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Abstract

In this work, language and tools are introduced, which model many-to-many mappings that comprise

DNA rearrangements in nature. Existing theoretical models and data processing methods depend on the

premise that DNA segments in the rearrangement precursor are in a clear one-to-one correspondence with

their destinations in the recombined product. However, ambiguities in the rearrangement maps obtained from

the ciliate species Oxytricha trifallax violate this assumption demonstrating a necessity for the adaptation

of theory and practice.

In order to take into account the ambiguities in the rearrangement maps, generalizations of existing

recombination models are proposed. Edges in an ordered graph model the relative positions of precursor

DNA segments and their labels indicate the orientations and destinations in the product genome. Properties

of these structures are introduced with the intention to narrow down the space of possible rearrangements

that can be described by the model to include only the types of complexities that appear in nature. The

various subspaces of rearrangements defined by these properties are explored via a series of combinatorial

counting results. The new model is applied to sequencing data of O. trifallax to assess the extent to which

these properties describe the rearrangements this organism undergoes.

To reduce the filtering of data, an algorithm which annotates the rearranging segments in precursor and

product genomes without discarding ambiguities is presented. Furthermore, a generalization of the notion

of scrambling that can be applied to such ambiguous rearrangement maps is defined. An algorithm that

detects the generalized scrambling property in ambiguous rearrangement maps is also presented. Next, a

computational tool implementing the two algorithms is introduced and tested. The annotation algorithm

involves a step by which gapped sequence alignments are obtained from ungapped sequence alignments in an

efficient and controlled manner. This method of combining ungapped alignments gives rise to another algo-

rithm that can be applied to the more general problem of efficiently detecting gapped sequence alignments,

which is implemented and tested in this work.

vii



Chapter 1

Introduction

1.1 Ambiguous Rearrangements

The types of rearrangements considered in this work involve the correspondence of segments between two

DNA sequences. Previous analyses of this kind of DNA rearrangements in the organism Oxytricha trifallax,

assumed the appearance of a simple bijective correspondence in experimental sequencing data [11, 12, 16].

The analyzed data was then forced to conform to the assumption through processing steps resulting in the

removal of sections of the data. Such systematic exclusion of information may introduce bias, and inevitably

leads to a loss of characteristics encapsulated in the excluded data portion. Examination of the sequencing

data used in these analyses reveals that the assumption of a bijective correspondence is not satisfied. Two

regions in the precursor may correspond to the same region in the product and vice versa. Additionally,

there are no obvious indicators that suggest precedence of some segments over others. In [16], sequence

alignment quality measures are suggested as a means to disambiguate a mapping, but not in all ambiguous

assignments of precursor to product segments, there is one with a higher sequence alignment quality. To

enable comprehensive analyses of sequencing data pertaining to these types of rearrangements, this work

investigates models and methods that work with the true many-to-many mappings that appear in DNA

rearrangements in nature.

1.2 Biological Background of the Model Organism

Like other ciliated protozoa, Oxytricha trifallax has two nuclei. The somatic nucleus (also called macronu-

cleus, or mac), transcribes the proteins carrying out most of the cell functions during its vegetative state.

The germline nucleus (also called micronucleus, or mic), remains inactive for most of the life cycle of the

cell. Usually, the organism reproduces asexually, but when starved, it undergoes sexual conjugation. Dur-

ing conjugation, the functional somatic nucleus disintegrates and reforms from the genetic material present

in the otherwise inactive germline nucleus. Due to this relationship, the germline and somatic nuclei are

often also named the precursor and product, respectively. The nucleotide sequences of the chromosomes

of the somatic nucleus appear in the germline DNA often times broken up into multiple segments (called

Macronuclear Destined Sequences, or MDSs), separated by segments of excess DNA (called Internal

Eliminated Sequences, or IESs).

1



IES
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precursor
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2 MDS2 1

MDS1 1 7 MDS8 8

product

MDS1 1 MDS2 2 MDS3 3 MDS4 4 MDS55 MDS66 MDS7 7 MDS8 8 MDS9

Figure 1.1: A schematic of the rearrangement of the Macronuclear Destined Sequences (MDSs) of the Actin
I gene in Oxytricha trifallax from the precursor (top) to the product (bottom), as discovered in [38]. The
regions between MDSs in the germline nucleus are called Internal Eliminated Sequences (IESs). During
development of the somatic nucleus, IESs must be removed, and MDSs must be reordered and sometimes
inverted. Sequences at the ends of each MDS match those at the ends of their successor in the product
suggesting a guiding role of the matching repeats in the precursor during the recombination.

In [38], first evidence was presented that the MDSs of some genes appear in the germline nucleus out-of-

order and in conflicting orientations when compared to their order and orientation in the somatic genome.

At the top of Figure 1.1, the scrambled order of the MDSs of a gene in the germline nucleus is shown. In

the article, a model of intramolecular recombination of the germline DNA to unscramble the disordered

MDSs is proposed. This model is based on the alignment of short repeated sequences called pointers

which appear in pairs in the germline DNA at the ends of MDSs that match flanking regions in the somatic

nucleus. The model is consistent with the presence of circular DNA molecules that appear as a by-product

of the recombination process as demonstrated in [43, 44]. Multiple papers suggest the involvement of RNA

during the recombination of MDSs in O. trifallax as well as other ciliates [15, 20, 21, 25, 27, 31]. With the

advent of next-generation sequencing technologies, the entire somatic and germline nuclei of O. trifallax were

sequenced in [16, 28, 42] opening doors to a variety of downstream analyses. The existence of over 16,000

nanochromosomes in the somatic nucleus is established in [42], which is updated in [28] and extended by

over 12,000 new isoforms.

Although under the simplifying assumption of the existence of a one-to-one correspondence of MDSs

in rearrangments, several observations about various aspects of rearrangements in O. trifallax were made.

High levels of scrambling of the MDSs in the germline genome were exhibited in [16], along with additional

complexities, such as overlapping, or interweaving MDSs in the germline genome mapping to distinct somatic

genes. Two simple patterns characterized by runs of odd, or even numbered MDSs followed by a run of even,

or odd numbered MDSs, respectively, were discovered among scrambled MDS sequences by the authors

of [11]. Repeated removal of these patterns was shown to resolve 96% of all scrambled sequences with no
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more than 4 iterations. Of the remaining scrambled cases, 22 could not be reduced to less than 3 MDSs

through iterative pattern removal, but 21 of them had a third more intricate pattern in common [6].

In [6], mic loci are examined in which MDSs of some product sequences are nested between MDSs of

other product sequences. Two numeric indices indicating the depth of such nesting are defined recursively.

Viewing MDS and IES regions as integer intervals, the arrangement of MDSs and IESs of a mac locus on a

mic locus can be expressed as the sequence (M1, I1,M2, I2, . . . ,MN ), where Mi are the MDS regions in their

order of appearance in the mic and the Ij are the IES regions between them. Given two sequences of MDS

and IES regions A = (M1, I1, . . . ,MN ), and B = (M ′1, I
′
1, . . . ,M

′
N ′) of two mac loci on the same mic locus,

an IES I ′j of B is said to be inserted in an IES Ik of A, if M ′j , I
′
j ,M

′
j+1 ⊆ Ik. For an IES I of a mac locus on

a mic locus, denote withM(I) the set of MDSs of other mac loci on the same mic locus which are contained

in I and denote with N (I) the set of IESs of other mac loci on the same mic locus which are inserted in I.

Definition 1.2.1. The insertion depth index (IDI) of an IES I of a mac sequence in a mic sequence is

defined by:

IDI(I) =



0, if M(I) = ∅

1, if M(I) 6= ∅ and N (I) = ∅

1 + max
I′∈N (I)

IDI(I ′), if N (I) 6= ∅

The IDI of a set of IESs is the maximum IDI across all IESs in the set.

Figure 1.2 shows a sequence of MDSs of three different mac loci on the same mic locus. The IESs of the

mac loci corresponding to the red, blue, and orange MDSs have IDI 2, 1, and 0, respectively.

3 4 21 2 13-1 5 16-4

Figure 1.2: A representation of the MDSs of three mac contigs on mic sequence ctg7180000067077 as reported
in [6]. The red, blue, and orange MDSs belong to mac contigs Contig6331.0, Contig9583.0, and Contig6683.0,
respectively. The numbers indicate the final, linear order of the MDSs within the respective mac contigs.
Multiple sequential MDSs are condensed.

In [6], IDI values as large as 4 were reported. Additionally, 8% of mac loci have a non-zero IDI and a

positive correlation of the proportion of scrambled mac loci among loci with increasing IDI was reported.

Finally, for over 80% of the mac loci which have at least one MDS contained in the IES of another, all the

MDSs are located on the same IES.
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1.3 Mathematical Models for DNA Rearrangements in Ciliates

A language theoretic approach to model the DNA recombinations was introduced by [22, 36, 39] in the form

of so-called splicing systems. Splicing systems consist of sets of initial strings and sets of patterns which

define operations that produce combinations of substrings of the original strings. These operations closely

resemble the cutting and splicing processes that ciliates undergo when recombining germline MDSs to form

functional somatic chromosomes. Inspired by the involvement of pointer sequences in the rearrangement,

[37] propose three operations that can descramble MDS patterns observed in the genome of O. trifallax.

With increasing evidence for the necessity of the participation of RNA molecules in the pointer-guided

recombinations, a graph theoretical model was introduced by [3, 4]. In this new model, so-called (simple)

assembly graphs, topologically model the rearrangement of MDSs in the germline DNA of O. trifallax as a

simultaneous intramolecular recombination event. Graph vertices correspond to the alignments of matching

pointer sequences and the recombination can be modelled by vertex-smoothing according to certain rules.

The exact cuts and branch migrations required for the Biochemical equivalent of vertex-smoothings can be

achieved with the help of RNA molecules [4]. After simultanous recombination (vertex-smoothing) of the

aligned pointers (4-valent vertices), a single molecule (linear connected component) consists of the MDSs

of a gene in orthodox order and orientation. The genus range, which is a topological structure related

to the assembly graph model was investigated in [8, 10, 23]. Additionally, combinatorial concepts, such

as assembly polynomials [3, 7, 9, 23] and double-occurrence words (DOWs) [5, 9, 13, 17, 24] were

investigated. Chord diagrams relate in a natural way to DOWs and can be derived from assembly graphs.

Some unrelated language theoretical models were studied in [18, 26]. The latter, introduces two types of

shuffling operations on a language consisting of words that resemble scrambled MDS sequences. The authors

show that the vast majority of scrambling patterns appearing in the genome of O. trifallax can be resolved

via 1 or 2 applications of these operations.

Assembly graphs, double occurrence words and chord diagrams rely heavily on a total order on the

MDSs in the mic and the appearance of each pointer exactly twice. Frequently, ambiguities disrupt this

assumption. Multiple MDSs in the mic may match the same region in the mac and vice versa. Repetitions

of mic MDSs that match the same mac MDS imply occurrence of the pointers at the ends of the MDS more

than twice. Micronuclear MDSs that intersect, or where one contains the other make defining a sensible total

order on them difficult. Chapter 2 explores a mathematical model of rearrangement maps which generalizes

existing models. The structure of overlaps and repeats is readily captured by the model at the cost of vastly

increasing the number of theoretically possibilities which are unlikely to appear in nature. By introducing a

variety of properties, and counting subsets with these properties, smaller more realistic spaces are explored.
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1.4 Computational Tools for Analyzing DNA Rearrangements

Sequence alignment is a computationally intensive, but frequently necessary task in Bioinformatics. The main

challenge for biological sequence alignment tools is the necessity for allowing imperfect matches. Searching

large sequence databases for pairs of regions that resemble each other but are not required to be identical

introduces a number of concerns. One needs to define how to rate sequence similarity, and then invent efficient

algorithms that can find resembling regions in the data according to the defined similarity assessment.

