
University of South Florida University of South Florida

Scholar Commons Scholar Commons

Graduate Theses and Dissertations Graduate School

November 2020

Unifying Security Policy Enforcement: Theory and Practice Unifying Security Policy Enforcement: Theory and Practice

Shamaria Engram
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd

 Part of the Computer Sciences Commons

Scholar Commons Citation Scholar Commons Citation
Engram, Shamaria, "Unifying Security Policy Enforcement: Theory and Practice" (2020). Graduate Theses
and Dissertations.
https://scholarcommons.usf.edu/etd/8535

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has
been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar
Commons. For more information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/etd
https://scholarcommons.usf.edu/grad
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F8535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F8535&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Unifying Security Policy Enforcement: Theory and Practice

by

Shamaria Engram

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Jay Ligatti, Ph.D.
Yao Liu, Ph.D.

Lawrence Hall, Ph.D,
Sanjukta Bhanja, Ph.D.
Theodore Molla, Ph.D.

Date of Approval:
October 30, 2020

Keywords: Security mechanisms, Runtime enforcement, Code granularity, Safety, Liveness

Copyright © 2020, Shamaria Engram

Acknowledgments

I’d like to thank my major professor Dr. Jay Ligatti for his guidance, collaborative

efforts, and help developing the research ideas presented in this dissertation. Thank you to

my committee members Dr. Yao Liu, Dr. Lawrence Hall, Dr. Sanjukta Bhanja, and Dr.

Theodore Molla for helpful feedback and thought provoking questions on the work presented

in this dissertation.

I’d like to extend a heartfelt thanks to Mr. Bernard Batson, Dr. Sanjukta Bhanja,

and Dr. Sylvia Thomas for all of their mentorship and support during my time at the

University of South Florida.

I’d like to thank the National Science Foundation’s Graduate Research Fellowship

Program, the National GEM Consortium, the McKnight Florida Education Fund, the Florida

Georgia Louis Stokes Alliance for Minority Participation, and Sloan Scholars program for

their funding support.

Thank you to my friends and family for their encouraging words and support during

this journey.

Most importantly, I’d like to thank my Lord and Savior for sustaining me through

this challenging process by His unmerited grace and favor.

Table of Contents

List of Tables . iii

List of Figures . iv

Abstract . v

Chapter 1: Introduction. 1

1.1 Contributions . 4

1.2 Organization . 5

Chapter 2: Background and Related Works . 7

2.1 Formal Frameworks . 7

2.1.1 System-Centric Frameworks . 8

2.1.2 Mechanism-Centric Frameworks . 9

2.1.3 System-Centric vs. Mechanism-Centric Frameworks 10

2.1.4 Policies . 12

2.1.5 Properties . 13

2.1.6 Safety . 14

2.1.7 Liveness . 16

2.1.8 Summary . 17

2.2 Mechanisms . 17

2.2.1 Static Mechanisms . 18

2.2.2 Dynamic Mechanisms . 20

2.2.3 Hybrid Mechanisms . 26

2.2.4 Aspect-Oriented Policy-Specification Languages . 28

2.2.5 Summary . 30

Chapter 3: A Unified Approach . 32

3.1 Granular Program Events and Traces . 33

3.2 Mechanisms . 34

3.3 Fine-Grained Policy Enforcement . 36

3.4 Medium-Grained Policy Enforcement . 38

3.5 Coarse-Grained Policy Enforcement . 45

3.6 Hybrid Policy Enforcement . 47

i

Chapter 4: Fine-Grained Policy Enforcement on Coauthentication . 49
4.1 Coauthentication. 49
4.2 Coauthentication Protocol . 51
4.3 Enforcing Forward Secrecy . 52
4.4 Formal Evaluation . 56

4.4.1 Protocol Modeling . 56
4.4.2 Attack Models and Assumptions . 57
4.4.3 Verification Setup. 59
4.4.4 Verification Results . 62

Chapter 5: Implementation . 63
5.1 Architecture . 63

5.1.1 AspectJ. 63
5.1.2 Code Analyzer . 64
5.1.3 JaBRO .. 65

5.2 Policy Enforcement . 68

Chapter 6: Empirical Evaluation . 73
6.1 Case Study . 73
6.2 Summary of Results . 74

Chapter 7: Conclusions and Future Work . 76
7.1 Summary . 76
7.2 Future Work . 77

7.2.1 Additional Theoretical Analysis . 77
7.2.2 Domain-Specific Policy-Specification Languages . 78

References . 79

Appendix A: Copyright Permissions . 87

ii

List of Tables

Table 4.1 Verification setup of each protocol for three different runs. 59

Table 4.2 Verification results,“3” indicates that ProVerif proved the property. 60

Table 5.1 Possible policy granularities enforceable at each AspectJ join
point type. 64

Table 6.1 Average experimental performance results of 100 runs. 74

iii

List of Figures

Figure 2.1 State machine model of a system.. 8

Figure 2.2 State transducer model of a system. 10

Figure 2.3 System-centric policy: no FileWriter.write() after
FileReader.read(). 11

Figure 2.4 Mechanism-centric policy: no FileWriter.write() after
FileReader.read(). 11

Figure 2.5 Taxonomy of security policies in prior work. 17

Figure 3.1 A general security mechanism. 35

Figure 4.1 A variation of a 2-device Coauthentication protocol. 50

Figure 4.2 Enforcing forward secrecy on a 2-device couathentication protocol. 54

Figure 5.1 Weaving a fine-grained policy into a target program. 67

Figure 5.2 Weaving a coarse- or medium-grained policy into a target program. 68

Figure 5.3 Runtime enforcement of coarse- or medium-grained policy. 68

Figure 5.4 Runtime enforcment of a fine-grained policy. 69

iv

Abstract

Security policies stipulate restrictions on the behaviors of systems to prevent them

from behaving in harmful ways. One way to ensure that systems satisfy the constraints of

a security policy is through the use of security enforcement mechanisms. To understand

the fundamental limitations of such mechanisms, formal methods are employed to prove

properties and reason about their behaviors. The particular formalism employed, however,

typically depends on the time at which a mechanism operates.

Mechanisms operating before a program’s execution are static mechanisms, and mech-

anisms operating during a program’s execution are dynamic mechanisms. Static mechanisms

are fundamentally limited in the types of policies that they can enforce, due to the lack of

runtime information. However, the class of policies enforceable by particular types of dy-

namic mechanisms typically depends on the capabilities of the mechanism.

An open, foundational question in computer security is whether additional sorts of

security mechanisms exist. This dissertation takes a step towards answering this question

by presenting a unifying theory of security mechanisms that casts existing mechanisms into

a single framework based on the granularity of program code that they monitor. Classifying

mechanisms in this way provides a unified view of security mechanisms and shows that

all security mechanisms can be encoded as dynamic mechanisms that operate at one or

more levels of program code granularity. This unified view has allowed us to identify new

types of security mechanisms capable of enforcing security policies at various levels of code

granularity. This dissertation also demonstrates the practicality of the theory through a

prototype implementation that enables security policies to be enforced on Java bytecode

v

applications at various levels of code granularity. The precision and effectiveness of the

implementation hinges on an extensible Java library that we have developed, called JaBRO,

that enables runtime code analysis on optimized Java bytecode at runtime. It is shown that

JaBRO allows some security policies to be enforced more precisely at runtime than statically

operating mechanisms.

vi

Chapter 1: Introduction

Formal methods for security have become increasingly popular within the last few

decades. For some systems, incorrect behavior can be detrimental for users of the system;

for example, the malfunction of an avionics system may be life threatening to passengers of an

aircraft [41]. Traditional testing methods (e.g., unit tests) cannot provide sound guarantees

that a system will always behave correctly. This limitation is a result of the complexity of

computer systems, which are typically capable of operating in an infinite number of ways.

Testing the functionality of a system can only result in the guarantee that a system behaves

correctly with respect to a finite set of test cases; therefore, it is nearly impossible for

programmers to consider all possible test cases if a system can take infinitely many possible

inputs.

Formal methods provide mathematical means to rigorously prove whether a system

behaves in accordance with a formal specification [31]. With respect to security, these spec-

ifications are called security policies and typically place constraints on untrusted programs.

In practice, systems should be able to interact with, or run, untrusted programs. For ex-

ample, email users may desire the ability to receive attachments through email. However,

email attachments provide a way to spread viruses to computer systems [78]. To aid in the

detection of malicious attachments, some email users may use a security mechanism, such

as antivirus software or a spam filter, to prevent downloading such attachments. However,

due to fundamental limits of computation, one should not blindly trust security mechanisms

that claim to enforce particular security policies, but should be able to verify such claims.

1

Therefore, it is imperative to understand which policies are enforceable by particular types

of security mechanisms.

To provide guarantees about which policies security mechanisms can enforce, formal

frameworks are employed to rigorously model and reason about their behaviors. However, the

type of formalism employed generally depends on whether the mechanism enforces policies

statically or dynamically. Some policies can be enforced either way. One such example is type

safety, which is a policy that partitions well-typed programs from ill-typed programs. Type

safety is an important policy because it guarantees that all well-typed programs will behave

in well-defined ways. Type checkers that enforce type safety statically only permit well-typed

programs to execute. On the other hand, dynamic type checkers enforce type safety during

a program’s execution and only permit well-typed program statements, or expressions, to

execute. Therefore, dynamic type checkers do not explicitly guarantee that whole programs

are type safe before their execution, but rather that program sub-expressions, observed up-to

the currently executing sub-expression, are type safe. Although some policies, such as type

safety, can be enforced either statically or dynamically, there are important trade-offs that

exist between static and dynamic enforcement.

Static mechanisms (e.g., static type checkers or virus scanners) analyze all of a pro-

gram’s source [28], intermediate (e.g., [42, 26]), or binary code (e.g., [19, 56]) before its

execution. Such mechanisms allow policy violations to be caught before code is put into

production without inhibiting a program’s runtime performance. However, it is undecidable

to determine statically whether an arbitrary program satisfies a nontrivial policy [80, 89,

p. 219]. Consequently, static code analyzers typically enforce policies conservatively and

sometimes report false positives [28]. This problem prevents many developers and security

practitioners from using static code analyzers due to the onerous task of figuring out which

reports are actually a policy violation [52]. Other static code analyzers aim to reduce the

burden on the developer of having to manually verify which reports are false positives by

2

being more precise (e.g., [99, 87]); however, this approach often comes with introducing false

negatives, which provides no guarantees that code is free from vulnerabilities [28].

Dynamic, or runtime, mechanisms monitor program events during a program’s execu-

tion and intervene as necessary. For example, web browsers may prevent unsafe JavaScript

functions, such as eval, from executing [67], mobile-based enforcement mechanisms may

prevent unauthorized use of location-based services [69], and operating systems may limit,

or prevent entirely, the use of particular system resources based on user privilege levels.

These mechanisms can enforce some policies more precisely than static mechanisms because

of available runtime information, but generally sacrifice runtime performance for precision.

Hybrid mechanisms combine a static and dynamic approach to policy enforcement

and can enforce policies that are difficult to enforce by just a static or dynamic mechanism

alone. For example, many information flow control mechanisms combine static and dynamic

enforcement (e.g., [82, 83, 20]), such as a static type checker and a runtime monitor to prevent

public outputs from revealing information about secret inputs. Some program rewriters—

mechanisms that modify programs prior to their execution to ensure policy satisfaction [46]—

can be viewed as a particular type of hybrid that is able to perform static code analysis

and inline checks to enforce policy-specific constraints at runtime for statically undecidable

policies.

The static-dynamic view of security mechanisms is important for providing a foun-

dation for characterizing the class of policies enforceable by both static and dynamic mech-

anisms. However, this perspective presents a problem in addressing two open, foundational

research questions in computer security:

1. Which policies are precisely enforceable by hybrid mechanisms? To precisely show the

class of policies enforceable by hybrid mechanisms, one must be able to present a rig-

orous proof of the types of policies enforceable by the mechanism as a whole. However,

a precise characterization of the class of policies enforceable by hybrid mechanisms has

3

been difficult to derive because different proof techniques are used for the static and

dynamic components [82].

2. Do additional mechanisms exist, beyond: static code analyzers, runtime mechanisms,

and hybrids? Research has shown that, given the necessary capabilities, some security

mechanisms can enforce policies that other mechanisms cannot (e.g., [61, 62, 33]), which

raises the question of whether additional mechanisms exist that can enforce even larger

classes of security policies.

A first step to answering these questions might be to reason about security mechanisms

more uniformly by casting existing mechanisms into a single framework. A holistic view

of security mechanisms and policies might help us to better understand the capabilities

of various security enforcement mechanisms and provide a better understanding of how

arbitrary mechanisms, including hybrids, may enforce policies in practice.

This dissertation thus introduces an alternative perspective for classifying security

mechanisms based on the granularity of code that they monitor.

1.1 Contributions

The main contributions of this dissertation are twofold: (1) we present a unifying

theory of security enforcement mechanisms by encoding existing mechanisms as runtime

mechanisms that operate at one or more levels of program code granularity, and (2) we

demonstrate the practicality of the theory with an implementation of a framework for en-

forcing security policies at various levels of code granularity on Java bytecode applications.

The unifying theory has allowed us to identify new kinds of runtime security mecha-

nisms capable of operating at various levels of code granularity, and develop a new taxonomy

of security policies that can aid in determining how particular security policies might be en-

forced on untrusted programs. The implementation hinges on an extensible Java library,

4

called JaBRO, that we have developed to enable runtime code analysis at several levels of

code granularity on Java bytecode applications. JaBRO enables certain security policies

conservatively enforced by static mechanisms to be enforced more precisely at runtime.

1.2 Organization

This dissertation is organized as follows:

1. Chapter 2 discusses background and related work on formal frameworks and security

mechanisms. Section 2.1 discusses how formal frameworks have been used to reason

about security policies over systems and presents formal definitions for security policies.

Section 2.2 discusses existing classes of security mechanisms and shows how there does

not exist a unified framework capable of capturing all security mechanisms.

2. Chapter 3 introduces the first contribution of this dissertation, a unified model of se-

curity mechanisms parameterized by the granularity of program code that mechanisms

monitor. This chapter shows how this model unifies existing classes of security mech-

anisms and presents a new taxonomy of security policies. Additionally, this chapter

gives several example security policies and shows how they can be encoded at various

levels of code granularity.

3. Chapter 4 presents a practical example of how forward secrecy, a desirable property of

authentication methods, can be enforced at a fine-grained level on a variant protocol

of an authentication method called Coauthentication [63].

4. Chapter 5 presents the second contribution of this dissertation, an implementation of

the unified framework that enables security policies to be enforced on Java bytecode

applications at various levels of code granularity. The chapter shows how the precision

5

and effectiveness of the framework depends on an extensible Java library, called JaBRO,

that we have developed to enable runtime code analysis on Java bytecode applications.

5. Chapter 6 presents details about the evaluation of the implementation and shows how

we evaluated the effectiveness and efficiency of the implementation by enforcing security

policies at various levels of code granualrity on two popular, open-source Java bytecode

applications.

6. Chapter 7 concludes with a summary of the contributions of this dissertation and

provides directions for future work.

Parts of the text presented in this dissertation have appeared in two published con-

ference papers [63, 36]. Permission to use material from the aforementioned papers are

presented in Appendix A.

6

Chapter 2: Background and Related Works

This chapter discusses prior work on formal frameworks for reasoning about security

policies and mechanisms. Section 2.1 describes two categories of formal frameworks that

have been used in computer security to reason about systems, their executions, and poli-

cies expressed over such systems. This section also presents formal definitions of policies,

properties, safety, and liveness that will be used throughout this dissertation. Section 2.2

discusses existing classes of security mechanisms and shows how there does not exist a unified

framework to reason about all such mechanisms.

2.1 Formal Frameworks

Formal frameworks are used to specify and reason about security policies over systems.

A system can be modeled as a set of executions, and policies can be expressed as sets of

valid systems.

Formal frameworks for security can be categorized as either system centric or mech-

anism centric. System-centric frameworks reason about systems as monolithic units that

execute events (e.g., [77, 86, 40]), whereas mechanism-centric frameworks reason about sys-

tems as a composition of distinct components, such as an untrusted program, a security

mechanism, and an underlying executing system, each of which can exhibit events [61].

This section focuses on general-purpose, automata-theoretic frameworks (e.g., [86, 61,

62, 79, 33]) that encode system executions as sets of traces, where each trace represents a

single run of a system.

7

q q’

e e’

e’

Figure 2.1. State machine model of a system.

2.1.1 System-Centric Frameworks

System-centric frameworks model systems as state machines that transition between

states by executing events, as shown in Figure 2.1. There are two ways to encode the execu-

tions of systems under a system-centric view: 1) as sequences of states, or 2) as sequences of

observable events (i.e., events executed by the system). Policies over such systems are sets

of valid system executions.

States encode the condition of the system at each step of its computation (e.g., vari-

able values) [57, 5]. This formalism began with research in program verification, where the

objective was to ensure that systems remained in acceptable states at each step of their

computation. Given a policy, encoded as a set of valid executions, it is possible to prove

that the policy holds for a particular system if it can be shown that the set of executions

describing the system is contained in the policy.

System-centric, event-based traces are encoded as sequences of events executed by

systems during their computation (e.g., [62]). This model is sometimes used in security

research because it is not only important to ensure that systems remain in acceptable states

at each step of their computation, but also to ensure that systems only execute valid events

to reach acceptable states. Event-based traces can be more expressive than state-based

traces because a system may execute several, possibly different, events before transitioning

between states. Due to this added expressiveness, this dissertation will only present formal

notation for system-centric, event-based traces.

8

Let E, ranged over by metavariable e, denote the set of all possible system events. A

system execution, or trace, x is a finite or infinite sequence of such events (e.g., e1, e2, e3...).

