ASC. Our records provide evidence for a 
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distinct and prolonged warm excursion during MIS 10 to 12 (Figure 13). Assignment of this 

warm interval to MIS 11 is supported by peak radiogenic Nd isotopes (Wilson et al., 2018) and 

234U enrichment (Blackburn et al., 2020) in sediments from the Wilkes Subglacial Basin during 

MIS 11, which show prominent warmth and East Antarctic Ice Sheet retreat. Following MIS 10, 

low δ13C and warm Mg/Ca occur at the top and base of two high MS intervals that we assign to 

MIS 6 and 8. Within these high MS intervals, low δ18O indicates reduced ice volume and/or 

meltwater influence concurrent with mCDW presence. This evidence of ice loss in high MS 

sediment contrasts our interpretation that coarse-grained intervals reflect periods of glacial 

advance. When constructing the late Pleistocene U1523 chronology, we hypothesized that coarse 

sediment reflects winnowing of fines by strong bottom currents under enhanced glacial Southern 

Hemisphere westerlies (Martínez-Garcia et al., 2011), and/or that ice-proximal glaciomarine 

sedimentation provides coarse material to U1523 (McKay et al., 2019). Our late Pleistocene δ18O 

records indicates that sand and diamict facies may instead be the product of winnowing via 

stronger currents. We propose that stronger currents drive enhanced CDW upwelling onto the 

Ross shelf during the late Pleistocene (last 0.35 Ma), evident by low δ13C and high Mg/Ca, 

which led to ice loss that imparted a light δ18O signature on foraminifers concentrated in coarse 

grained intervals.  
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8 Conclusions 

We present the first Plio-Pleistocene (last 3.1 Ma) benthic and planktic foraminifer δ18O, δ13C, 

and Mg/Ca records from Antarctic margin sediment at IODP Site U1523. Benthic and planktic 

δ18O reveal an upsection increase of 1.4-1.5‰, reflecting ice growth and Ross Sea cooling of 

~4oC during the late Pliocene to Pleistocene, consistent with deep-sea records of a ~1.7‰ δ18O 

increase (Lisiecki and Raymo, 2005). The consistency between the global and Ross Sea 

foraminifer signal confirms the utility of Ross continental shelf foraminifer CaCO3 for 

reconstructions of past paleoenvironmental conditions. Our δ18Osw records support an increase in 

Antarctic ice volume and current strength at the mid Pleistocene Transition (MPT). We attribute 

an increase in benthic foraminifer δ13C after the MPT to enhanced deep water ventilation, 

perhaps due to increased Ross Sea Bottom Water production driven by an increase in sea ice 

formation and polynya-style mixing. Our records demonstrate a covariance between low δ18O, 

δ13C, and high Mg/Ca during the late Pleistocene, which indicates ice sheet sensitivity during 

intervals of greater modified Circumpolar Deep Water presence on the Ross shelf. One such 

interval with a striking high Mg/Ca and low δ13C perturbation appear to be MIS 11, though age 

model uncertainties limit our determination of this event’s timing. To determine Antarctic ice-

ocean interactions during super interglacials like MIS 11, we require an improved U1523 

chronology and direct records of ice sheet stability from provenance and/or lithofacies 

assessments.  
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Appendix A: Extended Data 

Extended data table 1A: Elemental concentrations in standard solutions  

 

 



65 

Extended data table 2A: Stratigraphic splice used for the U1523 composite depth scale 

(CCSF).  

Hole, core, section, 

offset (cm)  

Original depth 

CSF-A (m) 

Rescaled depth 

CCSF (m) 

U1523A-1H-1, 0 

U1523A-1H-5, 14 

0.00 

6.15 

0.00 

6.15 

U1523E-1H-5, 9 

U1523E-1H-7, 27 

6.09 

9.28 

6.15 

9.34 

U1523A-2H-1, 103 

U1523A-2H-CC, 17 

9.53 

16.01 

9.34 

15.82 

U1523E-3H-1, 0 

U1523E-3H-3, 96 

16.00 

19.97 

16.54 

20.51 

U1523A-3H-2, 64 

U1523A-3H-CC, 20 

19.97 

25.20 

20.51 

25.73 

U1523A-4F-1, 0 

U1523A-4F-CC, 33 

27.50 

30.98 

28.03 

31.51 

U1523A-5F-1, 0 

U1523A-5F-2, 34 

32.20 

33.32 

32.73 

33.85 

U1523E-7F-1, 0 

U1523E-7F-CC, 8 

34.70 

35.18 

34.82 

35.30 

U1523A-6F-1, 0 

U1523A-6F-CC, 17 

36.90 

41.64 

37.43 

42.17 

U1523A-7F-1, 0 

U1523A-7F-CC, 12 

41.60 

42.55 

42.36 

43.34 

U1523B-3F-1, 0 

U1523B-3F-CC, 6 

46.70 

49.50 

47.72 

50.52 

U1523B-5F-1, 0 

U1523B-5F-CC, 14 

56.10 

60.37 

57.12 

61.39 

U1523E-12F-1, 0 

U1523E-12F-CC, 18 

60.00 

64.85 

61.62 

66.47 

U1523B-7F-1, 0 

U1523B-7F-CC, 43 

65.50 

70.30 

66.52 

71.32 

U1523B-8F-1, 0 

U1523B-8F-CC, 30 

70.20 

74.76 

71.72 

76.28 

U1523B-9F-1, 0 

U1523B-9F-CC, 19 

74.90 

76.19 

76.42 

77.71 

U1523B-10F-1, 0 

U1523B-10F-4, 34  

79.60 

83.69 

81.12 

85.21 

U1523E-15F-1, 38 

U1523E-15F-CC, 7  

82.08 

86.13 

85.21 

89.26 

U1523E-16F-1, 0 

U1523E-16F-CC, 23 

86.40 

90.82 

89.53 

93.95 
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Extended data figure 1A: Typical XR ICP-MS sequence for trace element/Ca analysis.  
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Extended data figure 2A: U1523 detailed lithology, physical properties, and XRF-Zr/Rb 

records used to generate the splice. The splice was generated by correlating lithology, (A) MS 

and NGR, and (B) Zr/Rb against the shipboard CSF-A scale across the three holes cored at 

U1523. Black boxes surround the intervals incorporated into the splice from Holes U1523A 
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(blue), B (red), and E (brown) (Extended data table 2). Zr/Rb is expressed as X-ray fluorescence 

(XRF) scan counts.  

 

 

Extended data figure 3A: Rescaled physical properties and Zr/Rb against the composite 

depth below sea floor (CCSF) scale. Sediment recovery is shown as black bars in the three 

holes cored at Site U1523.  
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Appendix B: Permissions  

Copyright information for Figure 1 from “Four decades of Antarctic Ice Sheet mass balance from 

1979–2017,” by Rignot et al. (2019), Proceedings of the National Academy of Sciences, 116 (4), 

1095–1103.  
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climate and its predictability over the last 66 million years” by Westerhold et al. (2020). Science, 

369 (6509), 1383-1387.  
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and the Expedition 374 Scientists, 2019. Ross Sea West Antarctic Ice Sheet History. Proceedings 

of the International Ocean Discovery Program, 374: College Station, TX (International Ocean 

Discovery Program). 
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