Decades ago, a dynamic programming algorithm by Needleman and Wunsch [34] provided an algorithm

for finding the end-to-end alignment of two sequences that optimizes an alignment score which rewards

identical matches and penalizes insertions, deletions and substitutions necessary to get from one sequence

to the other. The sequence alignment scoring system is still used today in many applications. The Smith-

Waterman algorithm is based on that of Needleman and Wunsch, but it finds sets of alignments of regions

contained within two sequences with optimal alignment scores [41]. Many variants of the Needleman-Wunsch

and Smith-Waterman algorithms were introduced, but their dynamic programming approach is expensive in

both computational time and space. With the advent of high-throughput sequencing technologies, and the

ever-increasing volumes of sequencing data, the demand for more efficient algorithms increased as well. The

softwares LFASTA [35] which is based on a global sequence alignment tool [29] and the Basic Local Alignment

Search Tool (BLAST) for nucleotide sequence alignments introduced in [1] and improved in [2, 14, 33, 45]

are heuristic adaptations of the earlier dynamic programming algorithms. Both algorithms may sometimes

miss optimal alignments but perform much faster and use less memory. In the study of DNA rearrangements

in ciliates, these sequence alignment algorithms are used to find and establish the correspondence between

the rearranging DNA segments in the precursor and product genomes and to detect telomeres at the end of

product sequences. BLAST is the most popular tool used for the extraction of MDSs from the macronuclear

and micronuclear genomes.

It was observed that further processing is required to extract the MDS rearrangements hidden among

alignments detected by BLAST and make them accessible for downstream analyses. Customized scripts were

used for the extraction of rearrangement maps of O. trifallax from alignments returned by BLAST in [11, 16].

These scripts were sufficient to obtain the presented results but are unavailable to the public, which prevents

adaptation of the computation and reproduction of these results. Additionally, repeating and overlapping

MDSs in the micronucleus were exluded from the analyses dismissing potentially significant information. The

purpose of the software tool MIDAS [12] is to automate the process of annotating features that describe DNA

rearrangement maps. While MIDAS annotates MDSs in the micronuclear and macronuclear genomes, it fails

to describe the details of how the MDSs in the precursor relate to the MDSs in the product. The software
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provides a representation of the rearrangement maps in the form of a sequence of symbols corresponding to

the MDSs in the micronucleus. Each symbol indicates the position of the corresponding macronuclear MDS

relative to other macronuclear MDSs. It is unclear in which order the symbols are listed in cases where the

MDSs in the mic overlap.

In Section 3.2, an algorithm is proposed which annotates features relevant to DNA rearrangements

in ciliates. The current notion of scrambling is generalized and an algorithm that detects scrambling in

rearrangements maps according to this new notion is discussed. A software tool called Scrambled DNA

Rearrangement Annotation Pipeline (SDRAP) implementing these algorithms is presented and tested.

Finally, the software is applied to annotate the DNA rearrangements of O. trifallax using the most recent

macronuclear genome published in [28] and the results are discussed in Sections 3.2.6, and 3.2.7.

BLAST and the scoring system it uses were designed to detect and rate homology between sequences on an

evolutionary scale. MDSs are regions of similarity within a precursor genome from a parent cell and a product

genome in a daughter cell. Only few imperfections in their sequence similarity are expected and may arise, for

example, from sequencing errors, assembly artifacts and allelic variations. For this reason BLAST was usually

instructed to only return ungapped alignments (not allowing insertions and deletions to get from one sequence

to the other) in previous annotation workflows for the ciliate O. trifallax [12, 16]. Sequence similarity can

be further enforced by filtering the data by the percentage of identities across an alignment and by using

different scoring parameter values (rewards for identities and penalties for mismatches). Another reason

to instruct BLAST to only search for ungapped alignments is that non-scrambled consecutive MDSs that

have little pointer overlap in the macronucleus and are located close to each other in the micronucleus may

mistakenly combined to a single larger gapped alignment by the tool. On the other hand, the disadvantage

of only considering ungapped alignments is that regions of similarity between the genomes may show up

in fragments in the data inflating the numbers of MDSs considered in downstream analyses. A step that

merges product segments was incorporated in the most recent software MIDAS which annotates ciliate

rearrangements [11]. However, the method for merging alignments used by MIDAS combines alignments

solely based on intersections of their product segments and irrespective of their locations in the micronucleus.

In doing so, MIDAS combines alignments which may be distant in the micronucleus, possibly even from

different micronuclear chromosomes.

The software SDRAP introduced in Section 3.2 incorporates a technique that merges MDSs in a controlled

way. Section 3.3 further develops the technique in the more general context of gapped sequence alignments.

An algorithm is proposed which combines ungapped alignments to gapped alignments increasing the average

alignment score and decreasing the number of alignments. The algorithm is implemented as the command-

line tool named PasteAlignments which is compared to the gapped sequence alignment step in BLAST.
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Chapter 2

Extended Model for DNA Rearrangements in Ciliates

2.1 Introduction

Previous models heavily rely on each pointer occurring exactly twice in a rearrangement. This reliance

on the number of pointers is based on the assumption that the data provides clear one-to-one mappings

between precursor and product segments. However, independent examination of the data shows that this

assumption is frequently violated. Figures 2.1(a) and 2.2(a) show two examples of rearrangement maps

which are not one-to-one mappings. Both sets of alignments were obtained using BLAST+ 2.2.31 [45]

with the command blastn -task megablast -ungapped -lcase masking -word size 18 -dust no on

the micronuclear assembly from [16] (as database) and the macronuclear assembly from [42] (as query).

In Figure 2.1(a), multiple segments in the precursor correspond to the same segment in the product. In

Figure 2.2(a), the same region in the precursor matches multiple regions in the product. In both cases, the

mac contig as telomeres (repetitive regions at the ends of chromosomes) at both ends, and the MDSs cover

the region between telomeres by more than 99%. Additionally, the chromosome whose rearrangement map

is depicted in Figure 2.1(a) encodes a hypothetical protein and the chromosome whose rearrangement map

is depicted in Figure 2.2(a) encodes the Kelch motif, which indicates their importance. In Figure 2.2, all

alignments are at least 128 base pairs long and have 100% percent identity. However, due to the ambiguities

in the mappings which current models cannot handle, they were at least partially excluded from the analyses

in [11, 16]. To avoid loss of information and an introduction of bias into the data by filtering out ambiguous

data, more generally applicable models are required.

The model investigated in this chapter generalizes the double-occurrence word and chord diagram models

and applies to arrangements where MDSs repeat and/or overlap. This model can be defined in various

equivalent ways, but here it is broken down into two parts to decouple the different sources for complexity

in the rearrangement. More specifically, sets of pairs of integers are considered, which mark the starting and

end coordinates of MDSs in the precursor. Pairs are labelled according to the positions and orientations

of the corresponding product segments in the product chromosome. For example, a pair labelled 3,−7

matches the 3rd and the reverse complement of the 7th product segment in the product chromosome. The

relative positions of the pairs corresponds to the relative positions of the MDSs in the precursor. The actual
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4 4 6 8 9 −7 −5 −3 −2 −1 4 6 −7 −3

(b)

Figure 2.1: (a): Schematic of the rearrangement map for the MDSs of Contig14006.0 on ctg7180000069341
(not drawn to scale). Two alignments with poor sequence similarity (< 90% identity) were left out of
this picture. (b): the set of pairs {{1, 2}, {3, 4}, . . . , {27, 28}} which represent the regions in the precursor
genome which match the chromosome. Each pair has a label which indicates order and orientation of their
matching counterpart in the product.

distances between and lengths of MDSs are neglected by the model. The 14 disjoint MDSs depicted in the

MDS arrangement in Figure 2.1(a) corresponds to the set of 14 pairs of the integers 1 through 28 shown in

Figure 2.1(b) where vertices mark the 28 numbers and edges define pairs on these numbers. Each of the

vertices corresponds to an end coordinate of an MDS and each edge connects two numbers which mark end

coordinates of the same MDS. In Figure 2.2(b), the set of pairs and the labels are formed the same way from

the arrangement depicted in part (a). Here, the pairs {1, 3} and {2, 3} share an end point which translates

to their corresponding MDSs 4 and 1 ending at the same coordinate. The same holds true for the pairs

{6, 7} and {6, 8}. The pair {4, 5} is labelled by two integers 2 and 5 because it matches both the 2nd and the

5th product segment in the product chromosome. Figure 2.2(b) also exemplifies how separate consideration

of sets of pairs and their labellings allows decoupling of different sources for complexity. Complexities

arising from relative positions of MDSs in the precursor are generally modelled by the relative positions of

the set of pairs. In this example, overlaps between MDSs are easily identified solely based on the set of

pairs. Complexities arising from the relative positions of the corresponding product segments as well as the

orientation in which they match these MDSs is modelled by the labels of the pairs. Note that the labelling

of a single pair by multiple MDSs can be seen as a violation to this premise because it is an indication of

identical positions of MDSs in the precursor. One could add a weight to each pair or consider double-edges,
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Figure 2.2: (a): the rearrangement map for the MDSs of Contig12633.0 on ctg7180000068813 (not drawn
to scale). MDSs 1 and 3 are contained in MDSs 4 and 6, respectively, in the mic. MDSs 2 and 5 occupy
the same region. MDSs 3 and 4 are 42 bases apart in the product. No high-scoring alignment was detected
for this region. (b): the set of pairs which represent the regions in the precursor genome which match the
chromosome. Each pair has a label which indicates order and orientation of their matching counterparts in
the product. The pair {4, 5} has two labels as it represents the region occupied by both MDS 2 and 5. The
5’ end of MDS 1 aligns with the 5’ end of MDS 4 and the 3’ end of MDS 6 aligns with the 3’ end of MDS 3.

which was not done here.

In this chapter, pairings and labellings are formally defined. The space of possible rearrangement maps

and their complexities is explored through a series of combinatorial counting results. Pairings and labellings

are defined at high generality and properties are introduced whose requirement may narrow down the theoret-

ical space of possible arrangements to a smaller set that is intended to describe the majority of arrangements

which actually occur in the data. The structure of this chapter mimics the division of the model into

two parts. Section 2.2 treats pairings in detail while Section 2.3 is concerned with labellings. Lastly, the

relationship between this new model and older models is discussed in Section 2.4.

2.1.1 Preliminaries

For a positive integer N , denote with ZN the set {1, 2, . . . , N}. For two sets of integers A,B ⊆ Z, define

A < B if a < b, for all a ∈ A and b ∈ B. For any set A and positive integer k, denote with 2A the family

of all subsets of A and with
(
A
k

)
the family of k-element subsets of A and denote with

{
A
k

}
the collection of

all families of k-element subsets of A which partition A. For positive integers M,k, denote with
{
M
k

}
the
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number of ways to partition an M -element set by k-element subsets (i.e.
{
M
k

}
=
∣∣{ZM

k

}∣∣).
The ith coordinate of a tuple ~a is denoted ai, or ~ai, unless stated otherwise. For any k-tuple of sets

~A = (A1, . . . , Ak), denote with | ~A| the k-tuple (|A1|, . . . , |Ak|) and write ν( ~A) = k.

A relation R on a set A can be defined as a subset R ⊆ A× A. An element a ∈ A is said to relate to

an element b ∈ A, denoted aRb, if (a, b) ∈ R. A relation R on A is called symmetric if (a, b) ∈ R implies

(b, a) ∈ R, for all a, b ∈ A and R is called anti-reflexive if (a, a) /∈ R, for all a ∈ A. A symmetric and

anti-reflexive relation R on a set A can be viewed as a subset of
(
A
2

)
, since every member of R consists of

two distinct elements of A, and because symmetry makes the order of coordinates in a pair (a, b) ∈ A × A

redundant with respect to R. For the remainder of this chapter, a symmetric and anti-reflexive relation on

any set A is viewed as a subset of
(
A
2

)
. To a symmetric and anti-reflexive relation R on a set A, the undirected

graph G(R) induced by R is the graph with vertex set V (G(R)) = A and edge set E(G(R)) = R. For

each a ∈ A, define the neighborhood NR(a) of a with respect to R as the neighborhood of a in G(R).