Let E∗ denote the set of all possible finite-length traces, Eω denote the set of all possible

infinite-length traces, and E∞ denote the set of all possible traces (i.e., E∗ ∪ Eω). A trace

x ∈ E∗ that is a prefix of trace y ∈ E∞ is denoted by x � y; conversely, a trace y that

extends trace x is denoted by y � x. The empty trace (i.e., a trace containing 0 events) is

notated as ε and | x | denotes the size of a trace x (i.e., the number of events appearing in

x).

System-centric policies only encode, what are called, observable events [17]. Observ-

able events are events that are actually executed by the system and cause the system to take

a computational step. Events attempted by an untrusted program that are prevented from

executing by a security mechanism are considered unobservable events and do not appear on

system traces. For example, consider a policy that states “classified data must not be sent

over unsecured networks”. If a program attempts to send classified data over an unsecured

network but is prevented from doing so by a security mechanism, the interaction between the

security mechanism and the program is not described by the system-centric policy because

this interaction is considered to be unobservable. Therefore, this model makes it difficult to

reason about the effects of security mechanisms on untrusted programs when mechanisms

must remedy invalid program events.

2.1.2 Mechanism-Centric Frameworks

Mechanism-centric frameworks encode system executions as sequences of pairs of

events, where each pair is called an exchange [33, 79]. The first event in each pair is an event

attempted by a component of the system, and the second event in each pair is an event

actually executed by the system or an observable event that may be returned by the system.

Systems in this framework are modeled as state transducers that transition between states

9

q q’

<e,e> <e’,e’>

<e’,e’>

Figure 2.2. State transducer model of a system.

based on exchanges, as shown in Figure 2.2. The ability to distinguish between attempted

and executed events is important because policies expressed over such systems can describe

the effects of security mechanisms and how they might remedy potentially invalid program

events.

Formally, as shown in [79], E denotes the set of possible system events and determines

E the set of possible exchanges, where an exchange can be any pair of events from E. A

trace x is a finite or infinite sequence of exchanges (e.g.,〈e0, e′0〉〈e1, e′1〉 . . .). The events in an

exchange may not be equal. For example, when a system attempts to execute an event e that

violates a policy, a security mechanism may output an alternative event e′ that satisfies the

policy instead; the resulting exchange is 〈e, e′〉. The set of all finite-length traces is denoted

by E∗, the set of all infinite-length traces is denoted by Eω, and the set of all possible traces

is denoted by E∞ (i.e., E∗ ∪ Eω). Similar to system-centric trace models, x � y denotes that

trace x ∈ E∗ is a prefix of trace y ∈ E∞; the extension operator � is defined symmetrically.

The empty trace is commonly notated as ε and the size of a trace x is notated as | x | (i.e.,

the number of exchanges in x).

2.1.3 System-Centric vs. Mechanism-Centric Frameworks

System-centric frameworks are more suitable for program verification because system-

centric policies specify only valid system events. System-centric policies therefore specify

what systems should do, or the system events that are allowed to execute, but not how partic-

10

𝑞!"# 𝑞"#

¬𝐹𝑖𝑙𝑒𝑅𝑒𝑎𝑑𝑒𝑟. 𝑟𝑒𝑎𝑑() ¬𝐹𝑖𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟. 𝑤𝑟𝑖𝑡𝑒()

𝐹𝑖𝑙𝑒𝑅𝑒𝑎𝑑𝑒𝑟. 𝑟𝑒𝑎𝑑()

Figure 2.3. System-centric policy: no FileWriter.write() after FileReader.read().

𝑞!"# 𝑞"#

< 𝑒, 𝑒′ > < 𝑒, 𝑒$$$ >

< 𝑒$$, 𝑒′′ >

Legend:
𝑒 = 𝐴𝑛𝑦 𝑒𝑣𝑒𝑛𝑡

𝑒$ = ¬𝐹𝑖𝑙𝑒𝑅𝑒𝑎𝑑𝑒𝑟. 𝑟𝑒𝑎𝑑()
𝑒$$ = 𝐹𝑖𝑙𝑒𝑅𝑒𝑎𝑑𝑒𝑟. 𝑟𝑒𝑎𝑑()
𝑒$$$ = ¬𝐹𝑖𝑙𝑒𝑊𝑟𝑖𝑡𝑒𝑟. 𝑤𝑟𝑖𝑡𝑒()

Figure 2.4. Mechanism-centric policy: no FileWriter.write() after FileReader.read().

ular systems can be made to satisfy such policies when they deviate from a particular policy’s

behaviors. Consequently, system-centric frameworks do not inherently provide the capability

to reason about the effects of security mechanisms on untrusted programs. For example, con-

sider the policy described in Figure 2.3; this policy stipulates that FileWriter.write() can-

not occur after FileReader.read() has occured. Suppose an untrusted program attempts

to execute FileWriter.write() while in state qfr—meaning that a FileReader.read()

has already occurred—a mechanism enforcing the policy by simulating execution according

to the state machine in Figure 2.3 cannot make a transition on FileWriter.write() while

in state qfr, thereby making it difficult to determine a suitable response to the attempted

policy violation.

Mechanism-centric frameworks are more suitable for reasoning about the enforcement

of policies on untrusted programs. Mechanism-centric policies encode not only valid events

but how invalid events may be transformed into valid events. In other words, mechanism-

centric policies describe not only the events allowed by the policy but also the effects of

security mechanisms when programs deviate from the behaviors allowed by the policy.

11

For example, consider the mechanism-centric version of the “no FileWriter.write() af-

ter FileReader.read()” policy described in Figure 2.4. While in state qfr an untrusted

program can attempt any event, indicated by e; however, only an event that is not a

FileWriter.write(), indicated by e′′′ can actually be executed. Therefore, even if a

program attempts a FileWriter.write() while in state qfr, it is clear that a mecha-

nism can respond to this attempted policy violation by outputting any event that is not

a FileWriter.write() event. Next, we will present formal definitions for system-centric

and mechanism-centric policies, properties, safety, and liveness.

2.1.4 Policies

Security policies specify constraints on system behaviors and can be defined qual-

itatively or quantitatively. Qualitative security policies, also known as “black-and-white”

policies [79], are predicates over sets of system traces. A qualitative policy distinguishes be-

tween secure and insecure systems. Quantitative policies, also known as “gray” policies [79],

are functions over sets of system traces. Rather than specifying what makes a system secure

or insecure, qualitative policies determine how secure systems are. For example, consider the

policy that states “all resources acquired must eventually be released”, if a system does not

release one particular resource but releases all other acquired resources, a qualitative version

of such a policy will consider this system to be insecure. However, a quantitative version of

such policy might consider the system to be, say, 90% secure, assuming the policy decreases

the security of the system by 10% for each unreleased resource. This dissertation will only

present formal definitions for qualitative security policies.

Formally, a system-centric policy P is a predicate P : 2E∞ → {true, false} over

systems, where a system is encoded as a set of executions, or traces, X ⊆ E∞. A policy can

also be encoded as a set of valid systems: P ⊆ 2E
∞

.

12

A mechanism-centric policy P is also a predicate P : 2E
∞ → {true, false} over

systems [86]. However, as shown in Section 2.1.2, a mechanism-centric trace is a sequence

of exchanges rather than a sequence of events. Therefore, a system’s set of traces, under the

mechanism-centric view encodes the original, possibly invalid, events of the target system,

encoded as the first event of every exchange, and the valid events of the system, encoded as

the second event in every exchange. A mechanism-centric system is therefore modeled as a

set of traces X ⊆ E∞, so a policy can also be encoded as a set of valid systems: P ⊆ 2E
∞

.

Another term for policies is hyperproperties [32]. The term “hyperproperties” is

used to distinguish between policies that may require relationships to hold between different

executions of a system and policies that hold for individual executions of a system, termed

“properties”. An example hyperproperty that is not a property is a policy stipulating a bound

on a system’s average response time to requests [32]. To verify whether this hyperproperty

holds for a particular system, all of a system’s executions must be examined to ensure that

the system’s average response time is less than or equal to the specified bound. The term

“property” is formally defined next in Section 2.1.5.

2.1.5 Properties

Properties are policies that stipulate constraints on individual executions of a sys-

tem [32]. These type of policies can only atomically reason about a single trace and cannot

specify relationships between different traces of a system, like the average response time hy-

perproperty described previously in Section 2.1.4. Therefore, properties are predicates over

individual executions. A property is said to hold for a system if the property holds for each

individual execution of the system.

Formally, a system-centric policy P is a system-centric property iff

∃p̂ : E∞ → {true, false} : ∀X ⊆ E∞ : P (X) ⇐⇒ (∀x ∈ X : p̂(x)).

13

Because properties are boolean predicates over executions, they can also be formally

defined as a set of valid executions. Formally, a system-centric policy P is a property iff

∃p̂ ⊆ E∞ : ∀X ⊆ E∞ : (X ∈ P ⇐⇒ (∀x ∈ X : x ∈ p̂)).

Similarly, a mechanism-centric policy P is a mechanism-centric property iff

∃p̂ : E∞ → {false, true} : ∀X ⊆ E∞ : (P (X) ⇐⇒ (∀x ∈ X : p̂(x))),

and a mechanism-centric policy P is a property, described as a set of executions, iff

∃p̂ ⊆ E∞ : ∀X ⊆ E∞ : (X ∈ P ⇐⇒ (∀x ∈ X : x ∈ p̂)).

It is important to distinguish between policies that are properties and policies that

are not properties because it determines what kind of security mechanism can be used to

enforce such policy. Dynamic mechanisms that only have access to the current execution can

only enforce properties whereas static mechanisms can approximate all possible executions of

a program by examining its code and therefore can enforce some policies, or hyperproperties,

that are not properties.

Every property can be encoded as an equivalent hyperproperty [32]. Because a prop-

erty can be encoded as a set of traces p̂ ⊆ E∞, or p̂ ⊆ E∞ for mechanism-centric properties,

the equivalent hyperproperty can be encoded as the powerset of p̂. That is, the equivalent

system-centric hyperproperty of p̂ is P = 2p̂; the mechanism-centric hyperproperty can be

defined analogously.

2.1.6 Safety

Policies can be further categorized into safety and liveness policies. A safety policy

that is not a property is called a safety hyperproperty, or hypersafety, and a safety policy

that is a property is called a safety property [32].

14

Safety policies are specifications that disallow invalid program behaviors from occur-

ring during a system’s execution, meaning that every event or exchange appearing in an

execution must be deemed valid. Once an invalid event or exchange occurs, the system is

deemed irremediably insecure, meaning that there is no system event or exchange that can

appear after the invalid event or exchange that will return the system to a secure state.

In order to formally define hypersafety, we first define two new operators, as they

are formally defined in [79]: 1) v and 2) w. The v and w operators are defined simi-

larly to the � and � operators, except where � and � are the prefix and extension op-

erators, respectively, for a single trace, the v and w operators are prefix and extension

operators, respectively, for a set of traces. Formally, given X,X ′ ⊆ E∞ or X,X ′ ⊆ E∞,

X ′ v X =⇒ ∀x′ ∈ X ′ : ∃x ∈ X : x′ � x. Therefore, a system-centric policy P is hyper-

safety iff

∀X ⊆ E∞ : (X ∈ P ⇐⇒ (∀X ′ v X : X ′ ∈ P)),

and a system-centric policy P is a system-centric safety property p̂ iff

∀x ∈ E∞ : (x ∈ p̂ ⇐⇒ (∀x′ � x : x′ ∈ p̂)).

Similarly, a mechanism-centric policy P is hypersafety iff

∀X ⊆ E∞ : (X ∈ P ⇐⇒ (∀X ′ v X : X ′ ∈ P)),

and a mechanism-centric policy P is a mechanism-centric safety property p̂ iff

∀x ∈ E∞ : (x ∈ p̂ ⇐⇒ (∀x′ � x : x′ ∈ p̂)).

Note that system-centric safety policies require every event in a trace to be valid, whereas

mechanism-centric safety policies require every exchange to be valid. Therefore, although the

target system may attempt an invalid event, which would be the first event in an exchange,

if a security mechanism transforms the invalid event to a valid event, which would be the

15

second event in the exchange, the overall exchange is considered to be valid, thus illustrating

how mechanism-centric policies allow security practitioners to reason about how policies may

be enforced in practice.

2.1.7 Liveness

Liveness policies differ from safety policies in that they allow every finite, insecure

trace to become secure by extending the trace with a valid extension. A liveness policy that

is not a property is called a liveness hyperproperty, or hyperliveness, and a liveness policy

that is a property is called a liveness property [32]. Formally, a system-centric policy P is

hyperliveness iff

∀X ⊆ E∗ : ∃Y ⊆ E∞ : (Y w X ∧ Y ∈ P),

and a system-centric policy P is a system-centric liveness property p̂ iff

∀x ∈ E∗ : ∃y ∈ E∞ : (y � x ∧ y ∈ p̂).

Similarly, a mechanism-centric policy P is hyperliveness iff

∀X ⊆ E∗ : ∃Y ⊆ E∞ : (Y w X ∧ Y ∈ P),

and a mechanism-centric policy P is a mechanism-centric liveness property p̂ iff

∀x ∈ E∗ : ∃y ∈ E∞ : (y � x ∧ y ∈ p̂).

From these definitions, we can see that liveness policies can be satisfied in infinite

time. For example, consider the nontermination policy stating that systems should not

terminate. Every terminating system that violates this policy can be extended to satisfy the

policy by extending every finite-length trace with an infinite-length trace.

16

Hyperproperties

Properties

Safety Liveness HyperlivenessHypersafety

Figure 2.5. Taxonomy of security policies in prior work.

2.1.8 Summary

Figure 2.5 illustrates the taxonomy of security policies discussed in this section. The

figure shows that hyperproperties encapsulate all possible policies, while properties are a

subclass of the hyperproperties. Therefore, every property is a hyperproperty but every

hyperproperty is not a property. Furthermore, as discussed, properties and hyperproperties

can be further categorized as safety or liveness properties, or hypersafety or hyperliveness,

respectively. Notice that there are policies that are neither safety or liveness, these policies

are called nonsafety, nonliveness properties or nonsafety, nonliveness hyperproperties. Prior

work has shown that every nonsafety, nonliveness policy is the intersection of a safety and a

liveness policy [5, 32].

2.2 Mechanisms

This section reviews existing classes of security mechanisms and shows how formal

frameworks have been used to reason about the class of policies enforceable by such mecha-

17

nisms. This section also reviews work on practical implementations of security mechanisms.

This review will show that there does not exist a single framework capable of modeling all

security mechanisms and the policies enforceable by such mechanisms.

2.2.1 Static Mechanisms

Static mechanisms enforce policies on whole programs before their execution by ana-

lyzing the code of such programs and either accept or reject programs within a finite period

of time [46]. If the mechanism accepts the program, then the program is permitted to ex-

ecute, and if the mechanism rejects the program then the mechanism may output a report

detailing the potential policy violations.

Static mechanisms for security are designed to catch potential security vulnerabilities

or policy violations before code is put into production. Static mechanisms can be classified

as model checkers or static code analyzers. Model checkers can verify properties of models

of systems; therefore, these tools do not verify properties of concrete system implementa-

tions [6]. Consequently, a challenge for security practitioners that use model checkers to

verify properties of models of systems, is verifying whether the model of the system is a cor-

rect representation of the actual system. Due to this challenge, this section will only review

prior work on static code analyzers that operate on concrete system implementations.

Static code analyzers are typically used during the development lifecycle of a program.

Therefore, many static code analyzers operate on a program’s source code (e.g., [28, 38, 11]).

However, static code analyzers can also operate on untrusted programs for which source code

is not available by analyzing programs’ intermediate (e.g., [64, 8, 21, 42, 26]) or binary code

(e.g., [19, 56, 91]). The enforcement of security policies statically is an attractive option

because static code analyzers do not significantly impact a program’s runtime performance.

However, the problem of determining statically whether an arbitrary program adheres to

a nontrivial policy is undecidable [80]. Therefore, engineers of static code analyzers are

18

forced to implement them to enforce security policies imprecisely. Many static code ana-

lyzers enforce policies conservatively (also known as soundly) to ensure that no potential

policy violations go undetected. However, enforcing security policies conservatively leads to

false positives [28], requiring developers to sift through potentially large amounts of code to

determine whether the reports of the analyzer are actually policy violations, which can be

burdensome and result in many developers forgoing static analysis and releasing potentially

vulnerable code.

Some static code analyzers aim to increase usability and reduce the number of false

positives reported by being less sound (e.g., [99, 87]). These tools aim to only report vul-

nerabilities that can be decided to actually be policy violations. However, such tools often

introduce false negatives, which may be considered dangerous as opposed to conservative

static code analyzers.

Rice’s theorem [80] provides a foundation for the class of policies enforceable by static

code analyzers. That is, any nontrivial policy cannot be precisely enforced by a static code

analyzer. However, research has shown that approximations of nontrivial policies can be

enforced by static code analyzers. For example, rather than enforcing a policy stipulating

that all programs must terminate, a static code analyzer can determine whether a program

will terminate within some finite, specified number n of computational steps by simulating

the program for n computational steps [46]. The static code analyzer will therefore reject

all programs that it can simulate for n+ 1 steps.

To formally define the class of policies enforceable by static code analyzers, Hamlen et

al. [46] model security mechanisms as Turing machines and untrusted programs as program

machines, which are deterministic Turing machines that operate over 3 infinite-length tapes.

The class of policies enforceable by static code analyzers is formally defined in [46] with

respect to classes from complexity theory; [46] applies Rice’s theorem to state that only

the class of recursively decidable policies of program machines are enforceable by static

19

code analyzers. For every recursively decidable policy P there exists a total, computable

function f that can take as input a Turing machine M and decide within a finite period of

time whether M satisfies P . If for any policy P , f does not exist then P is not statically

enforceable.

Other static enforcement models have employed a functional model of computation

in a variant of the lambda calculus (e.g., [98, 15]) or a security-typed language (e.g., [85,

90, 81, 84, 94, 13, 97, 50, 98, 3, 2, 95]) to express the possible terms, or expressions, of

a programming language (syntax) and how such terms should be evaluated (semantics).

After defining a language’s syntax and semantics, typing rules can be formally defined by

a set of inference rules, which allows one to determine statically whether every terminating

expression of a program will evaluate to a well-defined value with a well-defined type [74].

The static security mechanism in this case is modeled by the rules of the type system.

2.2.2 Dynamic Mechanisms

Dynamic mechanisms enforce policies by monitoring programs during their execution

and intervening when necessary. Due to available runtime information, dynamic mechanisms

can enforce some policies more precisely than static mechanisms; however, the precision at

which policies can be enforced may depend on the capabilities of the dynamic security

mechanism.

To understand the capabilities of various dynamic mechanisms, they are generally

modeled as security automata consisting of countably many states that operate over a count-

able alphabet and transition between states via a well-defined transition function. Formally,

a dynamic mechanism can be modeled as an automaton M = (Q,Q0, E, δ) such that

1. Q is a countable set of states,

2. Q0 ⊆ Q is a countable set of initial states,

20

3. E is event set over which M operates, and

4. δ is either a deterministic or nondeterministic transition function that has generally

been defined in one of four ways:

(a) δ : Q× E → Q,

(b) δ : Q× E → 2Q,

(c) δ : Q× E → Q× E, or

(d) δ : Q× E → 2Q×E.

Mechanisms whose transition functions are δ : Q × E → Q or δ : Q × E → 2Q

are called deterministic or nondeterministic execution recognizers, respectively. Mechanisms

whose transition functions are δ : Q × E → Q × E or δ : Q × E → 2Q×E are called

deterministic or nondeterministic execution transformers, respectively [61, 17].

Execution recognizers enforce policies by recognizing invalid executions and halting

the program, or target system, under consideration. Schneider [86] introduced such recog-

nizers, called Execution Monitors (EMs), as a class of dynamic security mechanisms that

can only monitor target system events as they are attempted by the target system. That is,

EMs have no knowledge of future events that might be exhibited by the target system. Fur-

thermore, EMs can only respond to policy violations by halting the target system. Schneider

showed that under this definition, EMs can only enforce a subclass of the safety properties.

EMs cannot enforce all safety properties because mechanisms may not have sufficient power

to prevent the violation of some safety properties. For example, EMs cannot stop the passage

of time. Later work considers such uncontrollable, also called unsupressable events, as clock

ticks [16, 33, 75].

In particular, Basin et al. [16] extended Schneider’s work by distinguishing between

controllable and uncontrollable events. Controllable events are events that security mecha-

21

nisms can control whereas uncontrollable events can only be observed by mechanisms but

not controlled. Safety properties that depend on uncontrollable events (e.g., clock ticks)

cannot be precisely enforced by EMs.

Execution transformers have the ability to not only recognize an invalid execution

but to transform an invalid execution into a valid one. Ligatti et al. [61] introduced such

transformers as Edit Automata, a class of dynamic security mechanisms that can monitor

events as they are attempted by the target system and have the ability to transform system

executions by inserting or suppressing events as necessary. With these added capabilities,

it is important to constrain the behaviors of security mechanisms to prevent them from

transforming executions in arbitrary ways. Ligatti et al. [61] introduced three definitions

that describe how an edit automaton can enforce policies: 1) conservative enforcement,

2) precise enforcement, and 3) effective enforcement.

An edit automaton conservatively enforces a security policy if the sequence of mech-

anism outputs is in the set of executions allowed by the policy. This definition allows mech-

anisms to completely ignore target system inputs and always output executions that will

satisfy the policy. An edit automaton precisely enforces a security policy if the automaton

conservatively enforces the policy and preserves the syntax of target system executions that

already obey the policy in question. That is, if a target system’s execution already satis-

fies the policy, then the mechanism must output a syntactically equal execution. An edit

automaton effectively enforces a security policy if it: 1) conservatively enforces a security

policy, and 2) preserves the semantics of valid executions. That is, if a target system’s execu-

tion already satisfies the policy then the mechanism must output a semantically equivalent

execution, that may not necessarily be syntactically equal.

Given these definitions of enforcement, [61] shows that edit automata can precisely

enforce safety and some nonsafety properties, and can effectively enforce any property, de-

pending on the definition of semantic equivalence. This result is particularly interesting

22

for liveness properties because such properties require a mechanism to have knowledge of

possible future events of an execution. While edit automata do not have direct knowledge

about the future of systems’ executions, they do have the ability to buffer events for arbi-

trary amounts of time. As a result, edit automata can observe arbitrarily long sequences

of system events while simultaneously buffering them and delaying their execution, once an

event satisfying a liveness property occurs, then the automaton can release the sequence of

buffered events to execute. However, this capability may be considered unrealistic in many

situations. Alternatively, an edit automaton can prematurely insert an event, or sequence

of events, that satisfy a liveness property. Then, if the target system exhibits the event, or

sequence of events, satisfying the liveness property, the mechanism can quietly suppress the

event(s) because it already output the event(s) satisfying the liveness property.

The formal framework presented in [61] models dynamic mechanisms as execution

transformers but model policies in a system-centric way, which requires the hardcoded def-

initions of conservative, precise, and effective enforcement because system traces are not

expressive enough to capture such definitions as a part of the system trace.

Dolzhenko et al. [33] introduced another class of execution transformers as Mandatory

Results Automata (MRAs). These mechanisms have the ability to recognize and transform

not only events exhibited by target programs but also results that might be returned to

target programs by the underlying executing system. MRAs can only process a single event

at a time. That is, for every event input to the mechanism, the mechanism must produce

an output before receiving another input event. A novel feature of MRAs is that they are

able to enforce, what [33] calls, result sanitization policies. Such policies may require a

mechanism to sanitize results returned by an underlying executing system before the results

can be successfully returned to the target system. For example, a policy may require secret

contents of a directory to be hidden from users when they execute the ls command. When

23

the results for the contents of the directory are returned, a mechanism might filter out secret

files before displaying the contents of the directory.

Dolzhenko et al. [33] gives three definitions for how MRAs may enforce security poli-

cies. They can enforce properties soundly, completely, and precisely. In this framework,

properties are encoded in a mechanism-centric way; therefore, properties can take into con-

sideration the effects of security mechanisms on system events. An MRA soundly enforces

a property p̂ if the set of executions of the MRA is a subset of the executions describing

the property p̂. That is, the MRA only produces executions that satisfy p̂. An MRA com-

pletely enforces a policy if the set of executions of the MRA is a superset of the executions

of the property p̂. That is, every valid execution described by the property p̂ is an execution

produced by the MRA. Lastly, an MRA precisely enforces a security property if the set

of executions describing the MRA equals the set of executions describing the property p̂.

It is shown that deterministic MRAs precisely enforce a proper subset of the mechanism-

centric safety properties while nondeterministic MRAs precisely enforce a proper superset

of the mechanism-centric safety properties. Determinsitic MRAs can also enforce some

mechanism-centric nonsafety properties by assuming that the underlying executing system

will always return events for particular system events; [33] argues that such an assumption is

often reasonable and can be seen in practical systems such as CPUs and operating systems

that always return a result for particular system events.

Stream Monitoring Automata (SMAs) were introduced in [72]. These mechanisms

are execution transformers that operate over infinite sequences of events. The novel feature

of these mechanisms is that they are not input enabled. Previous models of mechanisms

assumed that mechanisms only output events when provided an input event; [72] gives

several practical examples where it is desirable for mechanisms to output events even in

the absence of input events. It is shown that, with the capability to output events in the

absence of input events, SMAs can enforce some nonsafety properties. The framework used

24

to reason about policies enforceable by SMAs was a mechanism-centric framework. Due

to the expressiveness of the framework, [72] shows that constraints placed on SMAs can

be encoded as metapolicies. Metapolicies are defined as policies that place constraints on

other policies. A popular constraint of security mechanisms is that they enforce policies

transparently. Transparency means that if a target system’s execution already satisfies the

policy in question, then the mechanism should not modify the execution in any observable

way. Transparency can be encoded as a metapolicy by requiring the input and output events

of exchanges to be equal when the input event is considered to be a valid event.

Nonuniform runtime mechanisms were introduced in [62]. Nonuniform runtime mech-

anisms have auxiliary knowledge about programs’ executions, such as the results of a static

code analyzer that guarantees whether certain program events will occur. Formal character-

izations of the class of policies enforceable by nonuniform runtime mechanisms with various

capabilities were presented in [27, 65, 76]. It was shown that nonuniform runtime mechanisms

are capable of enforcing some nonsafety properties, which uniform runtime mechanisms—

mechanisms that only monitor the current execution and have no a priori knowledge about

the program—with the same capabilities cannot enforce. Although nonuniform runtime

mechanisms aim to amplify the enforcement power of runtime mechanisms by giving the

mechanism access to the results of a static code analyzer, this model is not capable of uni-

fying the two enforcement approaches because nonuniform runtime mechanisms do not have

direct access to a program’s code, whereas static code analyzers do.

Models of runtime mechanisms for black-box reactive programs were introduced

in [70]. These mechanisms are execution transformers that have the ability to run addi-

tional, isolated copies of a program to examine the difference in program output when given

different inputs. However, it is assumed that mechanisms do not have access to programs’

source or machine code. With the capability to examine how programs respond to different

inputs, these mechanisms were shown to be able to enforce some hypersafety policies. Pre-

25

vious work on runtime mechanisms only considered them to be able to enforce properties,

since they could only examine the current execution.

Hamlen et al. [46] showed that any statically enforceable policy is enforceable by a

runtime mechanism if the runtime mechanism can perform code analysis immediately after

the program is loaded, illustrating that hyperproperties are indeed enforceable at runtime.

However, [46] did not explore the implications of this claim or whether runtime mechanisms,

capable of performing code analysis, can improve the precision at which some statically

undecidable policies may be enforced.

2.2.3 Hybrid Mechanisms

Hybrid mechanisms enforce policies by combining static code analysis and runtime

monitoring (e.g., [82, 96, 58, 59, 88]). These mechanisms enable some policies to be enforced

that are difficult to enforce by just a static or dynamic mechanism alone.

Many hybrid security mechanisms proposed in the literature are domain specific,

targeting either the web-application or information-flow security domains. For example, [82]

presents a mechanism capable of enforcing certain information-flow security policies that

cannot be enforced by just a static or dynamic mechanism alone, but can be enforced by

combining static code analysis and runtime monitoring.

Russo and Sabelfield [83] show that information-flow policies can be enforced both

soundly and permissively with hybrid mechanisms. Because statically determining whether

an arbitrary program satisfies a policy, in general, is undecidable, detecting information-flow

policy violations statically is not permissive. A sound static analyzer may conservatively

reject programs that do not violate the policy. A purely dynamic mechanism, however, may

not soundly enforce an information-flow policy, if it is unaware of other possible program

executions, but it is more permissive than static analysis due to available runtime informa-

26

tion. Russo and Sabelfied show that the best of both worlds can be achieved by combining

static code analysis and runtime monitoring.

Vogt et al. [96] presented a hybrid mechanism that is able to prevent attackers from

obtaining sensitive user information through cross-site scripting attacks. The mechanism

performs runtime monitoring to ensure that JavaScript programs only send sensitive infor-

mation to servers from which they originated. Static analysis is used to detect implicit

information flows that may not be able to be detected by the runtime mechanism.

AMNESIA [44] is another hybrid mechanism designed to detect SQL injection attacks.

The mechanism uses static code analysis to obtain a model of valid SQL queries that an

application is allowed to generate. When an application executes, AMNESIA employs a

dynamic mechanism to analyze concrete, dynamically generated SQL queries. These queries

are checked against the statically generated model of valid queries. If the query is valid,

then the query is allowed to proceed; if the query is found to be invalid, then the query is

rejected and reported to security administrators. Several other, similar, hybrid mechanisms

have been proposed for ensuring the security of web applications (e.g., [60, 4, 12, 30]).

The majority of hybrid mechanisms proposed in the literature have been domain-

specific mechanisms designed to enforce specific policies. Consequently, frameworks for such

domain-specific mechanisms are not suitable for reasoning about which policies are enforce-

able by hybrid mechanisms in general.

However, [46] presented a class of policies enforceable by a particular type of hybrid

mechanism called a program rewriter. A program rewriter is a mechanism that is able to

modify a program prior to its execution to ensure that it satisfies a particular policy. Program

rewriters can be seen as purely static mechanisms since they modify programs prior to their

execution; however, they can also be viewed as hybrids when they inline runtime checks to

enforce policy-specific constraints at runtime for statically undecidable policies. Program

rewriters that inline runtime checks for statically undecidable policies implement Inlined

27

Reference Monitors (IRMs) [37]. IRMs are popular runtime mechanisms that are embedded

within a program’s code. IRMs provide the capability for enforcing application-specific

policies. Furthermore, IRMs may improve the performance of enforcing policies at runtime

by eliminating context switches between the untrusted code and the security mechanism,

because the mechanism is embedded within the program’s code [47].

Hamlen et al. [46] characterized the class of policies enforceable by program rewrit-

ers as the RW≈−enforceable policies. A policy P is deemed RW≈−enforceable if three

rules can be satisifed: 1) there exists a total, computable rewriting function that inputs

an untrusted program, say X, and outputs a program X ′, 2) the output program X ′ sat-

isfies P (i.e., P (X ′)), and 3) if the input program X already satisfies policy P then the

output program X ′ is equivalent to the input program (i.e., P (X) ⇒ X ≡ X ′). The

RW≈−enforceable policies includes all statically enforceable policies and all of the policies

enforceable by EMs. Although [46] characterizes the class of policies enforceable by program

rewriting as the RW≈−enforceable policies, it is stated that the exact class of policies en-

forceable by program rewriters with respect to known classes from complexity theory could

not be determined, and might not exist, as no known class of the arithmetic hierarchy is

equivalent to the class of RW≈−enforceable policies.

2.2.4 Aspect-Oriented Policy-Specification Languages

Policy-specification languages are designed to aid policy writers in correctly specify-

ing security policies. Policy-specification languages are important because specifying policies

correctly can be an error prone and tedious process. Such languages can provide guarantees

to the policy writer that the specification actually implements the policy that the policy

writer intended through the language’s type system and formal verification techniques [45].

This section reviews aspect-oriented policy-specification languages designed for policy en-

forcement by runtime monitoring. We do not review policy-specification languages designed

28

for policy enforcement by static code analysis due to the undecidability of statically deter-

mining whether an arbitrary program satisfies a policy; therefore, such languages are not

powerful enough to synthesize security mechanisms capable of enforcing nontrivial security

policies.

A common way to specify security policies is by implementing them as aspects [53].

Aspects allow policy writers to implement security policies in a modular fashion so as to

make them easier to reason about and verify the correctness of their implementations.

Aspect-oriented programming is a programming paradigm that modularizes cross-cutting

concerns [55]. A cross-cutting concern is a concern that is spread throughout several mod-

ules of a system. For example, consider a security policy that places stipulations on which

files can be accessed by untrusted programs. A program may execute several file operations,

spread throughout several modules of its implementation. To ensure that the policy is not

violated, every file operation must be verified to satisfy the security policy. Implementing the

policy for every single file operation can be tedious and error prone; however, aspect-oriented

programming languages provide a way for security policies to be specified in a centralized,

modular way.

Security Policy XML (SPoX) [45] is a declarative policy-specification language de-

signed for enforcement by Inlined Reference Monitors (IRMs) that implement execution

monitors [86] on Java bytecode applications. It is an aspect-oriented language based on a

system-centric view of security policies. That is, the language is capable of specifying what

the policy is but not how the policy should be enforced; [45] argues that imperative code

fragments that specify how a policy should be enforced are difficult to reason about and can

be error prone.

Polymer [18] is an imperative policy-specification language designed for enforcement

by IRMs that implement edit automata [61] on Java bytecode applications. Polymer allows

29

policy writers to specify how policy violations should be handled through the query method

construct that returns suggestions on how to handle security-relevant events.

Policy Enforcement Toolkit (PoET) and Policy Specification Language (PSLang) [37]

are a program-rewriting system and a policy-specification language for implementing security

policies for enforcement by IRMs on Java bytecode applications. They are used to implement

Java’s stack inspection security policy. Naccio [39] is another system designed for specifying

safety properties enforceable by IRMs on Java bytecode applications and Win32 executables.

ConScript [67] is a system designed for enforcing security policies via IRMs on

JavaScript code in the browser. ConScript policies can be generated automatically through

static and dynamic code analysis, which eliminates the need for policies to be developed

manually by policy writers.

Several other aspect-oriented policy-specification languages exist (e.g., [10, 49, 9, 48,

51]); however, such languages synthesize runtime monitors that have only been shown to

be capable of monitoring security-relevant program events as they are attempted by target

programs. Policies that are not properties and liveness properties require mechanisms to

be aware of other possible executions, or the possible future events of an execution, respec-

tively. However, as far as we are aware, there does not exist a general policy-specification

language capable of synthesizing runtime mechanisms that can enforce all kinds of policies

(i.e., hyperproperties, properties, safety, and liveness).

2.2.5 Summary

This section has shown that there exist several models of security mechanisms, with

various capabilities, that help us to understand the class of policies enforceable by such

mechanisms. Such models are important for understanding what types of policies we can

expect security mechanisms to enforce in practice. However, as far as we are aware, no model

proposed in the literature has been shown to capture all kinds of security mechanisms, which

30

makes it difficult to answer the question of whether additional sorts of mechanisms, capable

of enforcing an even larger class of security policies, exist.