The domain of a relation is the set {a ∈ A : (a, b) ∈ R for some b ∈ A}.

2.2 Pairings

The model discussed in this chapter is concerned only with the relative positions of MDSs and their corre-

sponding counterparts in the product genome. It neglects information encoded in the undelying nucleotide

sequences as well as distances between MDSs and lengths of MDSs. To a set of MDSs, we can associate

a set of pairs, each of which contains the end coordinates of an MDS. Such a set of pairs can be viewed

as a graph, where the end coordinates of MDSs are vertices and pairs (MDSs) are edges. See Figures 2.1

and 2.2 for two examples of rearrangements maps and graph representations of sets of pairs associated to

them. Whenever the number of endpoints of members of two sets of pairs are the same, and one of the sets

can be obtained from the other by applying the unique order isomorphism σfwd
A,B between the two sets of

endpoints A and B, we consider the two sets of pairs equivalent. Viewing sets of pairs as graphs, two sets are

equivalent whenever the order isomorphism between the vertices is a graph isomorphism. Observe that this

relationship between sets of pairs with the same number of end coordinates is an equivalence relation. We

consider sets of pairs whose endpoints make up a consecutive set of integers 1, . . . , N as the representatives

of these equivalence classes and call them pairings.

Definition 2.2.1. A pairing of ZN is a symmetric and anti-reflexive relation π ⊆
(
ZN
2

)
, which has domain

ZN . The family of all pairings of ZN is denoted Π(N).

A non-example and an example of a pairing as well as the graph induced by the latter are depicted in

Figure 2.3. The relation π1 shown in part (a) of the figure is not a pairing for multiple reasons. First, the

domain of π1 does not include 2. Next, π1 is not anti-reflexive because 5π15. Lastly, π1 is not symmetric
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since 2π11 and 2π14, but 1, 4 6π 12. The relation π2, on the other hand is a pairing. As opposed to π1, the

domain of π2 is Z6. Additionally, no member of Z6 is contained in its own neighborhood, and whenever

iπ2j, then jπ2i. The graph Gπ2
induced by π2 is shown in part (c) of the same figure. The vertices of the

graph are the elements of Z6 and the graph has no isolated vertices since the domain of π2 is Z6. For every

{i, j} ∈
(
Z6

2

)
, there is an edge between i and j if and only if iπ2j. Observe that by symmetry of π2, this

graph is well-defined and anti-reflexivity of π2 implies that the graph is loop-free.

(a)

Z6 Nπ1(Z6)

1 {2, 3}
2 ∅
3 {1, 5, 6}
4 {2, 6}
5 {3, 5, 6}
6 {3, 4, 5}

(b)

Z6 Nπ2(Z6)

1 {4, 6}
2 {3}
3 {2, 4, 6}
4 {1, 3, 6}
5 {6}
6 {1, 3, 4, 5}

(c)

Gπ2

1 2 3 4 5 6

Figure 2.3: A relation π1 on Z6 which is not a pairing in (a), a relation π2 on Z6, which is a pairing in (b),
and the graph Gπ2

induced by π2 in (c). In (a) and (b), the members of Z6 are listed together with their
neighborhoods.

As opposed to existing models, pairings can model rearrangement maps where MDSs are contained in

other MDSs in the precursor and where distinct MDSs share pointers at either end. Figure 2.2 exemplifies

how pairings can model containment of MDS regions. In this figure, MDS 1 spans a region contained in the

region covered by MDS 4. Since the two MDSs share one of their end coordinates, but not the other, their

representation in the figure consists of the substructure 1 2 3 , where MDS 4 corresponds to the top arc

{1, 3} and MDS 1 corresponds to the bottom arc {2, 3}. Frequently, rearrangement maps were translated

into sequences of MDSs or sequences of pointers to derive models from them. However, the containment of

MDS regions in the precursor in other MDS regions considered here make a meaningful definition of a total

order on the MDSs difficult. Observe that a pairing only represents the relative positions of MDS regions

on the precursor and reveals no information about the order and orientation of the corresponding regions in

the product.

Remark 2.2.2. The function G which maps pairings π ∈ ZN to graphs G(π) on the vertex set ZN is a

bijection between Π(N) and the collection of all graphs without isolated vertices on ZN .

Remark 2.2.2 suggests that instead of defining pairings as symmetric and non-reflexive relations on ZN ,

pairings could have been defined as graphs on a totally ordered vertex set without isolated vertices. While

defining pairings as graphs may appeal to a wider audience, Definition 2.2.1 is used here to stay semantically
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closer to their applications in DNA rearrangements in ciliate biology. In particular, the linear ordering of

the elements in ZN captures the configuration of the end coordinates of precursor intervals and a pairing

of ZN relates pairs of coordinates belonging to the same interval to each other. Due to their bijective

correspondence the graph G(π) induced by a pairing π may be used interchangeably with π.

Each member of π can be interpreted as the beginning and end coordinate of a precursor interval in an

arrangement relative to the ends of other precursor intervals in the arrangement. Likewise, any arrangement

produces a pairing when enumerating the set of distinct end coordinates of precursor intervals by ZN and

relating two of them whenever they are the end coordinates of some precursor interval. Thus, pairings can

describe any configuration of relative positions of precursor intervals that could possibly occur. To narrow

down the space of pairings being explored to a subset of Π(N) which reflects more accurately the genome

rearrangement data of O. trifallax, some relevant properties are introduced in this section, and subspaces of

Π(N) defined by these properties are counted.

2.2.1 Unidirectional Pairings

Overlaps between MDSs in the precursor genome of O. trifallax can be categorized into overlaps at the ends

and containment of one interval in another. Frequently, when MDSs are contained in other MDSs, they align

at either end, and so share the same end coordinate. When two precursor intervals overlap, but neither is a

subset of the other, then either their interval ends are distinct, or the right end of one of the intervals is the

same as the left end. The latter of the two cases has not been observed in the genome rearrangement data

of the organism O. trifallax at a notable frequency, yet, so we introduce a property of pairings which reflects

their absence. The main idea of this property is that if an end coordinate is shared by two or more MDSs

in the precursor, it is either the left end for all of them, or the right end for all of them, but never the left

end for some and the right end for others.

Definition 2.2.3. A pairing π of ZN is unidirectional if for all i ∈ ZN , either all members of Nπ(i)

are greater than i, or all members of Nπ(i) are less than i. The set of left ends L(π) with respect to a

unidirectional pairing π of ZN , is the set of all elements i ∈ ZN , where all members of Nπ(i) are greater

than i. Similarly, the set of right ends R(π) with respect to π is the set of all elements j ∈ ZN , where all

members of Nπ(j) are less than j. The family of all unidirectional pairings of ZN is denoted Πuni(N).

The graph induced by a unidirecitonal pairing π of ZN is bipartite with parts L(π) and R(π). The

sets L(π) and R(π) can be further partitioned into their maximal consecutive integer subsets. Denote with

~L(π), ~R(π) the ν(π)-tuples L1, . . . , Lν(π) ⊆ L(π), and R1, . . . , Rν(π) ⊆ R(π), where L1 < R1 < L2 < R2 <

· · · < Lν(π) < Rν(π). For a unidirectional pairing π ∈ Πuni(N), set ~l(π) = |~L(π)|, and ~r(π) = |~R(π)|.

An example of a pairing which is not unidirectional is provided in Figure 2.3(b), where Nπ2
(3) = {2, 4, 6}
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contains numbers less than 3 and numbers greater than 3. An example of a unidirectional pairing is shown

in Figure 2.4(a) along with the partitioning of Z10 by π into (ν(π) = 3)-tuples ~L(π) = (L1, L2, L3) =(
{1}, {4, 5}, {7}

)
and ~R(π) = (R1, R2, R3) =

(
{2, 3}, {6}, {8, 9, 10}

)
. Here, ~l(π) = (1, 2, 1), and ~r(π) =

(2, 1, 3). When the vertices of the graph induced by a pairing are sorted and arranged linearly in order from

left to right, then the absence of the substructure characterizes unidirectionality.

(a)

1
L1

2 3
R1

4 5
L2

6
R2

7
L3

8 9 10
R3

(b)


1 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


L11

L2
4

5
L37

R1

2 3

R2

6

R3

8 9 10

Figure 2.4: The graph induced by a unidirectional pairing π of Z10, together with the partition of Z10

associated with π in (a), and the biadjacency matrix M(π) associated with π in (b).

The task of counting unidirectional pairings can be accomplished using an inclusion-exclusion argument.

This argument can be stated in the context of bipartite graphs, but requires some additional language. The

adjacency matrix of a bipartite graph G = (V,E) with bipartition V = V1 ∪ V2 is of the form
[

0 BT

B 0

]
,

if the vertices are arranged such that the first |V1| columns and rows correspond to the vertices in V1

an the remaining |V2| columns and rows correspond to the vertices in V2. In this case, the block B is

called the biadjacency matrix of G. To a unidirectional pairing π we associate the biadjacency matrix

M(π) ∈ {0, 1}|L(π)|×|R(π)|, where each ith row corresponds to the ith member of L(π) (in the integer ordering),

and each jth column corresponds to the jth member of R(π). Due to the ordering of the rows and columns

of M(π),the matrix M(π) can be split into blocks Bp,q, for (p, q) ∈ Zν(π) × Zν(π), where each Bp,q is the

|Lp| × |Rq| biadjacency matrix of the subgraph of G(π) induced by the vertices Lp ∪ Rq. The blocks of a

biadjacency matrix M(π) of a unidirectional pairing π of ZN are denoted Bp,q, for (p, q) ∈ ν(π) × ν(π).

The biadjacency matrix M(π) for the unidirectional pairing π from Figure 2.4(a) is shown in part (b) of the

figure. Since each pth coordinate Lp of ~L(π) consists of left ends only, and by the ordering of the coordinates

in ~L(π) and ~R(π), the members of Lp can only be paired up by π with members of Rq for q ≥ p. Similarly,

members of the qth coordinate Rq of ~R(π) can only be paired up by π with members of Lp, for p ≤ q. Thus,

the blocks Bp,q, where p > q, are 0-matrices. Furthermore, while two distinct unidirectional pairings π1,

π2 of ZN may have the same partitions, i.e. ~L(π1) = ~L(π2) and ~R(π1) = ~R(π2), the matrices M(π1) and

13



M(π2) may differ. These observations lead to Lemma 2.2.4 which asserts a bijective correspondence between

unidirectional pairings and their corresponding biadjacency matrices.

Before stating Lemma 2.2.4, the set of biadjacency matrices corresponding to unidirectional pairings is

described. Let ν ≥ 1 and let ~l = (l1, . . . , lν), ~r = (r1, . . . , rν) be ν-tuples of positive integers adding up to N .

The set of all π ∈ Πuni(N) with ~l(π) = ~l, and ~r(π) = ~r is in one-to-one correspondence with a subset of the

collection T (~l, ~r) of all matrices of the form:



B1,1 B1,2 · · · B1,ν−1 B1,ν

0 B2,2 · · · B2,ν−1 B2,ν

0 0 · · · B3,ν−1 B3,ν

...
...

. . .
...

...

0 0 · · · 0 Bν,ν


,

where Bp,q ∈ {0, 1}lp×rq , for all (p, q) ∈ Zν × Zν , and Bp,q = [0] if p > q. More specifically, the subset of

T (~l, ~r) in question consists of those matrices, which have no zero-rows, and no zero-columns.