Hybrid mechanisms have been shown to enforce policies that are difficult to enforce by

just a static or dynamic mechanism alone (e.g., [82]), but many hybrid mechanisms proposed

in the literature are domain specific, making it difficult to understand the practical limita-

tions of hybrid mechanisms in general. Program rewriters were shown to be a powerful class

of hybrid security mechanisms capable of enforcing all of the statically enforceable policies

and all of the policies enforceable by execution monitors; however, the exact class of policies

enforceable by such mechanisms with respect to known classes from complexity theory is

unknown. A general model capable of capturing arbitrary classes of security mechanisms

might be a first step to determining whether additional classes of security mechanisms exist

and further refining the class of policies enforceable by hybrid mechanisms.

We conclude from prior work that runtime mechanisms can be viewed as generaliza-

tions of static mechanisms when runtime mechanisms can access a program’s code. This

conclusion provides a basis for a unified approach to security policy enforcement.

31

Chapter 3: A Unified Approach

Security mechanisms are typically categorized as static, dynamic, or hybrid mecha-

nisms. This classification is based on the time at which such mechanisms enforce policies

on untrusted programs. Static mechanisms enforce policies on programs before their execu-

tion, dynamic mechanisms enforce policies on programs during their execution, and hybrid

mechanisms enforce policies on programs by using a combination of static and dynamic

enforcement.

While different security mechanisms may differ in the time at which they enforce

security policies— relative to the current execution status of a program—all security mecha-

nisms enforce policies on some granularity of a program event before its execution, irrespec-

tive of the fact that the program as a whole may or may not be currently executing. Static

mechanisms enforce policies on whole programs before their execution, whereas dynamic

mechanisms typically enforce policies on program instructions, or statements, before their

execution. Rather than classifying mechanisms based on when they operate, this disserta-

tion classifies mechanisms based on the granularity of program code that they monitor. This

shift in perspective allows us to cast existing mechanisms into a single framework where all

mechanisms can be encoded as runtime mechanisms that operate at one or more levels of

program code granularity. This chapter presents a unified framework for reasoning about all

security mechanisms and defines levels of granularities at which mechanisms may operate.

32

3.1 Granular Program Events and Traces

The framework presented in this chapter is derived from the mechanism-centric, trace-

based framework presented in [33, 79] and in Chapter 2. The main difference is that previous

work considered the event set E to be a set of atomic program events that, when executed,

cause a system to take a computational step, which we call fine-grained events. We extend

prior work by allowing set E to contain fine-, medium-, and coarse-grained events. Let Ec

denote the set of all possible coarse-grained program events, with metavariable ec ranging

over the individual elements of Ec; Em denotes the set of all possible medium-grained program

events, with metavariable em ranging over the individual elements of Em; Ef denotes the set

of all possible fine-grained program events, with metavariable ef ranging over the individual

elements of Ef . Therefore, E = Ec ∪ Em ∪ Ef and is ranged over by metavariable e.

Following [33, 79], the event set E determines the set E of possible exchanges, ex-

cept in this dissertation Ef = {〈ef , e′〉 | ef ∈ Ef} denotes the set of fine-grained ex-

changes, Em = {〈em, e′〉 | em ∈ Em} denotes the set of medium-grained exchanges, and

Ec = {〈ec, e′〉 | ec ∈ Ec} denotes the set of coarse-grained exchanges. Note that there are no

stipulations placed on the granularity of e′ in each exchange. These definitions are general

in that they do not limit the granularity of the event that can actually be executed. The set

of all exchanges is denoted by E = Ef ∪ Em ∪ Ec.

The distinction between coarse-, medium-, and fine-grained exchanges allows us to

encode hybrid traces within this framework. A trace is hybrid iff it contains at least two

exchanges that are of different granularities. Such traces capture the functionality of hybrid

mechanisms that combine static and dynamic enforcement by first statically analyzing a

whole program and then dynamically enforcing policy-specific constraints on fine-grained

program instructions.

33

Let E∗f denote the set of all finite-length, fine-grained traces, Eωf denote the set of

infinite-length, fine-grained traces, and E∞f = E∗f ∪ Eωf denote the set of all possible fine-

grained traces. Let E∗m denote the set of all finite-length, medium-grained traces, Eωm denote

the set of all infinite-length, medium-grained traces, and E∞m = E∗m ∪ Eωm denote the set of

all possible medium-grained traces. Let E∗c denote the set of all finite-length, coarse-grained

traces, Eωc denote the set of all infinite-length, coarse-grained traces, and E∞c = E∗c ∪Eωc denote

the set of all possible coarse-grained traces. Let E∗h denote the set of all possible finite-length

hybrid traces, Eωh denote the set of all possible infinite-length traces, and E∞h = E∗h ∪ Eωh

denote the set of all possible hybrid traces.

The set of all possible finite-length traces is denoted by E∗ = E∗f ∪E∗m∪E∗c ∪E∗h, the set

of all infinite-length traces is denoted by Eω = Eωf ∪ Eωm ∪ Eωc ∪ Eωh , and the set of all possible

traces is denoted by E∞ = E∞f ∪ E∞m ∪ E∞c ∪ E∞h . It is important to distinguish between the

granularity of program events and traces to ensure that we are able to capture the granularity

of program code that existing classes of static, dynamic, and hybrid mechanisms monitor.

3.2 Mechanisms

All mechanisms presented in this chapter are runtime mechanisms that enforce policies

by intercepting security-relevant events just before they are about to execute. To capture

realistic behaviors of security mechanisms, we model them as automata that can permit,

deny [86], modify [46], suppress, or insert [61] program events based on the rules of a policy.

These capabilities capture the capabilities of existing mechanisms presented in Chapter 2.

Definition 1. A security mechanism is an automaton M = (Q,Q0, I, O, δ), where

• Q is a countable set of automaton states,

• Q0 ⊆ Q is a countable set of initial automaton states,

• I is the set of possible inputs to the mechanism,

34

Input Program Code

Program

Packages

Classes

Methods

InstructionsIn
cr

e
a
si

n
g

G
ra

n
u
la

ri
ty

Mechanism

Output Program Code

Program

Packages

Classes

Methods

Instructions

Figure 3.1. A general security mechanism.

• O is the set of possible outputs from the mechanism, and

• δ is a deterministic or nondeterministic transition function. A deterministic δ is a

function δ : Q× I → Q×O, and a nondeterministic δ is a function δ : Q× I → 2Q×O

It is important to distinguish between deterministic and nondeterministic mechanisms

because there often exist several possible output events for a single input event. For example,

the mechanism can output the input event verbatim, an event to halt the system, or replace

the input event with an entirely new event. This definition is general in that it does not

limit the extent to which mechanisms can transform input events. However, to constrain

mechanisms’ behaviors one can define a deterministic transition function.

An input i ∈ I to or an output o ∈ O from a mechanism can be any well-defined

program construct. For example, Figure 3.1 illustrates how an example Java program is

composed of different granular program constructs. At the coarsest granularity are whole

programs. A whole program can be decomposed into packages, packages can be decomposed

35

into classes, classes can be decomposed into methods, and methods can be decomposed into

fine-grained program instructions.

3.3 Fine-Grained Policy Enforcement

A fine-grained policy ranges over fine-grained traces.

Definition 2. A policy Pf is fine grained iff

Pf ⊆ 2E
∞
f .

Definition 3. A property p̂f is fine grained iff

p̂f ⊆ E∞f .

For the rest of this dissertation Pf and p̂f will denote that the policy, respectively

property, under consideration is fine grained. As stated in Section 3.1, only the first event

in every exchange is required to be a fine-grained event. In every mechanism-centric trace,

the first event in every exchange is an event attempted by a target system; therefore, the

first event in every exchange is an event that could be monitored by, or input to, a security

mechanism.

Fine-grained events include all atomic program instructions including values con-

tained therein. Instructions might be low-level assembly or micro-code instructions, or high-

level language program statements (e.g., method invocations or assignment statements).

Values can be primitive or reference types or a collection of values stored in a data structure

(e.g., integers, objects, or arrays of values).

Previous work encoded system-centric executions as sequences of atomic events, where

each event is an event executed by the system that causes the system to take a computational

step. Mechanism-centric executions were encoded as sequences of exchanges, where both

events in the exchange are fine-grained events. The first event is an event attempted by

36

the target system that might cause it to take a computational step, and the second event is

the event actually executed by the system, causing it to actually take a computational step.

Previous work has shown that all policies can be encoded as fine-grained policies. However,

not all policies are enforceable at such a fine-grained level.

In this framework, a runtime mechanism operates at a fine-grained level if it moni-

tors fine-grained events as they are attempted by the target program. Policies enforceable

at this level do not require mechanisms to access a program’s code. The language moni-

tored by the mechanism determines the granularity for certain types of program events. A

single program statement at the source-code level may consist of several instructions at the

machine-code level. Policies enforceable at a fine-grained level, at the source-code level, may

not be enforceable at a fine-grained level at the machine-code level. For example, consider

again the “no FileWriter.write() after FileReader.read()” policy presented in Chap-

ter 2. FileReader.read() and FileWriter.write() are Java method calls. A runtime

mechanism can enforce this policy at a fine-grained level at either the source or bytecode

level. At the source-code level, a mechanism can directly monitor FileWriter.write() and

FileReader.read() method invocations. At the bytecode level, a mechanism can monitor

java bytecode invokevirtual instructions for the FileWriter.write() and

FileReader.read() method calls. If a program attempts to execute FileWriter.write()

after executing FileReader.read(), one possible way the mechanism can respond to the at-

tempted policy violation is by outputting System.exit(1) to halt the target program. The

mechanism in this case only monitors the invocations of the read() and write() methods

and does not analyze the code body of these methods. A mechanism enforcing such a policy

in this way, by monitoring individual program statements, operates at a fine-grained level.

Now consider a runtime mechanism attempting to enforce the “no

FileWriter.write() after FileReader.read()” policy at the machine-code level. Such a

mechanism may not be able to enforce this policy at a fine-grained level for at least two rea-

37

sons: 1) the language-specific abstractions Filewriter.write() and FileReader.read()

may not exist at the machine-code level, and 2) an optimizing compiler may have replaced

all function call and return statements with the code bodies of functions (i.e., inlining), thus

eliminating a monitor’s ability to monitor function calls.

Fine-grained policy enforcement is beneficial when satisfaction of the policy de-

pends on runtime values. For example, consider again the “no FileWriter.write() after

FileReader.read()” policy except programs can now write to files after a file read if and

only if the name of the file being written to is log.txt. Assuming the file name is only

available at runtime, the policy can be enforced at a fine-grained level because a mechanism

only needs to examine the value of the object instance invoking the write method (i.e., the

name of the file bound to the FileWriter object).

Existing mechanisms that operate at this level of granularity include all runtime mech-

anisms that enforce policies by only monitoring the current fine-grained program execution

and do not access a program’s code. Such mechanisms include execution monitors [86], edit

automata [61], mandatory results automata [33], and stream monitoring automata [72].

Mechanisms operating at this level cannot, in general, precisely enforce hyperproper-

ties [32] that may require relationships to hold between different executions of a program.

This limitation of fine-grained mechanisms exists because such mechanisms have no knowl-

edge of other possible program executions when only monitoring program events as they are

attempted during the current execution.

3.4 Medium-Grained Policy Enforcement

A medium-grained policy ranges over medium-grained traces.

Definition 4. A policy Pm is medium-grained iff

Pm ⊆ 2E
∞
m .

38

Definition 5. A property p̂m is medium grained iff

p̂m ⊆ E∞m .

Henceforth, Pm and p̂m will denote that a policy, respectively property, is medium

grained. Intuitively, medium-grained events exclusively capture all well-defined, modular

language constructs in between fine-grained program statements and whole programs. This

level contains the broadest range of events as different languages contain different constructs.

For example, some medium-grained constructs from the Java programming language include

packages, classes, and methods. More general medium-grained constructs include loops and

conditional statements.

When encoding medium-grained traces, the entire medium-grained construct appears

on the trace because the code body of the construct is considered to be security relevant. For

example, the “no FileWriter.write() after FileReader.read() policy” was shown in Sec-

tion 3.3 to be enforceable at a fine-grained level because only the invocations of the read and

write methods were considered security relevant; but suppose, additionally, that the policy

placed constraints on events executed within FileWriter.write() and FileReader.read().

For example, the output stream, respectively the input stream, should be closed before the

end of the method’s execution. Ideally, a mechanism should be able to determine whether the

code body of the FileWriter.write() and FileReader.read() methods satisfy the policy

before allowing each method to execute. A mechanism attempting to enforce such a policy at

a fine-grained level may have to let the FileWriter.write() and FileReader.read() meth-

ods execute partially until it observes an attempted policy violation. That is, attempting to

return before closing the output (input) stream, at which point the mechanism might either

attempt to correct the execution by inserting an event to close the output (input) stream, if

it has the capability to do so (e.g., [61]), or attempt to roll back the effects of the method’s

partial execution (e.g., [22]). An alternative way to enforce such a policy would be for the

39

mechanism to analyze the code body of the FileWriter.write() and FileReader.read()

methods before their execution to ensure that each corresponding method conforms to the

policy at hand.

In practice, a mechanism enforcing a policy at this level of granularity must be able

to intercept execution at a well-defined point in a program’s execution to ensure that the

mechanism can adequately analyze the medium-grained event before its execution. For

example, consider the application-specific policy stating “all resources acquired within an

application-defined method must be released before the end of the method’s execution” [99,

66]. This policy can be enforced at a medium-grained level in the following way:

1. The mechanism can intercept execution at the invocation of every application-defined

method.

2. With access to the program’s code, the mechanism can perform code analysis on the

body of the intercepted method.

3. If the mechanism can determine that every resource acquired within the method is

released before the end of the method’s execution, then the mechanism can allow the

method to proceed to execute. If the mechanism determines that the program will

potentially violate the policy, then the mechanism can enforce the policy in a way

described by the policy writer (e.g., halting the program).

Such a policy is typically enforced by a static code analyzer because it can examine

all possible execution paths and determine if any of the paths may lead to a policy violation.

However, a sound static code analyzer will reject programs that contain both secure and

insecure paths. The benefit of enforcing such a policy at runtime over enforcing it statically

is to more accurately determine the potential execution paths of a program. For example,

consider the following Java method:

40

Listing 3.1. An example Java method with an unreleased file resource

1 public void wri teSubStr ing (int index , S t r ing s){

2 Fi l eWr i t e r w r i t e r = null ;

3 try{

4 w r i t e r = new Fi l eWr i t e r (new F i l e (” s u b s t r i n g s . txt ”)) ;

5 i f (index < 10){

6 St r ing newS = s . sub s t r i ng (0 , index) ;

7 w r i t e r . wr i t e (newS) ;

8 w r i t e r . c l o s e () ;

9 } else {

10 St r ing newS = s . sub s t r i ng (index) ;

11 w r i t e r . wr i t e (newS) ;

12 }

13 } catch (IOException e){

14 i f (w r i t e r != null){

15 w r i t e r . c l o s e () ;

16 }

17 }

18 }

This method contains both secure and insecure execution paths, with respect to the

policy stating “resources acquired within an application-defined method must be released

before the end of the method’s execution”. The secure execution path may be taken when

the runtime argument for index is less than 10. The insecure execution path may be taken

when the runtime argument for index is greater than or equal to 10. A sound static analyzer

will take into account all possible executions of this method and report that the FileWriter

41

object may not be closed. Assuming that the source code cannot be simply edited, because

it’s not available, the policy may be enforced more precisely at runtime if the mechanism can

determine which branch may be taken by examining the program’s intermediate bytecode,

given the necessary runtime values.

Suppose writeSubString(5,"Hello, World!") is attempted by the program. Knowl-

edge of the runtime values allows a medium-grained mechanism to determine that the if

branch may be taken and, if so, the FileWriter object will be closed; therefore, the method

can proceed to execute. Now assuming writeSubString(10, "Hello, World!") is at-

tempted, the mechanism can then determine that the else branch may be taken and that

the FileWriter object may not be closed. The mechanism can still allow the method to

proceed but, if needed, insert an event to close the FileWriter object just before the method

returns.

Medium-grained policies allow policy writers to take advantage of the modular ab-

stractions of programming languages. Rather than encoding policies as sets of sequences

of fine-grained events, or exchanges, policy writers can reason about some policies more

abstractly by encoding them as sequences of modular events or exchanges. For example,

the “resources acquired within a method must be released before the end of the method’s

execution” property, notated RAA henceforth, places constraints over language-specific ab-

stractions (i.e., methods). RAA can be encoded at a medium-grained level as the set of all

traces containing sequences of valid methods. Let R ⊆ Em be the set of all valid methods

with respect to RAA. One way to encode RAA as a medium-grained property would be

RAAm = {x ∈ E∞m | ∀〈e, e′〉 ∈ x : (e ∈ R⇒ e = e′) ∧ e′ ∈ R}.

This policy consists of traces containing sequences of medium-grained exchanges. It

states that, for every exchange in a trace, if the input event is an element of R (i.e., the

input event satisfies the constraint that all resources acquired within a method are released

42

before the end of the method’s execution) then the input event is allowed to execute (i.e.,

the output event equals the input event); if the input event is not an element of R (i.e., the

input event does not satisfy the policy constraint) then the input event is not allowed to

execute and an event satisfying the constraint is executed instead (i.e., an event that is an

element of R).

In practice, a runtime monitor may enforce RAAm by intercepting program execution

at all method invocations and perform code analysis on the corresponding method body. If

the monitor can determine whether the method is an element of R, then the monitor can

allow the method to proceed uninterrupted. If the monitor determines that the method is

not an element of R, or if the monitor cannot decide whether the method is an element of R,

perhaps due to control flow that depends on runtime information that cannot be determined

at the time of method invocation, then the monitor can output a default method that satisfies

R.

As discussed in Section 3.3, fine-grained hyperproperties requiring relationships to

hold between different executions of a system cannot, in general, be precisely enforced by

mechanisms that operate at a fine-grained level, because they are unaware of other possible

system executions. On the contrary, some hyperproperties, requiring relationships to hold

between executions of a medium-grained event, can be enforced by mechanisms operating at

a medium-grained level. For example, consider the following method:

Listing 3.2. A Java method with an implicit information flow leak

1 public int l e ak (int guess){

2 guess == s e c r e t ? return 0 : return 1 ;

3 }

43

This method returns 0 if argument guess equals secret and returns 1 otherwise.

An implicit information flow exists within this method because the method’s return value

depends on the value of secret. Consider the information-flow policy stating “method

return values must not reveal information about secret values”, notated MNI henceforth—

a variation of noninterference [43], which states that high, or secret inputs, have no observable

effect on low, or public, outputs. This policy is a hyperproperty at a fine-grained level because

an execution x ∈ E∞f containing both secret and public values must be compared with a, so

called, low-equivalent execution x′ ∈ E∞f , which is the same execution as x with all secret

inputs removed, such that x′ only contains low input values and public outputs, to determine

whether there is a distinguishable difference between the two executions. Let E∞fH be the set

of all fine-grained executions containing both secret and nonsecret inputs, and public outputs

such that E∞fh ⊆ E
∞
f ; let E∞fL be the set of all fine-grained executions containing only nonsecret

inputs and public outputs such that E∞fL ⊆ E
∞
f . Let NI : E∞fH × E

∞
fL
→ {true, false} be a

predicate that inputs two fine-grained traces x ∈ E∞fH and x′ ∈ E∞fL such that x′ ≈L x (i.e., x′

is low-equivalent to x) and outputs true if x and x′ are noninterfering, meaning that x′ does

not reveal any information about the secret values in x, and false otherwise. MNI can be

encoded as a fine-grained hyperproperty in the following way:

MNIf = {X ⊆ E∞f | ∀x ∈ X : ∃x′ ∈ X : x′ ≈L x ∧NI(x, x′)}.

Because MNI is only concerned with method return values revealing information

about secret values, we can encode MNI as a medium-grained property ranging over the

possible sequences of method executions. Let NI ⊆ Em now refer to the set of all noninter-

fering methods (i.e., the set of all methods where the low-execution paths of the methods

do not reveal any information about secret values in the high-execution paths of the meth-

ods), and false otherwise. MNI can now be encoded as a medium-grained property in the

following way:

44

MNIm = {x ∈ E∞m | ∀〈e, e′〉 ∈ x : (e ∈ NI ⇒ e = e′) ∧ e′ ∈ NI}

Notice that the fine-grained encoding of MNI (i.e., MNIf) is a policy that is not

a property, because the policy defines a relationship between two fine-grained executions.

The medium-grained encoding of MNI (i.e., MNIm) is a property, because the property

holds on each medium-grained trace in isolation. This change in policy classification is due

to the level of granularity at which the policy is encoded. Conceptually, medium-grained

events capture the code-body of medium grained events. A mechanism enforcing a policy

at a medium-grained level can analyze the body of medium-grained events before allowing

them to execute.

Runtime code analysis allows for more precise policy enforcement—as opposed to

static code analysis—by security mechanisms when they can determine program execution

paths based on runtime values. However, to enforce policies at this level of granularity, policy

writers must be familiar with low-level intermediate or machine code when source code is

not available.

Such medium-grained mechanisms have been used to enforce information-flow poli-

cies, such as information-release policies (e.g., [7]), which is a policy that downgrades the

security level of some information under certain conditions, thus allowing some information

to flow from secret values to nonsecret values. These mechanisms operate by intercepting

program execution at the guard of a conditional statement, and they perform code analysis

on the body of the statement to determine whether allowing the conditional to execute will

leak more sensitive information than what is allowed by the policy.

3.5 Coarse-Grained Policy Enforcement

A coarse-grained policy ranges over coarse-grained traces.

Definition 6. A policy Pc is coarse grained iff

45

Pc ⊆ 2E
∞
c .

Definition 7. A property p̂c is coarse-grained iff

p̂c ⊆ E∞c .

Coarse-grained program events are whole programs. Policies can be enforced at this

level of granularity by performing code analysis on a whole program’s source, intermediate,

or binary code at runtime. Static code analyzers also analyze whole programs but cannot

take into account runtime information.

Static code analyzers can be encoded as runtime mechanisms by implementing them

to intercept program execution at a program’s entry point. For example, in many high-level

languages (e.g., Java, C/C++, and Rust) the entry point is at the main method. If a program

takes command line arguments, these arguments may be used to predict the execution paths

of the program. If the arguments can be used to rule out a number of execution paths, then

coarse-grained mechanisms can be more precise than statically operating mechanisms.

Many coarse-grained policies can be encoded as safety properties, where each trace

in the property is a single exchange containing the input program and an output program

event that satisfies the policy constraint. Recall that the first event in an exchange is an

attempted event, and the second event in an exchange is an event that is actually executed.

To illustrate how policies can be encoded as single-exchanged, coarse-grained prop-

erties, consider an example confidentiality policy, notated NNA, stipulating that programs

cannot access the network, perhaps to prevent them from sending sensitive information over

the network. Let NA ⊆ Ec be the set of all coarse-grained exchanges where the second

event in the exchange does not contain a network access. NNA can then be encoded in the

following way:

NNA = {〈e, e′〉 ∈ Ec | 〈e, e′〉 ∈ NA}

46

.

This coarse-grained policy encoding can capture the executions of static code ana-

lyzers and coarse-grained runtime monitors, where these mechanisms input a coarse-grained

event (i.e., a whole program) and output an event possibly satisfying the policy at hand.

We can determine whether a static code analyzer or coarse-grained runtime monitor soundly

enforces a policy by determining whether the set of mechanism executions is a subset of the

policy executions.

Due to the undecidability of coarse-grained code analysis, runtime mechanisms oper-

ating at this level cannot always precisely enforce policies; however, in some cases where the

decidability of the policy only depends on the runtime information gathered at the program’s

entry point (i.e., the command line arguments), coarse-grained runtime monitors can be more

permissive than static code analyzers. Programs containing both secure and insecure runs,

where the security of such programs depends on the values of command line arguments, will

always be rejected by static code analyzers. In contrast, coarse-grained runtime monitors

may be able to accept only the secure runs of such programs on the basis of their runtime

values.

3.6 Hybrid Policy Enforcement

Hybrid policies range over hybrid executions, where hybrid executions contain ex-

changes encoded at two or more levels of granularity.

Definition 8. A policy Ph is hybrid iff

Ph ⊆ 2E
∞
h

Definition 9. A property p̂h is hybrid iff

p̂h ⊆ E∞h

47

Traditionally, hybrid mechanisms enforce policies by combining static code analysis

and runtime enforcement. We’ve shown in Section 3.5 that static code analyzers can be en-

coded as runtime mechanisms that monitor code at a coarse-grained level and in Section 3.3

that traditional, general-purpose runtime mechanisms are fine-grained mechanisms. Tradi-

tional hybrid mechanisms can be encoded in this framework as pure runtime mechanisms

that monitor both coarse- and fine-grained program events. However, our approach to hybrid

policy enforcement is more general because a hybrid policy ranging over hybrid executions

can contain coarse-, medium-, and fine-grained exchanges.

Mechanisms that enforce policies exclusively at coarse- or medium-grained levels may

not always be able to precisely predict control flow when medium-grained events are deeply

nested within coarse- and other medium-grained events (e.g., nested method calls). How-

ever, hybrid runtime mechanisms can overcome this limitation by refining policy enforcement

during a program’s execution. For example, program rewriters can be encoded as hybrid

runtime mechanisms by intervening at a program’s entry point for coarse-grained code anal-

ysis. If code modification or inlined checks are necessary, the mechanism can output a new

version of the program with the necessary modifications. A mechanism operating in this

way is similar to runtime mechanisms that replace unsafe library function calls with safe

versions (e.g., [14]), except the hybrid runtime mechanism outputs a coarser-grained pro-

gram event, namely a safe program, with inlined checks for medium- or fine-grained events.

If the mechanism cannot decide how to respond when a medium-grained event is reached

during execution, perhaps due to nested method calls depending on runtime information,

the mechanism can further refine policy enforcement by outputting a new medium-grained

event with inlined checks to collect runtime information when the nested method calls are

reached.

48

Chapter 4: Fine-Grained Policy Enforcement on Coauthentication

This chapter presents Coauthentication, which is a family of cryptographic protocols

for authentication [63]. Section 4.1 presents a brief overview of Coauthentication. Section 4.2

presents a protocol variant of Coauthentication, and Section 4.3 demonstrates how forward

secrecy is a property that can be enforced at a fine-grained level on the protocol variant

presented in Section 4.2. Section 4.4 presents formal verification results of the forward-

secure Coauthentication protocol, illustrating that the protocol does indeed satisfy forward

secrecy.

4.1 Coauthentication

Coauthentication [63] is a multi-instance, single-factor authentication method de-

signed to mitigate theft-based, phishing, man-in-the-middle, and replay attacks, which are

all common attacks for single-factor authentication methods [71]. Possible single-factor au-

thentication methods are either knowledge-based (e.g., PINs or passwords), token-based

(e.g., authentication card), or biometrics-based (e.g., fingerprints or retina scan).

Multi-factor authentication methods aim to improve security by combining two or

more factors. For example, token- and knowledge-based factors can be combined to withdraw

money from ATM machines (i.e., a debit card and PIN). Multi-factor authentication methods

improve security because each factor must be compromised in order for an attack to be

successful [68]. However, when combining multiple factors, the overall authentication method

inherits each of the weaknesses and inconveniences associated with each factor. For example,

combining a debit card and PIN requires a user to remember to carry the debit card and

49

1)

2)

3)

4)

5)

6)

Authenticator Requestor Collaborator

Message	Legend:
1) 𝑅, {𝐴𝑢𝑡ℎ𝑅𝑒𝑞,𝑁!}"!"
2) 𝐴, {𝑅, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#}"!"}"!#
3) 𝐴, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#}"!"
4) 𝑅, 𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑠𝑝, 𝐶, 𝑁# "!"
5) 𝐴, 𝐾$", 𝐶, 𝑁! "!"
6) 𝑅, 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑚𝑒𝑛𝑡 "$%

Figure 4.1. A variation of a 2-device Coauthentication protocol.

remember the PIN. If a user loses the debit card, the user cannot authenticate to an ATM

with knowledge of the PIN alone; conversely, if the user forgets the PIN, in most cases, the

user cannot withdraw money with the debit card alone.

Coauthentication is designed to improve security in a way that multi-factor authen-

tication does (i.e., requiring successful attacks to compromise all authentication factors in-

volved) but without inheriting the weaknesses and inconveniences of multiple factors. Coau-

thentication is a token-based authentication method that requires users to use multiple

preregistered devices to authenticate to a system or service. Because Coauthentication only

requires devices, Coauthentication is a single-factor method; however, we call it a multi-

instance, single-factor method because Coauthentication requires at least two devices to

authenticate to a system or service (i.e., multiple instances of the required factor).

The next section introduces a variation of a 2-device Coauthentication protocol.

50

4.2 Coauthentication Protocol

The 2-device Coauthentication protocol, shown in Figure 4.1, consists of three com-

ponents: a requesting device, called the requestor, a collaborating device, called the collab-

orator, and an authentication server, called the authenticator. During device registration,

the authenticator and the requestor share a secret key KAR, and the authenticator and the

collaborator share a secret key KAC .

To authenticate to a service:

1. The requesting device initiates a Coauthentication session by sending its identifier R

and a message encrypted with key KAR to the authenticator. The encrypted message

contains an authentication request AuthReq and a nonce N1, which will authenticate

the authenticator to the requestor.

2. The authenticator decrypts message 1) and sends its identifier A along with a doubly

encrypted message to the collaborating device; the inner message contains a collabo-

ration request CollabReq, the collaborator’s identifier C, and a nonce N2, which will

authenticate the collaborator to the authenticator, all encrypted with key KAR. The

outer message contains the inner message, and the requestor’s identifier R encrypted

with key KAC .

3. The collaborator decrypts the outer message of message 2) and forwards the authen-

ticator’s identifier A and the inner message to the requestor. The authenticator’s

identifier is sent to inform the requestor that the message originated from the authen-

ticator. Therefore, the requestor should use the key shared between itself and the

authenticator to decrypt the message (i.e., KAR).

51

4. The requestor decrypts message 3) and sends its identifier R and a message encrypted

with KAR containing a collaboration response CollabResp, the collaborator’s identifier

C, and nonce N2 to the authenticator.

5. The authenticator decrypts message 4) and sends its identifier A and a message en-

crypted with KAR containing a session key KSK , the collaborator’s identifier C, and

nonce N1 to the requestor.

6. The requestor decrypts message 6) with KAR and sends its identifier R and a message

encrypted with the session key KSK containing an acknowledgement to the authenti-

cator.

Given n ≥ 2 preregistered devices, Coauthentication requires at least m ≥ 2 of the

preregistered devices to participate in an authentication. Therefore, the minimum number

of devices required for Coauthentication is two devices. The security of Couathentication

improves when n > 2. For example, if the number of preregistered devices n = 3 then

a user can authenticate with any number of m devices such that n ≥ m ≥ 2, providing

flexibility for a user to authenticate with any 2 out of the 3 preregistered devices. With

the n ≥ m ≥ 2 constraint, Coauthentication protects against the compromise of at most

m − 1 cryptographic keys. In the 2-device Coauthentication protocol shown in Figure 4.1,

Coauthentication protects against the compromise of at most one cryptographic key.

4.3 Enforcing Forward Secrecy

Forward secrecy is a desirable property for many authentication protocols. It requires

the session keys, which are short-term cryptographic keys, of previous sessions to be protected

from adversaries in the event that an adversary obtains a long-term cryptographic key in a

future session [73].

52

The protocol shown in Figure 4.1 does not satisfy forward secrecy. If an attacker ob-

tains KAR, the attacker can use KAR to obtain the session keys of previous Coauthentication

sessions, because KAR is never updated.

We can enforce forward secrecy on the 2-device Coauthentication protocol shown in

Figure 4.1 at a fine-grained level by equipping each preregistered, target device (i.e., the

requestor and collaborator) and the authenticator with a runtime monitor that enforces

forward secrecy, as shown in Figure 4.2. Each monitor monitors all messages incoming to

and outgoing from its target device and has the ability to modify messages as necessary. Each

monitor can be viewed as an inlined reference monitor that is inlined into its corresponding

target device; therefore, all messages sent between a target device and its corresponding

runtime monitor are local to the device and not publicly observable.

Device registration for the protocol shown in Figure 4.2 is similar to device registration

for the protocol shown in Figure 4.1. The authenticator and requestor share a secret key

KAR, and the authenticator and the collaborator share a secret key KAC . Each runtime

monitor has access to the secret keys stored by its corresponding target device. That is, the

requestor monitor has access to KAR, the collaborator monitor has access to KAC , and the

authenticator monitor has access to all keys stored by the authenticator (i.e., KAR and KAC).

Furthermore, the authenticator monitor and the requestor monitor also initially share secret

key KAR, and the authenticator monitor and the collaborator monitor initially share secret

key KAC at device registration. During the protocol, the secret keys shared between each

device and the authenticator will remain the same, while the secret keys shared between the

runtime monitors will be updated to ensure forward secrecy.

At the start of the coauthentication session, the requestor will attempt to send an

authentication request to the authenticator. This message is intercepted by the requestor’s

monitor, decrypted with the key shared between the requestor and authenticator KAR, re-

encrypted with the key shared between the requestor monitor and the authenticator monitor,

53

Authenticator
Monitor

Requestor
Monitor

Collaborator
Monitor

1)2)3)
4)

5)
6)
7)

8)
9)

10)
11)

12)
13)

14)
15)
16)

17)
18)

Authenticator Requestor Collaborator

Message	Legend:
1) 𝑅, {𝐴𝑢𝑡ℎ𝑅𝑒𝑞,𝑁!}"!"
2) 𝑅, {𝐴𝑢𝑡ℎ𝑅𝑒𝑞,𝑁!}"!"
3) 𝑅, {𝐴𝑢𝑡ℎ𝑅𝑒𝑞,𝑁!}"!"
4) 𝐴, {𝑅, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#}"!"}"!#
5) 𝐴, {𝑅, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#, 𝐾$%&, 𝐾′′%&}"!"}"!#
6) 𝐴, {𝑅, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#, 𝐾$%&, 𝐾′′%&}"!"}"!#
7) 𝐴, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#, 𝐾$%&, 𝐾′′%&}"!"
8) 𝐴, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#, 𝐾$%&, 𝐾′′%&}"!"
9) 𝐴, {𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑞, 𝐶, 𝑁#}"!"
10) 𝑅, 𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑠𝑝, 𝐶, 𝑁# "!"
11) 𝑅, 𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑠𝑝, 𝐶, 𝑁# "!"

$

12) 𝑅, 𝐶𝑜𝑙𝑙𝑎𝑏𝑅𝑒𝑠𝑝, 𝐶, 𝑁# "!"
13) 𝐴, 𝐾'", 𝐶, 𝑁! "!"
14) 𝐴, 𝐾'", 𝐶, 𝑁! "!"

$

15) 𝐴, 𝐾'", 𝐶, 𝑁! "%&
16) 𝑅, 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑚𝑒𝑛𝑡 "%&
17) 𝑅, 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑚𝑒𝑛𝑡 "%&
18) 𝑅, 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑚𝑒𝑛𝑡 "%&

Figure 4.2. Enforcing forward secrecy on a 2-device couathentication protocol.

which is also KAR for the first run of coauthentication, and sent to the authenticator monitor.