Lemma 2.2.4. Let T ∗(~l, ~r) be the collection of those members of T (N), which have no zero rows and no

zero columns. The mapping M : Πuni(N)→ T ∗(N) defined by π 7→M(π), is a bijection.

Proof. Let π ∈ Πuni(N). Then M(π) ∈ T (~l(π), ~r(π)) ⊆ T (N). Since the domain of π is ZN , the matrix

M(π) does not have any zero rows, or columns. Hence, M(π) ∈ T ∗(N), proving that M indeed maps into

T ∗(N).

Let Q ∈ T ∗(N). Then for the pairing π of ZN defined by iπj whenever Qi,j = 1, we have that Q = M(π).

Thus, M is surjective.

If π1 6= π2 ∈ Πuni(N), then without loss of generality, there exist {i, j} ∈
(
ZN
2

)
, such that iπ1j and i < j,

but i6π 2j. Then M(π1)i,j = 1 6= 0 = M(π2)i,j , so that M is injective.

There are many ways to partition ZN into left ends and right ends. Lemma 2.2.5 counts the subset of

T (~l, ~r) without zero rows for any choice of ~l and ~r. Let U(N) = {(~l, ~r) : ν(~l) = ν(~r) and
∑ν(~l)
i=1

(
~li+~ri

)
= N},

for i ∈ Zν(~l). Next, let Γ(N) be the the collection of pairs of tuples (~L = (L1, . . . , Lν), ~R = (R1, . . . , Rν)),

with ν ∈ N, of pairwise-disjoint sets which partition ZN into L = L1∪· · ·∪Lν and R = R1∪· · ·∪Rν , such that

the coordinates Lp of ~L, and Rq of ~R are consecutive integer subsets of L and R, respectively, and where L1 <

R1 < L2 < R2 < · · · < Lν < Rν . Denote with T (N) the union of the sets T (~l, ~r) taken over all (~l, ~r) ∈ U(N).

Any member % = (~l, ~r) of U(N) uniquely defines a member γ(%) = (~L, ~R) ∈ Γ(N), such that |~L| = ~l and

|~R| = ~r. For each % = ((l1, . . . , lν), (r1, . . . , rν)) ∈ U(N) and each γ = ((L1, . . . , Lν), (R1, . . . , Rν)) ∈ Γ(N),
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write ν(%) = ν(γ) = ν. While each π ∈ Πuni(N) uniquely associates with a member (~L(π), ~R(π)) ∈ Γ(N),

there may be multiple members π ∈ Πuni(N) for (~L, ~R) ∈ Γ(N) such that ~L(π) = ~L and ~R(π) = ~R. For

every (~L, ~R) ∈ Γ(N), define Πuni(~L, ~R) = {π ∈ Πuni(N) : ~L(π) = ~L and ~R(π) = ~R}. Similarly, for every

(~l, ~r) ∈ U(N), define Πuni(~l, ~r) = {π ∈ Πuni(N) : ~l(π) = ~l and ~r(π) = ~r}.

Lemma 2.2.5. Let (~L, ~R) ∈ Γ(N), and % = (~l, ~r) = (|~L|, |~R|), and ν = ν(%), let l =
∑ν
p=1 lp, r =

∑ν
q=1 rq,

and let J ⊆ R1∪· · ·∪Rν . Denote with T 0
J (~l, ~r), the collection of all matrices M in T (~l, ~r) without zero rows,

where Mi,j = 0, for all i ∈ Zl, and j ∈ J . Then:

|T 0
J (~l, ~r)| =

∏
p∈Zν

(
2
∑ν
q=p rq−|Rq∩J| − 1

)lp
,

where, ~R is the second coordinate of (~L, ~R) = γ(%).

Proof. Each matrix M = [Bp,q] ∈ T 0
J (~l, ~r) can have non-zero entries only in the columns with indices in

Zn \ J . Since p > q implies Bp,q = [0], we have that for each p ∈ Zν and for each of row in the block row

[Bp,1, . . . , Bp,ν ], there are
∑ν
q=p rq − |Rq ∩ J | entries which may be non-zero. Since each pth block row has

lp rows, there are (2
∑ν
q=p rq−|Rq∩J| − 1)lp distinct configurations of non-zero entries in each pth block row

for members of T 0
J (~l, ~r). Distinct configurations of non-zero entries in each row define distinct members of

T 0
J (~l, ~r), so that the result follows by the Rule of Product.

Corollary 2.2.6. With the notation from Lemma 2.2.5, let T ∗(~l, ~r) ⊂ T (~l, ~r) be the collection of all members

of T (~l, ~r) which have no 0 columns or rows. Then:

|T ∗(~l, ~r)| =
∑

J⊆R1∪···∪Rν

(−1)|J|
∏
p∈Zν

(
2
∑ν
q=p rq−|Rq∩J| − 1

)lp

Proof. The statement of this corollary follows from Lemma 2.2.5 by inclusion-exclusion from the fact that

the set T ∗(~l, ~r) is the set of all members of T (~l, ~r) which have no zero rows minus those members which have

zero columns (i.e. T ∗(~l, ~r) = T 0
∅ (~l, ~r) \

(
∪rj=1 T 0

{j}(
~l, ~r)

)
).

Corollary 2.2.7. The number of unidirectional pairings of ZN is:

|Πuni(N)| =
∑

(~L,~R)∈Γ(N)

∑
J⊆R1∪···∪Rν(~R)

(−1)|J|
∏

p∈Zν(~L)

(
2
∑ν(~R)
q=p |Rq|−|Rq∩J| − 1

)|Lp|
.

Proposition 2.2.8. 1. The unique pairing πmax(%) for each % ∈ U(N) achieving maxπ∈Πuni(%) |π|, is

defined by iπj, for all i, j, where i ∈ ~L(π)p and j ∈ ~R(π)q for some p ≤ q.
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2. If π ∈ Πuni(N), then |π| ≤ N2

4 .

Proof. Let π ∈ Πuni(~l, ~r). By definition of unidirectionality, iπj implies i ∈ ~L(π)p and j ∈ ~R(π)q for some

p ≤ q. Thus, π ⊆ πmax(~l, ~r), so that πmax(~l, ~r) indeed uniquely achieves the maximum number of pairs over

all unidirectional pairings in Πuni(~l, ~r). Write ν = ν(~l, ~r). Then,

|πmax(~l, ~r)| =
ν∑
p=1

ν∑
q=p

lprq ≤
ν∑
p=1

ν∑
q=1

lprq =
( ν∑
p=1

lp

)( ν∑
q=1

rq

)
= mn = m(N −m). (2.1)

Equality holds in 2.1 if and only if ν = 1 because each of the lp and rq are positive. Thus, |πmax(~l, ~r)| is at

its maximum taken over all (~l, ~r) ∈ U(N), when ν(~l, ~r) = 1 and when m(N −m) is at its maximum. The

function f(m) = m(N −m) is at its absolute maximum for m ∈ [0, N ] when m ∈ {dN2 e, b
N
2 c}. Thus, the

unidirectional pairing of ZN with the most pairs is of size |πmax(N)| = dN2 e · b
N
2 c ≤

N2

4 .

2.2.2 Pairing Density

One element of ZN can theoretically be paired up with all N − 1 remaining elements of ZN by a pairing

π ∈ Π(N). Such a pairing would describe a configuration of MDSs which all share a common end coordinate.

In the genome rearrangement data of the organism O. trifallax, however, MDSs which share end coordinates

do not appear frequently. Hence, rearrangements where all MDSs share an end coordinate are even less

frequent, especially for larger numbers of MDSs. Nevertheless, shared precursor interval end coordinates

do appear in the data and should not be completely disregarded. A notion of density is desirable, which

describes the number of pairs that elements of ZN belong to.

Definition 2.2.9. Let π be a pairing of ZN . The density di(π) of π at i ∈ ZN is the number of elements

in Nπ(i). A pairing π ∈ Π(N) is said to have density at most d if for all i ∈ ZN , di(π) ≤ d. The families

of all pairings of ZN with density at most d, and all unidirectional pairings of ZN with density at most d,

are denoted Πd(N) and Πuni,d(N), respectively.

Remark 2.2.10. The function G(π) is a bijection between Πd(N) and the collection of the graphs on ZN

with maximum vertex degree less than or equal to d and without isolated vertices. The largest pairing of

ZN with density d ∈ Zn−1 has size N · d.

Let Ud(N) be the collection of those pairs % ∈ U(N) for which a unidirectional pairing π with density at

most d exists with partition (|~L(π)|, |~R(π)|) = (%) 6= ∅.

Figure 2.5 shows two partitionings of ZN , one of which admits a unidirectional pairing of density at

most 2, while the other does not. Therefore, the latter corresponds to a member ((|L̃1|, |L̃2|), (|R̃1|, |R̃2|)) of

U(N) \ Ud(N). The partitioning of Z9 shown in Figure 2.5(b) does not admit a unidirectional pairing of Z9
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of density at most 2 with set of left ends L̃ = L̃1 ∪ L̃2 and set of right ends R̃ = R̃1 ∪ R̃2 since the 3 elements

in R̃1 can only be paired with the single element in L̃1. The relation π̃ shown in Figure 2.5(b) exemplifies

an attempt to defining a unidirectional pairing of Z9 of density at most 2 with set of left ends L̃ and set of

right ends R̃. The domain of π̃ is not Z9 and addition of any more pairs to π̃ results in elements in Z9 with a

neighborhood of size larger than 2. Observe that the sizes of L̃ and R̃ are the same as those of L = L1 ∪L2

and R = R1 ∪R2 in (a), respectively showing that not just the number of left and right ends determine the

existence of a unidirectional pairing of ZN of density at most d, but also the partitioning of ZN .

(a)

1 2
L1

3 4 5
R1

6
L2

7 8 9
R2

(b)

1

L̃1

2 3 4

R̃1

5 6

L̃2

7 8 9

R̃2

Figure 2.5: (a): the graph induced by a unidirectional pairing π of Z9 of density at most 2 together with its
associated partitioning of Z9 into L1, L2, R1, R2. (b): the graph induced by an anti-reflexive and symmetric

relation π̃ on Z9 together with a partitioning of Z9 into sets L̃1, L̃2, R̃1, and R̃2.

For d ∈ Zn−1, and (~l, ~r) ∈ Ud(N), denote with T ∗d (N), and T ∗d (~l, ~r), the subsets of T ∗(N), and T ∗(~l, ~r),

respectively, of those matrices whose columns and rows all have at most d non-zero entries. The restriction

of the mapping M from Lemma 2.2.4 to the set Πuni,d(~l, ~r), is a bijection onto T ∗d (~l, ~r). Hence, counting

the sets T ∗d (~l, ~r) and T ∗d (N) = ∪%∈Ud(N)T ∗d (%) amounts to counting the matrices in T ∗d (~l, ~r). To prove

Corollary 2.2.6, inclusion-exclusion was used to count the collection T ∗(~l, ~r) = T 0
∅ (~l, ~r) \

(
∪rj=1 T 0

{j}(
~l, ~r)

)
.

The same approach leads to complications when attempting to apply it to T ∗d (~l, ~r). Expanding the count to

the subsets of T ∗(~l, ~r) of matrices with at most d non-zero entries in all rows, but not necessarily all columns

provides an upper bound to the size of T ∗d (~l, ~r).

Lemma 2.2.11. Let (~l, ~r) ∈ Ud(N) and ν = ν(~l, ~r). Let T̃ ∗d (~l, ~r) be the set of all matrices in T ∗(~l, ~r), where

every row has at most d non-zero entries. Then T ∗d (~l, ~r) ⊆ T̃ ∗d (~l, ~r) and

|T̃ ∗d (~l, ~r)| =
∑
J⊆Zr

(−1)|J|

(
ν∏
p=1

[ d∑
u=1

(∑ν
q=p rq − |Rq ∩ J |

u

)]lp)
.

Proof. Let (~l, ~r) ∈ Ud(N) and J ⊆ Zr. Denote with T 0
J,d(

~l, ~r) the collection of all matrices M ∈ T (~l, ~r)

without zero rows, where Mi,j = 0, for all (i, j) ∈ Zl × J and every row has at most d non-zero entries.

The various configurations of up to d non-zero entries per row are in one-to-one correspondence with the

collection T 0
J,d(

~l, ~r). Each of the lp rows in the pth block row have exactly
(∑ν

q=p rq−|Rq∩J|
u

)
configurations of
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u ∈ Zd non-zero entries. Then each such row has exactly
∑
u∈Zd

(∑ν
q=p rq−|Rq∩J|

u

)
different configurations of

at most d non-zero entries. Applying the rule of product to count the number of configurations of non-zero

entries in each block row gives

|T 0
J,d(

~l, ~r)| =
ν∏
p=1

[ ∑
u∈Zd

(∑ν
q=p rq − |Rq ∩ J |

u

)]lp

The result follows by applying inclusion-exclusion and the fact that T̃ ∗d (~l, ~r) = T 0
∅,d(

~l, ~r) \
(
∪rj=1 T 0

{j},d(
~l, ~r)

)
.

(a)

1 2
L1

3 4
R1

5 6
L2

7 8 9
R2

(b)


1 1 1 0 0
1 0 1 0 1
0 0 1 0 0
0 0 1 1 1

L1

1

2

L2
5

6

R1

3 4

R2

7 8 9

Figure 2.6: The graph induced by a unidirectional pairing π of Z9 and the partition (~L(π) =

({1, 2}, {5, 6}), ~R(π) = ({3, 4}, {7, 8, 9})) of Z9 associated with π in (a) and the biadjacency matrix M(π)
associated with π in (b). Since Nπ(7) = {1, 2, 5, 6}, the pairing is not of density 3. However, the matrix

M(π) is a member of T̃ ∗d ((2, 2), (2, 3)), which proves that T̃ ∗d ((2, 2), (2, 3)) \ T ∗d ((2, 2), (2, 3)) 6= ∅.

Corollary 2.2.12. The number of unidirectional pairings of ZN with density d is bounded above by:

|Πuni,d(N)| ≤
∑

%=(~l,~r)∈Ud(N)

∑
J⊆Zr

(−1)|J|

(
ν(~l,~r)∏
p=1

[ d∑
u=1

(∑ν(~l,~r)
q=p (rq − |Rq ∩ J |)

u

)]lp)
.

Proof. The result follows from Lemma 2.2.11 since the restriction of the mapping M in Lemma 2.2.4 to the

set Πuni,d(N) is a bijection onto the set
(
∪(~l,~r)∈Ud(N) T

∗
d (~l, ~r)

)
contained in

(
∪(~l,~r)∈Ud(N) T̃

∗
d (~l, ~r)

)
.

2.3 Labellings

Pairings describe configurations of MDSs in the precursor, but they give no information about which regions

in the product they match. One way of conveying the relative positions of the product regions matching

the MDSs described by a pairing is to label each pair according to the region it matches. Each MDS in the

product can be identified by a number that indicates its position in the sequence of MDSs on the product.
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Additionally, the parity of the label can indicate orientation of the alignment. A pair may be labelled with

more than one MDS identifier and an MDS identifier may appear in multiple labels. Figure 2.1 exemplifies

a labelling where some MDS identifiers (4,−2,−3,−7) each appear in more than one label. Figure 2.2

depicts a label {2, 5} of a pair {4, 5} consisting of more than one MDS identifier, which means that this MDS

matches both to the 2nd and 5th MDS in the product. Extending on the idea of double occurrence words,

this labelling technique allows for the appearance of the same MDS identifier more than twice and for more

than one MDS identifier at the same location. In this section, the necessary properties for such a labelling

to model actual arrangements appearing in DNA rearrangement data sets similar to that of O. trifallax are

established. The spaces of labellings with such properties is explored combinatorially via counting results.

For a set of integers A ⊆ Z, denote with ±A the set
⋃
a∈A{a,−a}.

Definition 2.3.1. Let P ⊆
(
ZN
2

)
and let K ∈ N. A K-labelling of P is a function λ : P → 2±ZK \ ∅. The

image λ(P ) = {λ(x) : x ∈ P} of λ is called the set of labels of λ and the set ±ZK is called the set of

symbols of λ. The collection of all K-labellings of P is denoted ΛK(P ).

Three examples of 4-labellings of subsets of
(
Z6

2

)
are depicted in Figure 2.7. A K-labelling of a set of

pairs P ⊆
(
ZN
2

)
can be viewed as a labelling of the edges of the graph G(P ). Counting the sets ΛK(P ), for

arbitrary sets of pairs P ⊆
(
ZN
2

)
amounts to counting the number of ways of assigning nonempty subsets of

±ZK to the pairs in P .

Remark 2.3.2. Let P ⊆
(
ZN
2

)
. Then |ΛK(P )| = (22K − 1)|P |.

In general, K-labellings may not contain some of the symbols from ZK , neither in the positive nor in

the negative form of the symbols. Such labellings can often be viewed as K ′-labellings for some K ′ < K,

where the set of all symbols used in the labels is precisely ZK′ . Thus, to simplify this analysis, we may

often assume all symbols in ZK to be present in the labels of the K-labelling in consideration. A K-labelling

corresponding to such an arrangement is complete in the sense that, each of the symbols 1, . . . ,K appears

in one of the labels, regardless of its parity.

Define the projection of a set A ⊆ Z to be the set proj(A) = {|a| : a ∈ A}. Let F ⊆ 2Z be a family of

sets of integers. Call the set proj(F) = {proj(A) : A ∈ F} of projections of members of F the projection

of F . Define the support of F to be the set:

supp(F) =
⋃
A∈F

projA.

For a single set of integers A ⊆ Z, or a singleton family of sets of integers F = {A}, we may use the terms

support and projection interchangeably referring to the same set supp(A) = proj(F) = {|a| : a ∈ A}.
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Example 1. If F = {A1 = {1,−1, 3}, A2 = {−2,−3}}, then:

supp(F) = proj(A1) ∪ proj(A2) = {1, 3} ∪ {2, 3} = Z3

Definition 2.3.3. Let P ⊆
(
ZN
2

)
and λ ∈ ΛK(P ). A symbol a ∈ ZK is said to be covered by a label

A ∈ λ(P ) if {a,−a} ∩A 6= ∅. The set of symbols in ZK covered by A is its projection proj(A). The symbol

a is covered by the K-labelling λ if a ∈ proj(A), for some A ∈ λ(P ). The set of symbols covered by

λ is the support of its labels supp(λ(P )). Let S ⊆ ZK . Denote with ΛK,S(P ) the set of all K-labellings λ

of P where supp(λ(P )) ⊆ S. A K-labelling λ of P is complete in S if supp(λ(P )) = S. Call a K-labelling

simply complete if it is complete in ZK . Denote with Λ̂K,S(P ) the set of K-labellings of P , which are

complete in S and denote with Λ̂K(P ) the set of all complete K-labellings λ of P .

The set of elements of Z4 covered by the 4-labelling λ1 depicted in Figure 2.7(a) is the set supp(λ1(P )) =

{1, 2, 4}. Hence, λ1 is complete in {1, 2, 4}. Since 3 is not covered by λ1, it is not complete in Z4. The 4-

labelling λ2 in Figure 2.7(b), on the other hand, is complete since supp(λ2(P )) = {1, 2, 3, 4}. The 4-labelling

λ3 of the pairing P of Z6 depicted in Figure 2.7(c) is a member of Λ4,Z4(P ), but it is not complete. However,

when viewed as a 3-labelling, λ3 is complete because supp(λ3(P )) = Z3.

(a)

1 2 3 4 5 6

{4}

{1, 2} {−1, 1, 2, 4}

{4}

(b)

1 2 3 4 5 6

{−3}

{1, 2} {−1,−2}

{4}

(c)

1 2 3 4 5 6

{−3}

{1, 2} {−1,−2}

{3}

Figure 2.7: Three examples of 4-labellings of the set of pairs P = {{1, 2}, {1, 4}, {3, 6}, {5, 6}} ⊆
(
Z6

2

)
.

The labelling in (a) has set of labels {{4}, {1, 2}, {−1, 1, 2, 4}}. The labelling in (b) has set of labels
{{−3}, {1, 2}, {−1,−2}, {4}}. The labelling in (c) has set of labels {{−3}, {1, 2}, {−1,−2}, {3}}.

2.3.1 Coherent Labellings

The first property of labellings investigated in this section which is inherently satisfied by labellings derived

from arrangements obtained from the genome of O. trifallax, is the property of coherence. When two labels

A and B in the set of labels of a K-labelling λ intersect in an element, say a ∈ ±ZK , then the precursor

region described by the pairs x and y, both match the |a|th product segment in the rearrangement map and

thus consist of the same DNA sequence. Then the product regions matching the precursor region described
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by x also match the precursor region described by y and vice versa. Thus, we must have A∪B = λ(x) = λ(y).

Analogously, when A ∩ −B 6= ∅ then we must have λ(x) = −λ(y) because the precursor DNA sequences

corresponding to x and y are reverse complements of each other. It should be noted that the argument

above uses the simplifying assumtption of identical sequence alignments between each precursor MDS and

the product MDSs it maps to. In practice, however, commonly employed sequence similarity scoring functions

are theoretically not transitive.

Define the negation of a set A ⊆ Z as −A = {−a : a ∈ A}.

Definition 2.3.4. Let P ⊆
(
ZN
2

)
. A K-labelling λ of P is called coherent if for all x, y ∈ P , the following

two conditions are satisfied:

(i) If λ(x) ∩ λ(y) 6= ∅, then λ(x) = λ(y).

(ii) If λ(x) ∩ −λ(y) 6= ∅, then λ(x) = −λ(y).

Denote with ΛK,coh(P ) the set of all coherent K-labellings of P and with ΛK,S,coh(P ), Λ̂K,S,coh(P ), and

Λ̂K,coh(P ), the intersections of ΛK,coh(P ) with ΛK,S(P ), Λ̂K,S(P ), and Λ̂K(P ), respectively.

In Figure 2.7(a), the labels of pairs {1, 4} and {3, 6} have non-empty intersection {1, 2}. However, the two

labels do not equal each other. Thus, the depicted labelling is incoherent. The 4-labellings in Figure 2.7(b)

and (c), are coherent. Whenever two labels intersect in these K-labellings they equal each other and whenever

one label intersect the negation of another label, each of the two labels equals the negation of the other.

Three additional coherent 3-labellings of a different set of pairs are shown in Figure 2.8. In (b) and (c), the

label {−2, 2,−3, 3} intersects its own negation and thus is equal to its own negation.

(a)

1 2 3 4 5 6

{−1}

{2, 3}

{1}

(b)

1 2 3 4 5 6

{−1}

{−2, 2,−3, 3}

{1}

(c)

1 2 3 4 5 6

{−1}

{−2, 2,−3, 3}

{−1}

Figure 2.8: Three coherent 3-labellings of the set of pairs P = {{1, 2}, {3, 6}, {4, 5}} ⊂
(
Z6

2

)
.