The authenticator monitor decrypts the message with the key shared between itself and the

requestor monitor KAR, re-encrypts with the key shared between the authenticator and

requestor KAR, and forwards the message to the authenticator.

The authenticator then attempts to send a collaboration request to the collaborator,

which is a doubly encrypted message. The inner message is encrypted with the secret key

shared between the authenticator and requestor KAR, and the outer message is encrypted

with the secret key shared between the authenticator and the collaborator KAC . The authen-

ticator monitor intercepts this message, decrypts the message first with KAC and then with

KAR, injects two new keys K ′AR and K ′′AR into the inner message, re-encrypts the inner mes-

sage with the key shared between itself and the requestor monitor KAR and re-encrypts the

outer message with the secret key shared between itself and the collaborator monitor KAC ,

and sends the message to the collaborator monitor. The collaborator monitor decrypts the

message with the key shared between itself and the authenticator monitor KAC , re-encrypts

54

the message with the key shared between the collaborator and the authenticator KAC , and

forwards the message to the collaborator.

The collaborator decrypts the message with the key shared between itself and the au-

thenticator KAC and then attempts to forward the inner encrypted message to the requestor.

The collaborator monitor intercepts the message, and sends the message to the requestor

monitor over a private channel, assumed to be inaccessible to an attacker. The requestor

monitor decrypts the message with the key shared between itself and the authenticator mon-

itor, extracts the two new keys K ′AR and K ′′AR, updates the key shared between itself and

the authenticator monitor to K ′AR, re-encrypts the rest of the message with the key shared

between the requestor and authenticator KAR, and sends the message to the requestor.

The requestor then decrypts the message with the key shared between itself and the

authenticator KAR, and attempts to send a collaboration response to the authenticator, en-

crypted with KAR. The requestor monitor intercepts this message, decrypts it with the key

shared between the requestor and the authenticator KAR, re-encrypts it with the key shared

between itself and the authenticator monitor K ′AR, and sends the message to the authenti-

cator monitor. The authenticator monitor then decrypts the message with the key shared

between itself and the requestor monitor K ′AR, re-encrypts it with the key shared between

the authenticator and the requestor KAR, and sends the message to the authenticator.

The authenticator then decrypts the message with KAR and attempts to send the

session key encrypted with KAR to the requestor. The authenticator monitor then decrypts

the message with KAR, re-encrypts it with K ′AR, and sends the message to the requestor

monitor. The requestor monitor then decrypts the message with K ′AR, re-encrypts it with

KAR, and sends the message to the requestor.

The requestor decrypts the message with KAR, extracts the session key, and attempts

to send an acknowledgement to the authenticator encrypted with the session key KSK .

The requestor monitor then forwards the message to the authenticator monitor, and the

55

authenticator monitor then forwards the message to the authenticator. Secret key K ′AR is

discarded at the end of the current coauthentication session, and the authenticator monitor

and requestor monitor both update the key shared between themselves to secret key K ′′AR.

On the next Coauthentication session, the requestor will attempt to send an authenti-

cation request encrypted with KAR. The requestor monitor will then intercept this message,

decrypt it with KAR because it can access the key shared between the requestor and au-

thenticator, re-encrypt the authentication request with the key shared between itself and

the authenticator monitor K ′′AR, and send the message to the authenticator monitor. The

rest of the protocol will continue as pictured in Figure 4.2, with each monitor decrypting all

messages outgoing from its target device with the key shared between the target device de-

vice and the destination device, and re-encrypting the messages with the key shared between

itself and the runtime monitor of the destination device; conversely, each monitor decrypts

each incoming message from a runtime monitor with the key shared between itself and the

runtime monitor, and re-encrypts the message with the key shared between its corresponding

target device and the origin device.

4.4 Formal Evaluation

The principal security properties of the example Coauthentication protocols shown

in Figures 4.1 and 4.2 have been formally verified with ProVerif [23, 24]. ProVerif uses

a resolution-based strategy to verify that protocols satisfy desired security properties. A

benefit of using ProVerif is that it can model arbitrarily many sessions of a protocol running

concurrently.

4.4.1 Protocol Modeling

The protocol encodings faithfully follow the communications shown in Figures 4.1

and 4.2. To model key updates in the protocol shown in Figure 4.2, we used key tables [25,

56

p.37]. These key tables are only accessible to the runtime monitors of the legitimate actors

(i.e., Requestor Monitor, Authenticator Monitor, and Collaborator Monitor) of the protocol.

The protocols dynamically generate new keys (i.e., K ′AR and K ′′AR) during an authentication

session, and at the end of the session, the new long-term key (K ′′AR) gets inserted into the

key table.

Each protocol session ran six processes (i.e., authenticator, authenticator monitor,

requestor, requestor monitor, collaborator, and collaborator monitor) and the main ProVerif

process considered arbitrarily many sessions of a protocol running concurrently.

The ProVerif encodings of the Coauthentication protocols shown in Figures 4.1 and 4.2,

and the properties verified, are available online [35].

4.4.2 Attack Models and Assumptions

Coauthentication, like multi-factor techniques, protects against theft of any one au-

thentication secret. The secrets in Coauthentication are cryptographic keys. Theft of Coau-

thentication secrets may occur in any way, including by remotely compromising devices to

obtain their stored keys or physically stealing devices.

Attackers are assumed to be active and can eavesdrop on, insert, delete, and modify

communications. Attackers may mount replay and man-in-the-middle attacks and are not

constrained to operate according to any of the protocols.

Attackers are however assumed to be incapable of cryptanalysis; attackers can only

infer plaintexts from ciphertexts when also having the required secret key. Without such an

assumption, attackers could extract credentials like session keys simply by monitoring and

cryptanalyzing legitimate authentications.

The Coauthentication protocol presented in Figure 4.2 protects against attackers who

know all of the secrets stored on a device that the victim user possesses. We call such attacks

key-duplication attacks. For example, an attacker may duplicate a device’s secret keys by

57

remotely compromising the device. Alternatively, the attacker may physically steal a device,

duplicate all keys accessible to the device, and return the device to the victim user, who may

be unaware of the theft and duplication.

To protect against key-duplication attacks, the Coauthentication protocol presented

in Figure 4.2 assumes that a private communication channel, inaccessible to attackers, exists

between the requestor and collaborator devices. Such an assumption is necessary because

the duplicated keys must be updated through some channel inaccessible to the attacker;

otherwise, the attacker—who has all of the victim device D’s keys—could decrypt and obtain

any updated keys sent to D, and modify any updated keys sent from D. Private channels

may be implemented with short-range communications, such as NFC, zigbee, wireless USB,

infrared, or near-field magnetic induction, under the assumption that attackers cannot access

such communications because they are on direct, device-to-device channels.

The Coauthentication protocol presented in Figure 4.1 does not require a private

channel between the requestor and collaborator devices; consequently, this protocol does not

protect against key-duplication attacks. Therefore, we assume a weaker attack model for

this protocol, one that assumes authentication secrets (KAR and KAC) are only accessible

to attackers through device theft (without duplicating the keys, and returning, the devices).

In other words, the attack model for this all-public-channel protocol assumes that if an

attacker obtained a device D’s authentication secret, then D’s legitimate user no longer

posesses D. In terms of the ProVerif encodings, this weaker attack model means that,

in cases where attackers are assumed to know KAR, the collaborator does not respond to

collaboration requests. The justification is that if an attacker has acquired KAR, then by

assumption the legitimate user does not possess the requestor, so collaboration requests must

be for unauthorized, attacker-initiated authentications. It is assumed that, with appropriate

collaboration policies, users do not approve collaborations for unauthorized authentications.

58

Table 4.1. Verification setup of each protocol for three different runs.

Attackers’ Knowledge
Protocol Run 1 Run 2 Run 3

Figure 4.1 No secrets KAC KAR

Figure 4.2 No secrets KAC KAR and K ′′AR

Both Coauthentication protocols presented in this dissertation assume that devices

in the user’s possession run as intended during the Coauthentication process. Without such

an assumption, malware on the user’s requestor device could simply leak decrypted session

keys or any other unencrypted private data, and malware on the user’s collaborator device

could simply approve an attacker’s authentication requests. Protecting against malware that

is actively running on a device in the user’s possession, while the user is authenticating, is

beyond the scope of coauthentication.

Both Coauthentication protocols presented in this dissertation also assume that au-

thenticators run as intended during the Coauthentication process. Without such an as-

sumption, malware on the authenticator could simply leak secrets or allow all authentication

requests. Protecting against malware on authenticators is beyond the scope of Coauthenti-

cation.

4.4.3 Verification Setup

Each protocol was verified in 3 runs; as shown in Table 4.1.

1. The first run began with attackers knowing no secret keys.

2. The second run began with attackers knowing the long-term key accessible to the

collaborator. That is, attackers were given KAC ;

59

Table 4.2. Verification results,“3” indicates that ProVerif proved the property.

P1: Secrecy of the KSK P2: Authentication of R to A P3: Authentication of A to R
Protocol Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Figure 4.1 3 3 3 3 3 3 3 3 3

Figure 4.2 3 3 3 3 3 3 3 3 3

3. The third run began with attackers knowing all the long-term keys accessible to the

requestor. For the protocol shown in Figure 4.1, attackers were given KAR, and for the

protocol shown in Figure 4.2, attackers were given KAR and K ′′AR.

In all 3 runs of each of the protocols, we verified the following security properties.

1. P1: Secrecy of the session key.

• The session key KSK is only known to the authenticator and requestor. This

property subsumes forward secrecy of session keys (KSK) in the third run of the

protocol shown in Figure 4.2 because knowing the requestor’s future authentica-

tion secret K ′′AR does not leak session keys.

2. P2: Authentication of R to A.

• With one exception, we specified authentication of R to A as requiring that if the

authenticator receives an acknowledgment of a session key (and therefore believes

it shares the session key with the requestor) then the requestor was indeed its

interlocutor and the collaborator indeed collaborated. This is an event-based

property [100] having the form

endA =⇒ (beginA ∧ collabA),

60

where endA refers to the event of A receiving the acknowledgment, beginA to

R sending the authentication request, and collabA to C sending its participation

message (in the eighth message of Figure 4.2 and the third message of Figure 4.1).

The one exception to encoding P2 in this way is for the second run of the all-

public-channel protocol (Figure 4.1), where the attacker is given the long-term

key accessible to the collaborator (i.e., KAC). In this case, the attacker may use

the collaborator’s key to obtain and collaborate with legitimate authentication re-

quests, thus helping legitimate authentications succeed, which we do not consider

an attack. Therefore, for the second run of the Figure 4.1 protocols, we specify

property P2 as only requiring

endA =⇒ beginA,

that is, if the authenticator believes it shares the session key with the requestor

then the requestor was indeed its interlocutor (but the attacker, rather than the

collaborator, may have collaborated).

3. P3: Authentication of A to R.

• This property is symmetric to P2 and, with one exception, requires that if the

requestor sends an acknowledgment of a session key (and therefore believes it

shares the session key with the authenticator) then the authenticator was indeed

its interlocutor and the collaborator indeed collaborated. This property has the

form

endR =⇒ (beginR ∧ collabR),

where endR refers to R sending the acknowledgment, beginR to A receiving the

authentication request, and collabR to C sending its participation message.

61

As with P2, the one exception to encoding P3 in this way is for the second run

of the all-public-channel protocol (Figure 4.1), in which case P3 only requires

endR =⇒ beginR,

for the same reason explained for property P2.

4.4.4 Verification Results

Table 4.2 shows the verification results. ProVerif found no attacks on any of properties

P1–P3 in any runs of either of the protocols. That is, ProVerif did not refute any of P1–P3

in any runs of either of the protocols.

ProVerif proved P1–P3 for all three runs of both protocols. We also note that these

results are for the stronger, injective-correspondence versions of properties P2 and P3. The

injective-correspondence versions require there to be a unique predecessor event for each

end event [25, pp.19–22]; for example, the injective version of P2 requires that for each

endA event there exists a unique beginA predecessor event. The non-injective versions allow

end events to have non-unique predecessor events. ProVerif was able to prove the weaker,

non-injective version of property P2 for all runs of both protocols.

62

Chapter 5: Implementation

This chapter presents details about our prototype implementation of the theoretical

framework presented in Chapter 3 and explains how granular security policies can be enforced

on Java bytecode applications at runtime.

5.1 Architecture

The implementation is composed of 3 core components: AspectJ, a code analyzer,

and JaBRO.

5.1.1 AspectJ

AspectJ is an aspect-oriented Java language extension that allows policy writers to

define aspects [54], similar to Java classes. Aspects contain pointcuts, which capture one

or more join points, and advice. “Join points are well-defined points in the execution of

the program” [54, p. 329]. Table 5.1 lists the join point types allowed by AspectJ and the

possible policy granularities enforceable at each join point. The main method execution is

the only join point that can be used to enforce a coarse-grained policy because it is the entry

point of the program. Any join point that has a body of code provides the capability for

enforcing medium-grained policies, and every join point provides the capability for enforcing

fine-grained policies, because fine-grained policies do not require code analysis. Advice is

a block of code written by the policy writer that directs a mechanism on how to enforce a

particular policy. Before advice directs a mechanism to execute some block of code before a

security-relevant event occurs. For example, a policy may require all file system operations

63

Table 5.1. Possible policy granularities enforceable at each AspectJ join point type.

AspectJ join point type Coarse Medium Fine
Main method execution X X X

Non-main method execution X X
Method call X X

Constructor call X X
Static-initializer execution X X
Object pre-initialization X X

Object initialization X X
Handler execution X X
Advice execution X X
Field reference X

Field assignment X

to be logged. Therefore, the mechanism can intercept all file system operations and log

them before allowing them to proceed. After advice directs a mechanism to execute some

block of code after a security-relevant event occurs, but before proceeding to the next event.

For example, a mechanism may be required to execute additional code after an exception is

thrown. Lastly, around advice directs a mechanism to execute a block of code instead of a

security-relevant event. For example, a mechanism can replace all unsafe library methods

with safe versions.

5.1.2 Code Analyzer

The code analyzer is code written by the policy writer to analyze Java class files

(e.g., data or control flow analysis). This analysis ensures that a body of code adheres to

the security policy in question. For example, a policy may disallow Java applications from

running external programs. To enforce this policy, a code analyzer can analyze all class files

of an application to ensure that the application does not use the java.lang.Runtime.exec()

method.

64

5.1.3 JaBRO

JaBRO (Java Bytecode Rewriter and Optimizer) is an extensible Java library that we

have developed to extend the functionality of AspectJ to enable code analysis on optimized

bytecode at runtime. It is composed of Javassist [29], which is a Java library for editing Java

bytecode, and Soot [93], which is a program analysis and code optimization tool for Java

bytecode.

JaBRO uses Javassist to rewrite Java bytecode to include runtime arguments that are

observed during a program’s execution. JaBRO is currently able to rewrite Java bytecode

to include runtime arguments of all primitive types, and String and File objects. Once

JaBRO rewrites the bytecode of the original application to include runtime information,

JaBRO invokes Soot to propagate the runtime information throughout the application and

performs program optimizations where necessary. JaBRO is extensible because policy writers

can extend JaBRO to be able to rewrite Java bytecode to include runtime arguments of

arbitrary types.

The following code in Listing 5.1 illustrates how a policy writer may write an aspect

that uses JaBRO to enforce a policy on the example writeSubString method presented in

Chapter 3.

65

Listing 5.1. An example aspect for enforcing a medium-grained policy

1 public aspect Monitor{
2 void around (int i , S t r ing s) :
3 c a l l (public void wri teSubStr ing (int , S t r ing))
4 && args (i , s){
5 St r ing className = th i s Jo inPo in t . ge tS ignature ()
6 . getDeclaringTypeName () ;
7 St r ing methodName = th i s Jo inPo in t . ge tS ignature ()
8 . getName () ;
9 St r ing dependenc ies = System

10 . getProperty (‘ ‘ use r . d i r ’ ’)
11 +F i l e . s epa ra to r + ‘ ‘ example . j a r ’ ’ ;
12

13 try{
14 JaBRO j = new JaBRO(className , methodName ,
15 new Object [] { i , s } , dependenc ies) ;
16 F i l e f = j . runMediumMethod () ;
17 CodeAnalyzer c = new CodeAnalyzer (f) ;
18 i f (c . checkResourcesReleased ()){
19 proceed (i , s) ;
20 } else {
21 defaultMethod () ;
22 }
23 } catch (Exception e){ /∗ omit ted ∗/}
24 }
25 }

The advice and pointcut is specified in lines 2–4. This policy uses around advice be-

cause if the method violates the policy, the policy writer can direct the mechanism to output

an alternative method that does not violate the policy. The advice takes two arguments

String s and int i, which corresponds to the runtime arguments for the writeSubString

method. The pointcut call(public void writeSubString(int,String)) denotes the

security-relevant event to intercept, and args(i,s) binds int i and String s to the run-

time arguments of writeSubString. Lines 5-6 use the thisJoinPoint construct to obtain

writeSubString’s enclosing class name (i.e., the class that writeSubString is declared

66

Target
Program

Policy

Aspect

Monitored
Program

AspectJ
Compiler

Figure 5.1. Weaving a fine-grained policy into a target program.

in). Lines 7-8 use the thisJoinPoint construct to get the fully qualified method name for

writeSubString. The program’s dependencies are retrieved from the path to the program

in line 9. Java applications can be packaged as JAR files that contain all of an application’s

dependent class files. We can retrieve the application dependencies by specifying the path

to the application’s JAR file. In this case, we assume writeSubString is a part of the

example.jar application. Lines 14-15 create a new JaBRO object that takes as input the

method’s enclosing class name, the fully qualified method name, an array of the method’s

arguments, and the program’s dependencies. JaBRO is then invoked for a medium-grained

method and returns the class file with an optimized writeSubString method in line 16. The

optimized class file is passed to the code analyzer in line 17. If writeSubString satisfies

the policy then writeSubString proceeds with its original runtime arguments in line 19,

otherwise the policy writer specifies how the mechanism should handle the policy violation

in line 21 (i.e., execute a defaultMethod() assumed to satisfy the policy at hand).