Observe that both conditions in Definition 2.3.4 also apply when x = y. In that case, λ(x) ∩ −λ(x) 6= ∅

implies that λ(x) = ±λ(x). Thus, if {a,−a} ⊆ λ(x), for any symbol a ∈ ZK , then λ(x) = ±λ(x). Sets of

symbols A ⊆ ±ZK where A = ±A are called palindromic. By contraposition, any anti-palindromic label
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A from the set of labels of a coherent K-labelling must never contain a symbol a and its negation −a, at

the same time. Sets of symbols A ⊆ ±ZK where A ∩ −A = ∅ are called anti-palindromic. Therefore,

any label A in the set of labels of a coherent K-labelling must either be palindromic, or anti-palindromic.

All but one of the labels in Figure 2.7 are anti-palindromic. The label {−1, 1, 2, 4} from the set of labels of

the incoherent K-labelling depicted in Figure 2.7(a) is neither palindromic, nor anti-palindromic. The label

{−2, 2,−3, 3} of the pair {3, 6} in Figures 2.8(b) and (c) is palindromic. All other labels in Figure 2.8 are

anti-palindromic.

Given a coherent K-labelling λ of a set of pairs P ⊆
(
ZN
2

)
, coherence implies that when a label λ(x) of

one pair x ∈ P intersects the projection of a label λ(y) of another pair y ∈ P , then the labels must either

be equal, negations of each other, or both. Thus, the projections of two labels in λ(P ) intersect only if they

are equal. Define the relation ≡proj

λ on the set of pairs by:

x ≡proj

λ y ⇐⇒ proj(x) = proj(y).

Then ≡proj

λ is an equivalence class and coherence of λ implies that pairs from distinct equivalence classes have

disjoint projections. Additionally, the set P
/
≡proj

λ
of equivalence classes in P under the relation ≡proj

λ is

in one-to-one correspondence with projλ(P ) via the mapping f , which maps the equivalence classes [x]≡proj
λ

into proj(λ(x)). Observe also that disjointness of the projections of the labels implies that proj(λ(P ))

partitions the support supp(λ(P )). In Figure 2.7(c), for example, the projections of the labels of pairs

{1, 4} and {3, 6} intersect in {1, 2} and are negations of each other. Therefore, {1, 4} ≡proj

λ {3, 6}, where

λ is the depicted labelling. Similarly, {1, 2} ≡proj

λ {5, 6}, so that the set of equivalence classes under ≡proj

λ

is P
/
≡proj

λ
=
{{
{1, 2}, {5, 6}

}
,
{
{1, 4}, {3, 6}

}}
. The projections proj(λ(P )) =

{
{1, 2}, {3}

}
of the labels

partition the support supp(λ(P )) = {1, 2, 3}.

Given a projection S ∈ proj(λ(P )) of some label in the set of labels of a coherent K-labelling λ, more

than one label in λ(P ) may have S as its projection. Define the sets pal(S) and apal(S) to be the collections

of palindromic and anti-palindromic sets of symbols, respectively, which have projection S. Furthermore,

define coh(S) = pal(S) ∪ apal(S). Then pal(S) is precisely the set of labels with projection S which could

occur in the set of labels of a coherent K-labelling. However, not all of the members of coh(S) may occur

in the set of labels of a single coherent K-labelling. The labels which have projection S are precisely the

labels of the pairs in λ−1(proj−1(S)), which constitute one of the equivalence classes [x]≡proj
λ

in P
/
≡proj

λ
.

For any two pairs x and y in [x]≡proj
λ

, coherence of λ implies that the labels of x and y must either be

the same, negations of each other, or both. Therefore, fixing one member x0 ∈ [x]≡proj
λ

, all other members

y of [x]≡proj
λ

must have label λ(y) ∈ {−λ(x), λ(x),±λ(x)}. If λ(y) = ±λ(x), then by coherence of λ, all
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members of [x]≡proj
λ

, have the same label. Thus, there are at most two distinct labels in λ(P ) which have

the same projection. In Figures 2.7(b) and (c), the set S = {1, 2} is a member of the set of projections of

the labels. In this case, pal(S) =
{
{1, 2}, {1,−2}, {−1, 2}, {−1,−2}

}
and apal(S) =

{
{−1, 1,−2, 2}

}
. The

pairs {1, 4} and {3, 6} are the two pairs whose labels have S as their projection. The labels of these two

pairs are members of apal(S) and are negations of each other. In Figure 2.8(c), the projection of the set of

labels of the depicted 3-labelling λ of the set of pairs P is proj(λ(P )) =
{
S1 = {1}, S2 = {2, 3}

}
. Here, the

set of pairs whose labels have projection S1 are λ−1(proj−1(S1)) =
{
{1, 2}, {4, 5}

}
, and both pairs have the

same label {−1} ∈ apal(S1). The single pair whose label has projection S2 is {3, 6} and its label is the only

member {−2, 2,−3, 3} of pal(S2).

Theorem 2.3.5. Let P ⊆
(
ZN
2

)
. Then:

|Λ̂K,coh(P )| =
min{K,|P |}∑

h=1

∑
S∈{ZKh }

∑
P∈{Ph}

∑
f :P bij−→S

∏
X∈P

(
1 + 2|X| · 2|f(X)| · 1

2

)
,

so that

2K · 2|P |
min{K,|P |}∑

h=1

2−h · h! ·
{
K

h

}{
|P |
h

}
≤ |Λ̂K,coh(P )| < 2K · 2|P |

min{K,|P |}∑
h=1

h! ·
{
K

h

}{
|P |
h

}

Proof. The proof proceeds by counting in how many ways P can be partitioned into sets which are the

equivalence classes under ≡proj

λ for coherent K-labellings λ. Given such a partitioning P of P , we then count

in how many ways ZK can be partitioned into the same number of classes and assigned to the members

of P as the projections of the labels of these equivalence classes according to coherent K-labellings. With

partitionings P and S of P and ZK , respectively, and a fixed bijective correspondence f : P −→ S, we then

only need to count the number of coherent K-labellings λ of P with P
/
≡proj

λ
= P, proj(λ(P )) = S, and

proj ◦λ = f .

Observe that any number of distinct projections up to min{K, |P |} can be realized by some coherent K-

labelling of P . To see this, let m ∈ min{K, |P |} and pick an arbitrary m−1-element subset P ′ of P . Put the

pairs in P ′ in any order x1, . . . , xm−1 and label each xi with the label {i}. Then label the remaining pairs in

P \P ′ with the label ZK\Zm−1. The resulting labelling λ is complete since
(
ZK\Zm−1

)
∪
(
∪i∈Zm−1

{i}
)

= ZK .

Furthermore,
(
∪x∈P λ(x)

)
∩ −ZK = ∅, so that λ(x) ∩ −λ(y) = ∅ for all x, y ∈ P . The labels of the pairs

x1, . . . , xm−1 all have unique and disjoint supports, which are also disjoint from ZK \ Zm−1. Since all

members of P \ P ′ have the same label ZK \ Zm−1, so that λ is coherent. Of course ZK and P cannot be
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partitioned into more than min{K, |P |} sets, so that:

Λ̂K,coh(P ) =

min{K,|P |}⋃
m=1

⋃
P∈{Pm}

⋃
S∈{ZKm }

⋃
f :P bij−→S

Λ̂K,coh(P,S, f), (2.2)

where Λ̂K,coh(P,S, f) is the set of complete coherent K-labellings λ of P satisfying
(
P
/
≡proj

λ

)
= P,

proj(λ(P )) = S, and proj ◦λ = f . Observe that the sets Λ̂K,coh(P,S, f) are disjoint for each distinct

combination of parameters P, S, and f . Thus the expression in Equation 2.2 consists of disjoint unions.

Fix m ∈ Zmin{K,|P |}, P ∈
{
P
m

}
, S ∈

{
ZK
m

}
, and let f : P −→ S be a bijection. For any choice of labels

formed from the members S of S by choosing one member AS of coh(S), the K-labelling which assigns to

all pairs in each of the members X ∈ P one of the labels Af(X) or A−f(X) is complete and coherent.

The collection apal(S) has size 2|S| since every member A of apal(S) can be obtained by setting for each

symbol a in S either a ∈ A, or −a ∈ A, but not both. Each of the outcomes of the |S| binary decisions

produces a unique member of apal(S), so that | apal(S)| = 2|S|. Since the only palindromic set of symbols

with projection S is ±S, we have that |pal(S)| = 1. Then for every X ∈ P, there are precisely 1 + 2|f(X)|

choices for set Af(X). Once the sets AS for S ∈ S are chosen, each pair in X must either have label Af(X),

or −Af(X). When Af(X) = ±Af(X) ∈ pal(F (X)), then all members of X have the same label Af(X).

Otherwise, there are 2|X| ways of assigning either Af(X), or −Af(X), to the pairs x ∈ X. The sum

∑
X∈P

2|X| · 2|f(X)|

counts every member of Λ̂K,coh(P,S, f) twice, since the same choice of labels Af(X),x for the pairs x ∈ X,

and X ∈ P is counted a second time when each S is assigned the set BS = −AS and each pair x ∈ X, for

X ∈ P is assigned the label −Bf(X). Thus,

|Λ̂K,coh(P,S, f)| = 1 + 2|X| · 2|f(X)| · 1

2
. (2.3)

Combining Equations 2.2 and 2.3 gives the first part of the result.

For the lower bound, observe that the sets X ∈ P partition P so that their sizes add up to |P |, and that

the sets f(X) for X ∈ P are precisely the sets S ∈ S which partition ZK , so that the sizes of the sets f(X)

add up to K. Then:

∏
X∈P

1 + 2|X| · 2|f(X)| · 1

2
≥
∏
X∈P

2|X| · 2|f(X)| · 1

2
= 2K · 2|P | · 2−|P|. (2.4)
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The only variable on the right-hand-side of the inequatlity in 2.4 which depends on h,S,P or f is the size

of P, which is |P| = h. Since there are
{
K
h

}
and

{|P |
h

}
ways of partitioning ZK and P , respectively, into h

parts, and since there are h! bijections between two h-element sets, rearranging the terms in the expression

for |Λ̂K,coh(P )| and using the inequality in 2.4, gives the lower bound.

The upper bound is obtained the same way, except that instead of the inequality in 2.4, we use the fact

that

1 + 2|X| · 2|f(X)| · 1

2
< 2|X| · 2|f(X)|,

for |X|, |f(X)| > 0.

As mentioned before, the pairs in a set of pairs P which is labelled by a K-labelling λ must be labelled

either palindromically, or anti-palindromically. Denote with P pal
λ the set of pairs in P which have palindromic

labels and denote with P apal
λ the set of pairs in P which have anti-palindromic labels. Then P = P pal

λ tP
apal
λ .

The difference in size of the sets pal(S) and apal(S) suggests that the size of Λ̂K,coh(P ) varies greatly

depending on the number of pairs which have palindromic labels. To confirm this observation, we now count

the two sets

Λ̂pal
K,coh(P ) = {λ ∈ Λ̂K,coh(P ) : λ(x) = ±λ(x),∀x ∈ P}

and

Λ̂apal
K,coh(P ) = {λ ∈ Λ̂K,coh(P ) : λ(x) ∩ −λ(x) = ∅,∀x ∈ P}

of complete and coherent K-labellings λ of P where P = P pal
λ and P = P apal

λ , respectively.

Proposition 2.3.6. Let P ⊆
(
ZN
2

)
. Then:

|Λ̂pal
K,coh(P )| =

min{K,|P |}∑
h=1

h! ·
{
K

h

}{
|P |
h

}
.

Proof. The proof works the same way as the proof of Theorem 2.3.5, except that for h ∈ Zmin{K,|P |},

partitions P ∈
{
P
h

}
, S ∈

{
ZK
h

}
, and bijection f : P → S, the set Λ̂K,coh(P,S, f) ∩ Λ̂pal

K,coh(P ) contains only

one K-labelling. The only K-labelling in this intersection is uniquely defined by λ(x) = ±f(X), for all

x ∈ X, X ∈ P.

Proposition 2.3.7. Let P ⊆
(
ZN
2

)
. Then:

|Λ̂apal
K,coh(P )| = 2K · 2|P |

min{K,|P |}∑
h=1

2−h · h! ·
{
K

h

}
·
{
|P |
h

}
.
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Proof. Again, the proof works the same way as the proof of Theorem 2.3.5, except that in this case, for

h ∈ Zmin{K,|P |}, partitions P ∈
{
P
h

}
, S ∈

{
ZK
h

}
, and bijection f : P → S, the set Λ̂K,coh(P,S, f)∩ Λ̂apal

K,coh(P )

has size 2K · 2|P | · 2−h =
∏
X∈P 2|X| · 2|f(X)| · 1

2 . The set Λ̂K,coh(P,S, f) ∩ Λ̂apal
K,coh(P ) is counted the same

way as Λ̂K,coh(P,S, f) was counted in the proof of Theorem 2.3.5, except that the sets AS , for S ∈ S are

chosen from apal(S) = coh(S) \ {±S} instead of coh(S).

Observe that any set of pairs P ⊆
(
ZN
2

)
can be completely and coherently labelled by the labelling which

assigns ±ZK to all pairs in P . Then Λ̂pal
K,coh(P ) 6= ∅, for any K, P . Furthermore, the size of Λ̂apal

K,coh(P ) given

in Proposition 2.3.7 is the same as the lower bound for the size of Λ̂K,coh(P ) given in Theorem 2.3.5. Thus,

the lower bound in this theorem is never achieved. Observe that Propositions 2.3.6 and 2.3.7 assert that

the sizes of Λ̂pal
K,coh(P ) and Λ̂apal

K,coh(P ) depend only on the sizes of P and ZK . Thus, we may define for any

integer:

`pal
coh(K, p) = |Λ̂pal

K,coh(P )|,

and

`apal
coh (K, p) = |Λ̂apal

K,coh(P )|,

where P is any set of pairs of size |P | = p. Similarly, the count in Theorem 2.3.5 allows us to define:

`coh(K, p) = |Λ̂K,coh(P )|,

where P is any set of pairs of size |P | = p.

Propositions 2.3.6 and 2.3.7 suggest another way of counting the set Λ̂K,coh(P ). The strategy in the

following result (Theorem 2.3.8) is to count in how many ways each of P and ZK can be split into two

parts P = P1 t P2 and ZK = S1 t S2 and adding for each of these choices the sizes of Λ̂pal
|S1|,coh(P1) and

Λ̂apal
|S2|,coh(P2).

Corollary 2.3.8. Let p be a positive integer. Then:

`coh(K, p) =

K∑
Kpal=0

p∑
ppal=0

(
p

ppal

)(
K

Kpal

)
`pal
coh(Kpal, ppal) · `apal

coh (K −Kpal, p− ppal),

where we use the convention that `pal
coh(K ′, p′) = `apal

coh (K ′, p′) = 0 whenever exactly one of K ′ or p′ is 0 and

`pal
coh(0, 0) = `apal

coh (0, 0) = 1.

Proof. Let λ ∈ Λ̂K,coh(P ). Then λ uniquely defines the partitionings P = PpaltPapal and ZK = SpaltSapal,

where Ppal = P pal
λ , Papal = P apal

λ , Spal = supp(λ(P pal
λ )) and Sapal = supp(λ(P apal

λ )). Additionally, λ uniquely
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defines the members λpal ∈ Λ̂K,Spal,coh(P pal
λ ) and λapal ∈ Λ̂K,Sapal,coh(P apal

λ ), satisfying:


λpal(x) = ±x, x ∈ Ppal, and

λapal(y) ∩ −λapal(y) = ∅, y ∈ Papal,

(2.5)

and

λ|Ppal
λ

= λpal and λ|P apal
λ

= λapal. (2.6)

Conversely, all partitionings P = Ppal t Papal and ZK = Spal t Sapal and every choice of λpal ∈

Λ̂K,Spal,coh(Ppal) and λapal ∈ Λ̂K,Sapal,coh(Papal), which satisfy 2.5, uniquely define a member λ ∈ Λ̂K,coh(P ),

where Spal = supp(λ(P pal
λ )), and Sapal = supp(λ(P apal

λ )), which satisfies 2.6.

2.3.2 Consistent Labellings

The reasons the property of coherence was introduced is that a pair with multiple labels implies that the

sequences in the product defined by the MDS identifiers in the label must all be the same sequence as in

the precursor defined by the pair (or highly similar to it). As a consequence, any label containing one of the

MDS identifiers of another label must contain all of them. This argument can be extended to pairs enclosed

in other pairs. When a pair’s coordinates are between the coordinates of another, the sequence described by

the inner pair is a subsequence of the outer pair. Any appearances of MDS identifiers from the outer label in

the label of another pair imply the presence of that subsequence inside the sequence defined by that pair, as

well. Consequently, any pair labelled with one of the MDS identifiers from the outer pair must enclose a pair

marking the same subsequence with the same label as in the original inner pair. The property of consistence

reflects this behavior.

Define the relation w on the set
(
ZN
2

)
by:

{i1, j1} w {i2, j2} ⇐⇒ i1 ≤ i2 < j2 ≤ j1.

Define the closure of a pair x in a set of pairs P by:

x̄ = {y ∈ P : x w y}.

For a subset X ⊆ P of a set of pairs P , define the domain of X by:

dom(X) =
⋃
x∈X

x.
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Denote with GP [x] the subgraph of G(P ) induced by the vertices in dom(x̄). In other words, GP [x] is the

subgraph of G(P ) with vertex set dom(x̄) and edge set x̄. In Figure 2.7, we have that {1, 4} w {1, 2} and

{3, 6} w {5, 6}. Here, the closures of {1, 4} and {3, 6} are
{
{1, 2}, {1, 4}

}
and

{
{3, 6}, {5, 6}

}
, respectively.

Additionally the domain of the closure of {1, 4} is the set {1, 2, 4} and the domain of the closure of {3, 6} is

the set {3, 5, 6}. The subgraphs GP [{1, 4}] and GP [{3, 6}] of G(P ) are the graphs with vertex sets {1, 2, 4}

and {3, 5, 6} and with edge sets
{
{1, 2}, {1, 4}

}
, and

{
{3, 6}, {5, 6}

}
, respectively.

Recall that σfwd
A,B denotes the unique order isomorphism between the totally ordered sets (A,<) and

(B,<). Denote with σrev
A,B , the unique order isomorphism between the totally ordered sets (A,>) and

(B,<). To shorten notation, we denote with σfwd
x,y and σrev

x,y the functions σfwd
dom(x̄),dom(ȳ) and σrev

dom(x̄),dom(ȳ),

respectively, when x and y are pairs from a set of pairs P ⊆
(
ZN
2

)
. For a K-labelling λ of P , define the

relations ∼=fwd
P,λ and ∼=rev

P,λ on P by:

x ∼=fwd
P,λ y ⇐⇒


|x̄| = |ȳ|,

σfwd
x,y is a graph isomorphism between GP [x] and GP [y], and

σfwd
x,y preserves edge labels,

and

x ∼=rev
P,λ y ⇐⇒


|x̄| = |ȳ|,

σrev
x,y is a graph isomorphism between GP [x] and GP [y], and

σrev
x,y negates edge labels.

In Figure 2.7, the functions σfwd
{1,2},{5,6} and σrev

{1,4},{3,6} are graph isomorphisms between the two graphs

GP [{1, 2}] and GP [{5, 6}], and between the two graphs GP [{1, 4}] and GP [{3, 6}], respectively. For the

4-labelling λa in Figure 2.7(a), {1, 2} ∼=fwd
P,λa

{5, 6}. However λa({1, 4}) = {1, 2} 6= −{−1, 1, 2, 4} =

λa
({
σrev
{1,4},{3,6}(1), σrev

{1,4},{3,6}(4)
})

, so that σrev
{1,4},{3,6} does not negate labels and thus {1, 4} 6∼=rev

P,λa
{3, 6}.

For the 4-labelling λb in Figure 2.7(b), the label of {1, 4} is the negation of the label of {3, 6} ={
σrev
{1,4},{3,6}(1), σrev

{1,4},{3,6}(4)
}

. However, {1, 2} is in the closure of {1, 4} (and therefore in the subgraph

GP [{1, 4}]) and is mapped by σrev
{1,4},{3,6} into the pair {5, 6}. Then since λb({1, 2}) 6= −λb({5, 6}), we have

again that {1, 4} 6∼=rev
P,λb

{3, 6}. With the labelling λc from Figure 2.7(c), on the other hand, we do have

{1, 4} ∼=rev
P,λc
{3, 6}.

Definition 2.3.9. Let P ⊆
(
ZN
2

)
. A K-labelling λ of P is called consistent if for all x, y ∈ P :

(i) If λ(x) ∩ λ(y) 6= ∅, then x ∼=fwd
P,λ y, and

(ii) If λ(x) ∩ −λ(y) 6= ∅, then x ∼=rev
P,λ y.
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Denote with ΛK,con(P ) the set of all consistent K-labellings of P and with ΛK,S,con(P ), Λ̂K,S,con(P ), and

Λ̂K,con(P ) the intersections of ΛK,con(P ) with ΛK,S(P ), Λ̂K,S(P ), and Λ̂K(P ), respectively.

Observe that the 4-labellings λa and λb of the pairing P in Figures 2.7(a) and (b), respectively, are incon-

sistent because λa({1, 4})∩λa({3, 6}) 6= ∅, but {1, 4} 6∼=fwd
P,λa

{3, 6}, and because λb({1, 4})∩−λb({3, 6}) 6= ∅,

but {1, 4} 6∼=rev
P,λb

{3, 6}. Note that λb is coherent despite it being inconsistent. The labelling depicted in

Figure 2.7(c), on the other hand, is consistent. The labelling λ depicted in Figure 2.9 is consistent. Observe

that {13, 18} ∼=rev
P,λ {13, 18}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

{−4,−5}

{1}

{2}

{6} {−1}

{−2}

{−7, 7,−8, 8}

{3} {−3}

Figure 2.9: A set of pairs P ⊂
(
Z18

2

)
together with a consistent 8-labelling.

The next two results (Proposition 2.3.10 and Theorem 2.3.11) establish that the property of consistency

of K-labellings is relevant only when the underlying set of pairs has members which are contained in other

members and that the requirement of coherence becomes the same as consistency when no pair contains

another.

Proposition 2.3.10. Let P ⊆
(
ZN
2

)
and let λ be a K-labelling of P . If for two distinct x, y ∈ P , x w y and

λ(x) ∩ ±λ(y) 6= ∅, then λ is not consistent.

Proof. Suppose λ is consistent, x 6= y, x w y and λ(x) ∩ ±λ(y) 6= ∅. Then either x ∼=fwd
P,λ y, or x ∼=rev

P,λ y. In

either case, GP [x] is isomorphic to GP [y]. But V (GP [y]) = ȳ ( x̄ = V (GP [x]), so that GP [x] is isomorphic

to its proper subgraph GP [y], which is a contradiction.

Theorem 2.3.11. Let P ⊆
(
ZN
2

)
. Then ΛK,con(P ) ⊆ ΛK,coh(P ) and equality holds if and only if there is no

x 6= y ∈ P with x w y.

Proof. Let λ ∈ ΛK,con(P ) and suppose λ(x) ∩ λ(y) 6= ∅, for some x, y ∈ P . Then by consistency of λ,

x ∼=fwd
P,λ y, so that σfwd

x,y is a graph isomorphism between GP [x] and GP [y] which preserves labels. Then

λ(x) = λ(σfwd
x,y (x)) = λ(y). Similarly, λ(x) ∩ −λ(y) 6= ∅ implies λ(x) = −λ(σrev

x,y(x)) = −λ(y), so that λ is

coherent.