JaBRO allows policies that are conservatively enforced statically to be enforced more

precisely at runtime by taking into account runtime information. Policy writers can use

JaBRO as an external library to aid in precise policy enforcement when writing policies to

be enforced at runtime. JaBRO is publicly available online [34].

67

Target
Program

Policy

Aspect

JaBRO

Monitored
Program

Code
Analyzer

AspectJ
Compiler

Figure 5.2. Weaving a coarse- or medium-grained policy into a target program.

Event
context,
program
dependencies

Optimized
class file(s)

JaBRO
Policy

Decision
Point

Underlying
Executing

System

Security-
relevant
event

Analysis
result(s)

Execute,
insert, or
suppress
event

Aspect

Po
in

tc
ut

Advice

Monitored
Program

Code
Analyzer

Figure 5.3. Runtime enforcement of coarse- or medium-grained policy.

5.2 Policy Enforcement

Coarse- and medium-grained policies are composed of an aspect, JaBRO, and a code

analyzer. Fine-grained policies only consist of an aspect and can be implemented with

just the native AspectJ language constructs because they do not require code analysis. To

monitor the target program, the AspectJ compiler is used to weave the policy into the target

program, producing a self-monitoring program as shown in Figures 5.1 and 5.2.

Figure 5.3 illustrates how coarse- and medium-grained policies are enforced during a

monitored program’s execution:

1. A security-relevant event is intercepted by a pointcut.

68

Event
context

Policy
Decision

Point

Underlying
Executing

System

Security-
relevant
event

Execute,
insert, or
suppress
event

Aspect

Po
in

tc
ut

Advice

Monitored
Program

Figure 5.4. Runtime enforcment of a fine-grained policy.

2. Event context information, which includes the event name, its enclosing class name,

and runtime arguments, and the program’s dependencies are input to JaBRO, which

is invoked from inside of the advice.

• AspectJ provides the capability to obtain the event context information through

the join point construct.

• The program’s dependencies are needed to resolve type information during the

optimization process.

JaBRO uses the event’s context information to obtain the class file in which the event

is declared from the system search path. JaBRO then rewrites the event to include

its runtime arguments within the event’s code body. If the policy is coarse grained,

JaBRO optimizes all of the program’s class files. If the policy is medium grained,

JaBRO only optimizes the class file that the event is declared in.

3. Code analysis is performed on the optimized class file(s), and an analysis result is

output.

4. The policy decision point decides to execute, suppress, or insert an event based on the

analysis result.

To further illustrate JaBRO’s functionality and its importance, consider the

writeSubString(5,"Hello, World!") method call presented in Chapter 3. After obtain-

69

ing writeSubString’s enclosing class file, JaBRO first rewrites the method by inserting the

method’s runtime arguments in the following way:

Listing 5.2. JaBRO rewriting a method with its runtime argumented

1 public void wri teSubStr ing (int index , S t r ing s){

2 int index = 5 ;

3 St r ing s = ” Hel lo , World ! ” ;

4 Fi l eWr i t e r w r i t e r = null ;

5 try{

6 w r i t e r = new Fi l eWr i t e r (new F i l e (” s u b s t r i n g s . txt ”)) ;

7 i f (index < 10){

8 St r ing newS = s . sub s t r i ng (0 , index) ;

9 w r i t e r . wr i t e (newS) ;

10 w r i t e r . c l o s e () ;

11 } else {

12 St r ing newS = s . sub s t r i ng (index) ;

13 w r i t e r . wr i t e (newS) ;

14 }

15 } catch (IOException e){

16 i f (w r i t e r != null){

17 w r i t e r . c l o s e () ;

18 }

19 }

20 }

After rewriting, JaBRO propagates the arguments throughout the method in the

following way:

70

Listing 5.3. JaBRO propagating runtime values throughout the method

1 public void wri teSubStr ing (int index , S t r ing s){

2 int index = 5 ;

3 St r ing s = ” Hel lo , World ! ” ;

4 Fi l eWr i t e r w r i t e r = null ;

5 try{

6 w r i t e r = new Fi l eWr i t e r (new F i l e (” s u b s t r i n g s . txt ”)) ;

7 i f (5 < 10){

8 St r ing newS = ” Hel lo , World ! ” . sub s t r i ng (0 , 5) ;

9 w r i t e r . wr i t e (newS) ;

10 w r i t e r . c l o s e () ;

11 } else {

12 St r ing newS = ” Hel lo , World ! ” . sub s t r i ng (5) ;

13 w r i t e r . wr i t e (newS) ;

14 }

15 } catch (IOException e){

16 i f (w r i t e r != null){

17 w r i t e r . c l o s e () ;

18 }

19 }

20 }

After propagating the arguments throughout the method, JaBRO optimizes the

method in the following way:

71

Listing 5.4. JaBRO optimizing a method

1 public void wri teSubStr ing (int index , S t r ing s){

2 Fi l eWr i t e r w r i t e r = null ;

3 try{

4 w r i t e r = new Fi l eWr i t e r (new F i l e (” s u b s t r i n g s . txt ”)) ;

5 St r ing newS = ” Hel lo , World ! ” . sub s t r i ng (0 , 5) ;

6 w r i t e r . wr i t e (newS) ;

7 w r i t e r . c l o s e () ;

8 } catch (IOException e){

9 i f (w r i t e r != null){

10 w r i t e r . c l o s e () ;

11 }

12 }

13 }

Given the runtime values, JaBRO is able to eliminate the else branch. A policy

stipulating that file resources acquired in a method be released before the end of the method’s

execution can be enforced more precisely by performing code analysis on the optimized

method, shown in Listing 5.4, rather than on the original method, shown in Listing 3.1.

Figure 5.4 illustrates how policies can be enforced at a fine-grained level. Similar to

coarse- and medium-grained policies, security-relevant events are intercepted by pointcuts

defined in the aspect. The policy decision point can then make an enforcement decision,

which may use event context information.

72

Chapter 6: Empirical Evaluation

This chapter presents details about the empirical evaluation of our implementation.

6.1 Case Study

To evaluate the effectiveness of the implementation, we enforced three security policies

on two popular, open-source Java applications. The first application was the US National

Archives and Resource Administration’s (NARA) file analyzer and metadata harvester [92],

which analyzes and collects metadata on files, and can execute tests on files in a given

directory. The second application was JPlag [1], which is a software plagiarism detection

tool. Both of these applications can conduct operations on files and have the ability to access

potentially sensitive information stored on a system; therefore, these capabilities permitted

us to express practical policies over the applications.

We implemented policies to cover each level of granularity (i.e, coarse, medium, and

fine). The coarse-grained policy disallowed network connections by prohibiting the use of

java.net.Socket. This policy was enforced to ensure that neither application could ex-

filtrate sensitive information over the network. The medium-grained policy required file

resources acquired within a method to be released before the end of the method’s execu-

tion [66]. Because both applications were able to access the file system and perform file

operations, it was imperative to ensure that the applications could not deplete system re-

sources. The fine-grained policy required files containing sensitive information to be hidden

from the applications. This policy was enforced by checking whether the values of file oper-

73

Table 6.1. Average experimental performance results of 100 runs.

2290 11 33540 2910 0.26 1010 2910 0.10 0.11

2590 392 32550 3580 0.39 1690 2520 0.02 0.03

AspectJ
weaving

(ms) (ms) (ms)

AspectJ
weaving

(ms) (ms) (ms)

AspectJ
weaving

(ms) (ms) (ms)

Coarse Medium Fine
Policy

Application

Unmonitored Monitored MonitoredUnmonitored Unmonitored Monitored

NARA File
Analyzer and

Metadata
Harvester

JPlag
(v2.11.8)

ations (i.e., file names) were contained in a sensitive file list. This policy was important to

limit the access rights of the applications.

To evaluate the overhead introduced by the implementation, we measured the average

time to weave and enforce each policy. Results are shown in Table 6.1. The AspectJ compiler

was used to weave each policy into each target application as shown in Figures 5.1 and 5.2.

The average execution time of each program event was measured without enforcing the policy,

indicated by the columns labeled unmonitored, and with enforcing the policy, indicated by

the columns labeled monitored. The NARA file analyzer and metadata harvester application

required user interaction; therefore, instead of measuring the total execution time of the

application, we measured the time to enforce the coarse-grained policy, for the monitored

column, and the time to start-up the application, for the unmonitored colunn. Each policy

was enforced separately on each application. Each experiment was conducted 100 times on a

MacBook Pro laptop with a 2.9 GHz Quad-Core Intel Core i7 processor and 16 GB of RAM.

6.2 Summary of Results

Each of the policies were successfully enforced on both applications. The results in

Table 6.1 indicate that the execution times of the applications were significantly impacted

74

by the enforcement of the coarse- and medium-grained policies, which is due to the execu-

tion time of JaBRO and the code analyzer. At a coarse-grained level, the entire application

must be traversed twice: first, JaBRO must rewrite the main method and optimize the

entire application, and second, code analysis must be conducted on the entire optimized

application. The overhead introduced by coarse-grained policy enforcement is likely unac-

ceptable for time-sensitive applications. However, for security-critical applications where

runtime performance is not a concern and static analysis is too conservative, the approach

may be advantageous. The overhead introduced by medium-grained policy enforcement may

be more acceptable due to the smaller code fragment traversed by JaBRO and the code an-

alyzer. The fine-grained policy only added 0.01 ms to the execution time of the fine-grained

event for both applications.

We expected coarse-grained policies to be weaved significantly faster than medium-

and fine-grained policies because the policy only needs to be weaved at a single point (i.e.,

the main method); however, the AspectJ compiler cannot differentiate between policy gran-

ularities and thus searched through the entire application looking for all possible matches

to the main join point. The weaving time for coarse-grained policies may be improved by

implementing a custom bytecode rewriter tailored for weaving coarse-grained policies.

75

Chapter 7: Conclusions and Future Work

This dissertation has aimed to improve our understanding of security mechanisms

and how they enforce policies by presenting a unifying theory of security mechanisms. The

theory included a framework in which all mechanisms are encoded as runtime mechanisms

that operate at one or more levels of program code granularity. The practicality of the

theoretical framework was demonstrated through a prototype implementation for enforcing

security policies on Java bytecode applications. This chapter summarizes this dissertation’s

contributions (Section 7.1) and presents directions for future work (Section 7.2).

7.1 Summary

The first contribution of this dissertation is a formal framework for reasoning about

security policy enforcement. The framework casts existing classes of security mechanisms into

runtime mechanisms that operate at one or more levels of code granularity. A new taxonomy

of security policies was presented based on the granularity of well-defined, modular program

constructs that mechanisms analyze to enforce policies. We have shown that previous work

has encoded security policies as fine-grained policies, but not all security mechanisms enforce

policies at such a fine-grained level. Some policies can be encoded at a coarse- or medium-

grained level, and such granular policy encodings can capture the executions of security

mechanisms that operate at one or more levels of code granularity. This dissertation also

presented a practical example of how forward secrecy can be enforced at a fine-grained level

on an authentication method called Coauthentication [63].

76

The second contribution of this dissertation is a prototype implementation of the the-

oretical framework for enforcing security policies at various levels of code granularity on Java

bytecode applications. The effectiveness and precision of the implementation hinges on an

extensible Java library that we have developed called JaBRO. JaBRO allows runtime mecha-

nisms operating at medium- and coarse-grained levels to enforce policies more precisely than

statically operating mechanisms. We have evaluated the overhead introduced by the imple-

mentation by enforcing security policies at each level of code granularity. Coarse-grained

policy enforcement significantly inhibits the runtime performance of applications because

applications must be traversed twice: first by JaBRO and second by the code analyzer. We

realize that the overhead introduced by coarse-grained policy enforcement may be unaccept-

able for time-sensitive applications; however, coarse-grained policy enforcement can still be

beneficial for security-critical applications in cases where static enforcement is too conserva-

tive. Medium-grained policy enforcement may be more acceptable, depending on the size of

the medium-grained event, and fine-grained policy enforcement did not significantly inhibit

runtime performance

7.2 Future Work

The work presented in this dissertation can be extended in several ways. This section

will discuss two possible directions for future work.

7.2.1 Additional Theoretical Analysis

One possible direction for future work would be additional theoretical analysis to

determine the class of policies enforceable by runtime mechanisms with constrained sets

of capabilities that operate at one or more levels of code granularity. Previous work has

shown the class of policies enforceable by various runtime mechanisms with constrained

sets of capabilities that only operate at the fine-grained level (e.g., execution monitors, edit

77

automata, mandatory results automata, stream monitoring automata, etc.). It would be

interesting to see which class of policies are enforceable by each sort of mechanism when

operating at each level of granularity and at two or more levels of granularity.

7.2.2 Domain-Specific Policy-Specification Languages

Another possible direction for future work would be to design and implement domain-

specific policy-specification languages for granular security policies based on various language

constructs. Policy-specification languages are important for policy writers because they can

provide guarantees that the policy implemented is the policy intended through the languages

type system and formal verification techniques [45]. Domain-specific policy-specification

languages, designed around language constructs, might enable the synthesis of new kinds of

runtime security mechanisms.

78

References

[1] JPlag - Detecting software plagiarism. https://github.com/jplag/jplag, 2015.

[2] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. In Proceedings of the Symposium on Principles of Programming
Languages, pages 33–44, 2002.

[3] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. Journal of the ACM, 52(1):102–146, 2005.

[4] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. NAVEX:
Precise and scalable exploit generation for dynamic web applications. In USENIXSe-
curity Symposium, pages 377–392, 2018.

[5] Bowen Alpern and Fred B Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, 1985.

[6] Robert C Armstrong, Ratish J Punnoose, Matthew H Wong, and Jackson R Mayo.
Survey of existing tools for formal verification. SANDIA REPORT SAND2014-20533,
2014.

[7] Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release policies
for dynamic languages. In IEEE Computer Security Foundations Symposium, pages
43–59. IEEE, 2009.

[8] Marco Avvenuti, Cinzia Bernardeschi, and Nicoletta De Francesco. Java bytecode
verification for secure information flow. ACM SIGPLAN Notices, 38(12):20–27, 2003.

[9] Samiha Ayed, Muhammad Sabir Idrees, Nora Cuppens, and Frederic Cuppens. Achiev-
ing dynamicity in security policies enforcement using aspects. International Journal
of Information Security, 17(1):83–103, 2018.

[10] Samiha Ayed, Muhammad Sabir Idrees, Nora Cuppens-Boulahia, Frédéric Cuppens,
Monica Pinto, and Lidia Fuentes. Security aspects: a framework for enforcement of
security policies using AOP. In International Conference on Signal-Image Technology
& Internet-Based Systems, pages 301–308. IEEE, 2013.

79

[11] Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars Lundberg. Static code analysis
to detect software security vulnerabilities-does experience matter? In International
Conference on Availability, Reliability and Security, pages 804–810. IEEE, 2009.

[12] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In IEEE Symposium on Security
and Privacy, pages 387–401, 2008.

[13] Anindya Banerjee, David A Naumann, and Stan Rosenberg. Expressive declassification
policies and modular static enforcement. In IEEE Symposium on Security and Privacy,
pages 339–353, 2008.

[14] Arash Baratloo, Navjot Singh, Timothy K Tsai, et al. Transparent run-time defense
against stack-smashing attacks. In USENIX Annual Technical Conference, pages 251–
262, 2000.

[15] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Enforcing secure service
composition. In IEEE Computer Security Foundations Workshop, pages 211–223, 2005.

[16] David Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zălinescu. Enforceable security
policies revisited. ACM Transactions on Information and System Security, 16(1):309–
328, 2013.

[17] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security policies. In
Proceedings of the Workshop on Foundations of Computer Security. Citeseer, 2002.

[18] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with poly-
mer. In ACM Conference on Programming Language Design and Implementation,
volume 40, pages 305–314, 2005.

[19] Jean Bergeron, Mourad Debbabi, Jules Desharnais, Mourad M Erhioui, Yvan Lavoie,
and Nadia Tawbi. Static detection of malicious code in executable programs. Sympo-
sium on Requirements Engineering for Information Security, 2001(184-189):79, 2001.

[20] Frédéric Besson, Nataliia Bielova, and Thomas Jensen. Hybrid information flow mon-
itoring against web tracking. In IEEE Computer Security Foundations Symposium,
pages 240–254. IEEE, 2013.

[21] Gaowei Bian, Ken Nakayama, Yoshitake Kobayashi, and Mamoru Maekawa. Java
bytecode dependence analysis for secure information flow. International Journal of
Network Security, 4(1):59–68, 2007.

[22] Arnar Birgisson, Mohan Dhawan, Ulfar Erlingsson, Vinod Ganapathy, and Liviu
Iftode. Enforcing authorization policies using transactional memory introspection. In
ACM Conference on Computer and Communications Security, pages 223–234, 2008.

80

[23] Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
IEEE Computer Security Foundations Workshop, pages 82–96, June 2001.

[24] Bruno Blanchet. ProVerif: Cryptographic protocol verifier in the formal model, 2016.
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/. Accessed 20 August 2019.

[25] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. ProVerif
1.98pl1: Automatic cryptographic protocol verifier, user manual and tutorial, De-
cember 2017. http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf.
Accessed 20 August 2019.

[26] Franck Cassez, Anthony M Sloane, Matthew Roberts, Matthew Pigram, Pongsak Su-
vanpong, and Pablo Gonzalez de Aledo. Skink: Static analysis of programs in llvm
intermediate representation. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 380–384. Springer, 2017.

[27] Hugues Chabot, Raphaël Khoury, and Nadia Tawbi. Extending the enforcement power
of truncation monitors using static analysis. Computers & Security, 30(4):194–207,
2011.

[28] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security & Privacy,
2(6):76–79, 2004.

[29] Shigeru Chiba. Javassist: Java bytecode engineering made simple. Java Developer’s
Journal, 9(1), 2004.

[30] Angelo Ciampa, Corrado Aaron Visaggio, and Massimiliano Di Penta. A heuristic-
based approach for detecting SQL-injection vulnerabilities in web applications. In
International Workshop on Software Engineering for Secure Systems, pages 43–49,
2010.

[31] Edmund M Clarke and Jeannette M Wing. Formal methods: State of the art and
future directions. ACM Computing Surveys, 28(4):626–643, 1996.

[32] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

[33] Egor Dolzhenko, Jay Ligatti, and Srikar Reddy. Modeling runtime enforcement with
mandatory results automata. International Journal of Information Security, 14(1):47–
60, 2015.

[34] Shamaria Engram. JaBRO. https://github.com/shamaria/JaBRO, 2020.

[35] Shamaria Engram. ProVerif Coauthentication Files. https://github.com/shamaria/
coauthentication-formal-models, 2020.

81

[36] Shamaria Engram and Jay Ligatti. Through the lens of code granularity: A unified
approach to security policy enforcement. In IEEE Conference on Applications, Infor-
mation, and Network Security. IEEE, 2020. To appear.

[37] Ulfar Erlingsson and Fred B Schneider. IRM enforcement of java stack inspection. In
IEEE Symposium on Security and Privacy, pages 246–255, 2000.

[38] David Evans and David Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, 19(1):42–51, 2002.

[39] David Evans and Andrew Twyman. Flexible policy-directed code safety. In IEEE
Symposium on Security and Privacy, pages 32–45, 1999.

[40] Philip WL Fong. Access control by tracking shallow execution history. In IEEE
Symposium on Security and Privacy, pages 43–55. IEEE, 2004.

[41] David Gelles. Boeing 737 max: What’s happened after the 2 deadly crashes? ttps:
//www.nytimes.com/interactive/2019/business/boeing-737-crases.html, 2019. Online;
accessed 31-July-2020.

[42] Samir Genaim and Fausto Spoto. Information flow analysis for java bytecode. In
International Workshop on Verification, Model Checking, and Abstract Interpretation,
pages 346–362. Springer, 2005.

[43] Joseph A Goguen and José Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–11. IEEE, 1982.

[44] William GJ Halfond and Alessandro Orso. AMNESIA: analysis and monitoring for
neutralizing sql-injection attacks. In International Conference on Automated Software
Engineering, pages 174–183, 2005.

[45] Kevin W Hamlen and Micah Jones. Aspect-oriented in-lined reference monitors. In
Workshop on Programming languages and analysis for security, pages 11–20, 2008.

[46] Kevin W Hamlen, Greg Morrisett, and Fred B Schneider. Computability classes for
enforcement mechanisms. ACM Transactions on Programming Languages and Systems,
28(1):175–205, 2006.

[47] Kevin William Hamlen. Security policy enforcement by automated program-rewriting.
PhD thesis, 2006.

[48] José-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. Closing the gap between the
specification and enforcement of security policies. In International Conference on
Trust, Privacy and Security in Digital Business, pages 106–118. Springer, 2014.

82

[49] Jose-Miguel Horcas, Mónica Pinto, Lidia Fuentes, Wissam Mallouli, and
Edgardo Montes de Oca. An approach for deploying and monitoring dynamic security
policies. Computers & Security, 58:20–38, 2016.

[50] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-
Yen Kuo. Securing web application code by static analysis and runtime protection. In
International Conference on World Wide Web, pages 40–52. ACM, 2004.

[51] Muhammad Sabir Idrees, Samiha Ayed, Nora Cuppens-Boulahia, and Frédéric Cup-
pens. Dynamic security policies enforcement and adaptation using aspects. In Interna-
tional Conference on Trust, Security, and Privacy in Computing and Communcations,
volume 1, pages 1374–1379. IEEE, 2015.

[52] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In International
Conference on Software Engineering, pages 672–681. IEEE, 2013.

[53] Micah Jones and Kevin W Hamlen. Disambiguating aspect-oriented security policies.
In International Conference on Aspect-Oriented Software Development, pages 193–204,
2010.

[54] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G Griswold. An overview of aspectj. In European Conference on Object-
Oriented Programming, pages 327–354. Springer, 2001.

[55] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In European
Conference on Object-Oriented Programming, pages 220–242. Springer, 1997.

[56] Johannes Kinder and Helmut Veith. Precise static analysis of untrusted driver binaries.
In Formal Methods in Computer Aided Design, pages 43–50. IEEE, 2010.

[57] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, 1994.

[58] Gurvan Le Guernic. Automaton-based confidentiality monitoring of concurrent pro-
grams. In Computer Security Foundations Symposium, pages 218–232. IEEE, 2007.

[59] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A Schmidt.
Automata-based confidentiality monitoring. In Annual Asian Computing Science Con-
ference, pages 75–89. Springer, 2006.

[60] Inyong Lee, Soonki Jeong, Sangsoo Yeo, and Jongsub Moon. A novel method for SQL
injection attack detection based on removing SQL query attribute values. Mathematical
and Computer Modelling, 55(1-2):58–68, 2012.

83

[61] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security, 4(1-2):2–
16, 2005.

[62] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety poli-
cies. ACM Transactions on Information and System Security, 12(3):19, 2009.

[63] Jay Ligatti, Cagri Cetin, Shamaria Engram, Jean-Baptiste Subils, and Dmitry Goldgof.
Coauthentication. In Symposium on Applied Computing, pages 1906–1915, 2019.

[64] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java appli-
cations with static analysis. In USENIX Security Symposium, volume 14, pages 18–18,
2005.

[65] Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti. Enforcing more with less:
Formalizing target-aware run-time monitors. In International Workshop on Security
and Trust Management, pages 17–32. Springer, 2012.

[66] Michael Martin, Benjamin Livshits, and Monica S Lam. Finding application errors
and security flaws using PQL: a program query language. In Conference on Object-
Oriented Programming, Systems, Languages and Applications, pages 365–383. ACM,
2005.

[67] Leo A Meyerovich and Benjamin Livshits. Conscript: Specifying and enforcing fine-
grained security policies for javascript in the browser. In IEEE Symposium on Security
and Privacy, pages 481–496, 2010.

[68] National Institute of Standards and Technology. Back to basics: Multi-
factor authentication (MFA), November 2016. https://www.nist.gov/itl/tig/
back-basics-multi-factor-authentication. Accessed 20 August 2019.

[69] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending android
permission model and enforcement with user-defined runtime constraints. In ACM
Symposium on Information, Computer and Communications Security, pages 328–332,
2010.

[70] Minh Ngo, Fabio Massacci, Dimiter Milushev, and Frank Piessens. Runtime enforce-
ment of security policies on black box reactive programs. In ACM Principles of Pro-
gramming Languages, volume 50, pages 43–54, 2015.

[71] Lawrence O’Gorman. Comparing passwords, tokens, and biometrics for user authen-
tication. Proceedings of the IEEE, 91(12):2021–2040, 2003.

[72] Hernan Palombo, Egor Dolzhenko, Jay Ligatti, and Hao Zheng. Stream-monitoring
automata. In International Conference on Software and Computer Applications, pages
313–320, 2020.

84

[73] DongGook Park, Colin Boyd, and Sang-Jae Moon. Forward secrecy and its application
to future mobile communications security. In International Workshop on Public Key
Cryptography, pages 433–445. Springer, 2000.

[74] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[75] Srinivas Pinisetty, Ylies Falcone, Thierry Jéron, Hervé Marchand, Antoine Rollet, and
Omer Landry Nguena Timo. Runtime enforcement of timed properties. In Interna-
tional Conference on Runtime Verification, pages 229–244. Springer, 2012.

[76] Srinivas Pinisetty, Viorel Preoteasa, Stavros Tripakis, Thierry Jéron, Yliès Falcone,
and Hervé Marchand. Predictive runtime enforcement. Formal Methods in System
Design, 51(1):154–199, 2017.

[77] Amir Pnueli. The temporal logic of programs. In IEEE Annual Symposium on Foun-
dations of Computer Science, pages 46–57, 1977.

[78] US-CERT Publications. Security tip (st04-010) using caution with email attachments.
https://www.us-cert.gov/ncas/tips/ST04-010, 2009. [Online; accessed 17-May-2019].

[79] Donald Ray and Jay Ligatti. A theory of gray security policies. In European Symposium
on Research in Computer Security, pages 481–499. Springer, 2015.

[80] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953.

[81] William K Robertson and Giovanni Vigna. Static enforcement of web application
integrity through strong typing. In USENIX Security Symposium, volume 9, pages
283–298, 2009.

[82] Bruno PS Rocha, Mauro Conti, Sandro Etalle, and Bruno Crispo. Hybrid static-
runtime information flow and declassification enforcement. IEEE Transactions on
Information Forensics and Security, 8(8):1294–1305, 2013.

[83] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive security anal-
ysis. In Computer Security Foundations Symposium, pages 186–199. IEEE, 2010.

[84] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed
programs. In International Static Analysis Symposium, pages 376–394. Springer, 2002.

[85] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[86] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, 2000.

85

[87] Yonghee Shin and Laurie Williams. An empirical model to predict security vulnerabili-
ties using code complexity metrics. In International Symposium on Empirical Software
Engineering and Measurement, pages 315–317, 2008.

[88] Paritosh Shroff, Scott Smith, and Mark Thober. Dynamic dependency monitoring to
secure information flow. In Computer Security Foundations Symposium, pages 203–
217. IEEE, 2007.

[89] Michael Sipser. Introduction to the Theory of Computation. Cengage learning, 2012.

[90] Christian Skalka and Scott Smith. Static enforcement of security with types. ACM
International Conference on Functional Programming, 35(9):34–45, 2000.

[91] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. Bitblaze:
A new approach to computer security via binary analysis. In International Conference
on Information Systems Security, pages 1–25. Springer, 2008.

[92] US National Archives and Resource Administration. NARA file analyzer and metadata
harvester. https://github.com/usnationalarchives/File-Analyzer, 2016.

[93] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A java bytecode optimization framework. In CASCON First Decade
High Impact Papers, pages 214–224. 2010.

[94] Bart van Delft, Sebastian Hunt, and David Sands. Very static enforcement of dynamic
policies. In International Conference on Principles of Security and Trust, pages 32–52.
Springer, 2015.

[95] Jeffrey A Vaughan and Steve Zdancewic. A cryptographic decentralized label model.
In IEEE Symposium on Security and Privacy, pages 192–206. IEEE, 2007.

[96] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel,
and Giovanni Vigna. Cross site scripting prevention with dynamic data tainting and
static analysis. In Network and Distributed System Security Symposium, 2007.

[97] Dennis Volpano and Geoffrey Smith. A type-based approach to program security. In
Colloquium on Trees in Algebra and Programming, pages 607–621. Springer, 1997.

[98] David Walker. A type system for expressive security policies. In Symposium on Prin-
ciples of Programming Languages, pages 254–267. ACM, 2000.

[99] Westley Weimer and George C Necula. Finding and preventing run-time error handling
mistakes. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 419–431, 2004.

[100] Thomas Y.C. Woo and Simon S. Lam. A semantic model for authentication protocols.
In IEEE Symposium on Security and Privacy, pages 178–194, 1993.

86

Appendix A: Copyright Permissions

The following is permission to use the content of [63] and [36] in Chapter 4, and

Chapters 1–3 and 5–7, respectively.

87

ACM Copyright and Audio/Video Release

Title of the Work: Coauthentication

Author/Presenter(s): Jay Ligatti:University of South Florida;Cagri Cetin:University of South Florida;Shamaria
Engram:University of South Florida;Jean-Baptiste Subils:University of South Florida;Dmitry Goldgof:University of South
Florida.
Type of material:Full Paper

Publication and/or Conference Name: SAC '19: Symposium on Applied Computing Proceedings

I. Copyright Transfer, Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental files integral to the Work which are submitted with it for
review and publication such as an extended proof, a PowerPoint outline, or appendices that may exceed a
printed page limit, (including without limitation, the right to publish the Work in whole or in part in any
and all forms of media, now or hereafter known) is hereby transferred to the ACM (for Government work,
to the extent transferable) effective as of the date of this agreement, on the understanding that the Work
has been accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner, including all
other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner shall have
the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the Author,
including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's institutional
repository, (3) any repository legally mandated by an agency funding the research on which the Work is
based, and (4) any non-commercial repository or aggregation that does not duplicate ACM tables of
contents, i.e., whose patterns of links do not substantially duplicate an ACM-copyrighted volume or issue.
Non-commercial repositories are here understood as repositories owned by non-profit organizations that
do not charge a fee for accessing deposited articles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in the ACM Digital
Library on (1) the Author's home page or (2) the Owner's institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of the Work as submitted to
ACM ("Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's employees,
if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work. (x) If your paper is withdrawn before it is

88

published in the ACM Digital Library, the rights revert back to the author(s).

When preparing your paper for submission using the ACM TeX templates, the rights and permissions
information and the bibliographic strip must appear on the lower left hand portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates and positions these
text blocks for you based on the code snippet which is system-generated based on your rights management
choice and this particular conference.

Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\copyrightyear{2019}
\acmYear{2019}
\setcopyright{acmcopyright}
\acmConference[SAC '19]{The 34th ACM/SIGAPP Symposium on Applied
Computing}{April 8--12, 2019}{Limassol, Cyprus}
\acmBooktitle{The 34th ACM/SIGAPP Symposium on Applied Computing (SAC '19),
April 8--12, 2019, Limassol, Cyprus}
\acmPrice{15.00}
\acmDOI{10.1145/3297280.3297466}
\acmISBN{978-1-4503-5933-7/19/04}

ACM TeX template .cls version 2.8, automatically creates and positions these text blocks
for you based on the code snippet which is system-generated based on your rights
management choice and this particular conference.
Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\CopyrightYear{2019}
\setcopyright{acmcopyright}
\conferenceinfo{SAC '19,}{April 8--12, 2019, Limassol, Cyprus}
\isbn{978-1-4503-5933-7/19/04}\acmPrice{$15.00}
\doi{https://doi.org/10.1145/3297280.3297466}

If you are using the ACM Microsoft Word template, or still using an older version of the
ACM TeX template, or the current versions of the ACM SIGCHI, SIGGRAPH, or
SIGPLAN TeX templates, you must copy and paste the following text block into your
document as per the instructions provided with the templates you are using:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.

SAC '19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04…$15.00

89

ACM ISBN 978-1-4503-5933-7/19/04…$15.00
https://doi.org/10.1145/3297280.3297466

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be registered and
become active shortly after publication in the ACM Digital Library. Once you have your camera ready copy
ready, please send your source files and PDF to your event contact for processing.

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or authorized
agent of the copyright owner(s)), with the exception of third party materials detailed in section III below. I
have obtained permission for any third-party material included in the Work.

B. Declaration for Government Work. I am an employee of the National Government of my country
and my Government claims rights to this work, or it is not copyrightable (Government work is classified
as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government? Yes No

II. Permission For Conference Recording and Distribution
* Your Audio/Video Release is conditional upon you agreeing to the terms set out below.

I hereby grant permission for ACM to include my name, likeness, presentation and comments in any and
all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or transcribe and reproduce my presentation as part
of the ACM Digital Library, and to distribute the same for sale in complete or partial form as part of an
ACM product on CD-ROM, DVD, webcast, USB device, streaming video or any other media format now
or hereafter known.

I understand that my presentation will not be sold separately as a stand-alone product without my direct
consent. Accordingly, I give ACM the right to use my image, voice, pronouncements, likeness, and my
name, and any biographical material submitted by me, in connection with the Conference and/or
Publication, whether used in excerpts or in full, for distribution described above and for any associated
advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes No

III. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

IV. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the work of
third-party individuals or organizations (including copyrighted music or movie excerpts or anything not
owned by me), I understand that it is my responsibility to secure any necessary permissions and/or
licenses for print and/or digital publication, and cite or attach them below.

We/I have not used third-party material.
We/I have used third-party materials and have necessary permissions.

V. Artistic Images

90

If your paper includes images that were created for any purpose other than this paper and to which you or
your employer claim copyright, you must complete Part V and be sure to include a notice of copyright
with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

VI. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the rights included in this
license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions for use of
third-party materials consistent in scope and duration with the rights granted to ACM have been
obtained, copies of such permissions have been provided to ACM, and the Work as submitted to ACM
clearly and accurately indicates the credit to the proprietors of any such third-party materials
(including any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed servers, and
Owner covenants to use best efforts to place ACM DOI pointers on any such prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other software
routines or hardware components designed to permit unauthorized access or to disable, erase or
otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any applicable
copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

Funding Agents

1. Cyber Florida award number(s): Seed-Grant-2017
2. National Science Foundation award number(s): CNS-1527144

DATE: 12/03/2018 sent to ligatti@usf.edu at 16:12:23

91

1.

2.

3.

4.

5.

6.

1.

2.

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

Through the Lens of Code Granularity: A Unified Approach to Security Policy Enforcement

Ms. Shamaria B Engram and Prof. Jay Ligatti

2020 IEEE Conference on Application, Information and Network Security (AINS)

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

GENERAL TERMS

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

CONSENT AND RELEASE

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.

92

-

-

-

-

-

-

-

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

 Shamaria B. Engram 20-10-2020

Signature

Date (dd-mm-yyyy)

93

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

94

	Unifying Security Policy Enforcement: Theory and Practice
	Scholar Commons Citation

	tmp.1613149205.pdf.n7_TM