Now, suppose there is no x 6= y ∈ P with x w y. Then x̄ = {x} for every x ∈ P , so that σfwd
x,y and σrev

x,y

are graph isomorphisms for any x, y ∈ P .
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Let λ ∈ ΛK,coh(P ) and suppose λ(x) ∩ λ(y) 6= ∅. Then by coherence of λ, λ(x) = λ(y) = λ(σfwd
x,y (x)).

Thus, x ∼=fwd
P,λ y. If instead λ(x) ∩ −λ(y) 6= ∅, then coherence of λ implies λ(x) = −λ(y) = −λ(σrev

x,y(x)), so

that x ∼=rev
P,λ y. Thus, λ ∈ ΛK,con(P ).

Conversely, if there are x 6= y ∈ P with x w y, consider the labelling λ of P , where λ(z) = ±ZK , for all

z ∈ P . Then λ is complete and coherent, but by Proposition 2.3.10 and since λ(x) = λ(y), we have that λ

is inconsistent.

The property of consistency of a K-labelling of a set of pairs P closely relates to the structure of the set

of pairs with respect to the relation w. Define the height hP (x) of a pair x ∈ P to be the maximum length

h of sequences y1, . . . , yh of distinct pairs yj ∈ P \ {x}, such that x w y1 w · · · w yh:

hP (x) = max{h : ∃ distinct y1, . . . , yh ∈ P \ {x} where x w y1 w · · · w yh}.

Denote the maximum height of all pairs in P by h(P ):

h(P ) = max{hP (x) : x ∈ P}.

For h ∈ {0, 1, . . . , h(P )}, define the hth level of P to be the set Lh(P ) of all pairs in P with height h:

Lh(P ) = {x ∈ P : hP (x) = h}.

In Figure 2.9, h(P ) = 2. The 0th level of the depicted set of pairs consists of the pairs {3, 4}, {9, 10}, {14, 15}

and {16, 17}. The first level of pairs consists of the pairs {2, 5}, {7, 11}, {8, 12} and {13, 18}, and the third

level consist of the pair {1, 6}.

Counting in how many ways a set of pairs P can be labelled consistently is complicated by the restrictions

consistency imposes in addition to being coherent. Whether or not in a consistent labelling the labels of two

pairs may intersect each other, or the negations of each other, depends on the structure and labels of the

pairs in their closures. One recursive strategy to counting consistent K-labellings of a set of pairs P begins

with counting in how many ways the 0th level L0(P ) can be labelled coherently. No pair in the 0th level

of P contains any other pair, so that by Theorem 2.3.11, coherence suffices to guarantee consistency of the

labelling of the 0th level. Then for each way of labelling the 0th level, the number of ways of how labels can

be added to the pairs of the first level L1(P ), while ensuring that the overall labelling of L0(P ) ∪ L1(P ) is

consistent, is counted. The recursion continues by counting in how many ways each hth level can be labelled

consistently for each of the consistent labellings of L0(P )∪· · ·∪Lh−1(P ). With the labels of all pairs of level
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up to h − 1 known, consistency of a labelling of the hth level can be checked since each pair in the closure

of a member of Lh(P ) has a label. The 8-labelling in Figure 2.9, for example, can be obtained using this

strategy as follows:

1. Choose a subset S1 ⊂ Z8 from the set of symbols for the 0th level of P . Here, the chosen subset S1 of

symbols is the set S1 = {2, 3}. The pairs with height 0 are {3, 4}, {9, 10}, {14, 15} and {16, 17}.

2. Label L0(P ) coherently with labels formed from the set of symbols S1. By Theorem 2.3.11, the resulting

labelling of L0(P ) is consistent. Here, we chose the labels {2}, {−2}, {3}, and {−3}, for the respective

pairs with height 0.

3. Choose a subset S2 ⊂ Z8\S1 from the set of remaining symbols for the first level of P . Here, the chosen

subset S2 of symbols is the set S2 = {1, 6, 7, 8}. The pairs with height 1 are {2, 5}, {7, 11}, {8, 12} and

{13, 18}.

4. Label L1(P ) consistently with labels formed from the set of symbols S1. Consistency of any such

labelling can be checked since any pair x ∈ P , which is not a member of L1(P ) but which is in the

closure of a member of L1(P ) was already labelled in the previous step. This step is trickier than

for the 0th level, since coherence of the labelling of L1(P ) may not suffice to guarantee consistency.

For example, only the label of {13, 18} may be palindromic, since this pair is the only pair where the

reversal of the end points of other pairs contained in the pair is a graph isomorphism which negates

labels. Additionally, the symbols used for labels of the pairs {{2, 5}, {7, 11}, and {8, 12} must differ

from the symbols used for the label of {13, 18} because the labels of the closure of the latter pair

contain symbols which are not included in the closures of the other pairs in this level. This means

that no label-preserving or label-negating graph isomorphism can exist between the closure of {13, 18}

and the closure of any of the other pairs with height 1. Lastly, if we decide to use the same symbol in

the label of more than one pair x1, x2, we must ensure that at least one of σfwd
x1,x2

, or σrev
x1,x2

is a graph

isomorphism which preserves labels, or negates labels, respectively, which depends on the labels and

structure of other pairs in the closures of x1 and x2. Here, we chose the labels {1}, {6}, {−1}, and

{−7, 7,−8, 8}, for the respective pairs with height 1.

5. For the second and last level of pairs, which consists only of the pair {1, 6} we used the remaining

symbols S3 = Z8 \ (S1 ∪S2). Similar considerations to the previous step are made. Here, we chose the

anti-palindromic label {−4,−5} and the resulting labelling of P is consistent.

Observe that a palindromic label can only be assigned to a pair x ∈ P if σrev
dom(x̄)\{x},dom(x̄)\{x} is an

isomorphism of the subgraph of G(P ) induced by the vertex set dom(x̄) \ {x} with itself, which negates
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labels. This does not mean that each of the pairs in dom(x̄) \ {x} must have a palindromic label. For

example, the pair {13, 18} in Figure 2.9 is labelled palindromically, but neither {14, 15}, nor {16, 17} are

labelled palindromically. Thus, when recursively counting the set of consistent labellings of a set of pairs

P level by level, we must be able to distinguish between pairs which can be labelled palindromically and

which cannot. Call a set of pairs P reverse-complementary if σrev
ZN ,ZN

induces a graph isomorphism

of G(P ) with itself. Define a K-labelling λ of a set of pairs P to be l-reverse-complementary if P is

reverse-complementary and, σrev
ZN ,ZN

negates edge labels. The pairing in Figure 2.7 is reverse-complementary.

Additionally, the coloring depicted in Figure 2.7(c) is l-reverse-complementary, since reversal of the vertices

induces a graph isomorphism of the graph with itself which negates labels. The pairing in Figure 2.9 is

non-reverse-complementary. However, each of the restrictions of P to Z6, to Z12 \ Z6, and to Z18 \ Z12 are

reverse-complementary. Only the restriction of the depicted coloring to the pairs in P |Z18\Z12
, however, is

l-reverse-complementary. The pairing in Figure 2.10 is also reverse-complementary. If a K-labelling of the

depicted pairing assigns L1 to x1, L2 to x2, −L2 to x3, and −L1 to x4, for some L1, L2 ⊆ ±ZK , then the

labelling is l-reverse-complementary.

1 2 3 4 5 6 7 8

x1

L1

x2

L2

x3

−L2

x4

−L1

Figure 2.10: The flat pairing F4 = {x1, x2, x3, x4} together with an l-reverse-complementary labelling. Any
l-reverse-complementary labelling of F4, which assigns labels L1 and L2 to x1 and x2, respectively, must
assign the label −L2 to x3 and −L1 to x4.

The recursive approach described above starts by counting the number of ways to label the subset of pairs

of a set of pairs P ⊆
(
ZN
2

)
which do not contain other pairs. By Theorem 2.3.11, this reduces to counting

the number of ways of labelling these pairs coherently, which is done in Theorem 2.3.5. However, in order to

distinguish between which of the pairs in the next level can be labelled palindromically, we must know for

each of the vertices x in the that level, how many of the labellings of the previous lower levels dom(x̄)\{x} are

l-reverse-complementary. For a set of pairs P and a set of symbols S ⊆ ZK , define Λ̂rev
K,S,con(P ) to be the set

of all l-reverse-complementary members of Λ̂K,S,con(P ) and define Λ̂nrev
K,S,con(P ) = Λ̂K,S,con(P ) \ Λ̂rev

K,S,con(P )

to be the set of all non-l-reverse-complementary members of Λ̂K,S,con(P ). Observe that if P is non-reverse-

complementary, then Λ̂rev
K,S,con(P ) = ∅. On the other hand, if λ ∈ ΛK(P ) is l-reverse-complementary, then

P must be reverse-complementary. Observe that the sizes of Λ̂rev
K,S,con(P ) and Λ̂rev

K,S′,con(P ) are the same as

long as |S| = |S′|. Thus, we focus our study mainly on the sets Λ̂rev
K,con(P ) = Λ̂rev

K,ZK ,con(P ) ⊆ Λ̂K,con(P ).

For example, the coloring of the pairing P depicted in Figure 2.7(c) is a member of Λ̂rev
3,con(P ), since it is l-

reverse-complementary. Reversal of the vertices 14, 15, 16, and 17 in Figure 2.9 induces a graph isomorphism
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of the subgraph induced by these vertices with itself, which negates labels. Thus the labelling of the two

pairs x1 = {14, 15}, and x2 = {16, 17} is a member of Λ̂rev
K,{3},con({x1, x2}). Therefore, the pair {13, 18} in

can be labelled palindromically without violating consistency of the labelling.

To simplify the task, we restrict ourselves to sets of pairs which to not cross each other. Call a set of

pairs P non-crossing if there exist no two distinct (i1, j1), (i2, j2) ∈ P where i1 ≤ i2 ≤ j1 ≤ j2. Observe

that the only non-crossing pairing P of ZN where no pair contains another is the reverse-complementary

pairing
{
{1, 2}, {3, 4}, . . . , {N − 1, N}

}
, and it exists only when N is even. We call the unique non-crossing

pairing of Z2n the flat pairing of Z2n and denote it Fn. The flat pairing F4 is shown in Figure 2.10. If

n is even, then for a K-labelling of Fn to be l-reverse-complementary, the sequence of labels of the pairs

{1, 2}, . . . , {n− 1, n} in the first half of the pairing according to the integer ordering, must be the reverse of

the sequence of negations of the labels of the pairs {n+ 1, n+ 2}, . . . , {2n− 1, 2n} in the second half of the

pairing. Using this strategy, any complete and coherent K-labelling of the first half of Fn can be extended

to a member of pal(ZK , P ). Conversely, by definition of l-reverse-complementary K-labellings, the sequence

of labels of the first half of the pairing is the reverse of the sequence of negations of the labels of the second

half of the pairing. In Figure 2.11, for example, an l-reverse-complementary 4-labelling of F8 is shown. The

labels of the pairs x1, x2, x3 and x4 determine the labels of the remaining pairs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x1

{−2, 3, 4}
x2

{−1, 1}
x3

{2,−3,−4}
x4

{−1, 1}
x4

{−1, 1}
x4

{−2, 3, 4}
x4

{−1, 1}
x4

{2,−3,−4}

Figure 2.11: An l-reverse-complementary pairing of F8. The labels of x1, x2, x3, and x4 on the left determine
the remaining labels (in red).

Theorem 2.3.12. Let K and n be positive integers and suppose n is even. Then:

|Λ̂rev
K,con(Fn)| = `coh(K,n/2)

Proof. Denote the pairs in Fn with xi = {2i − 1, 2i}, for i ∈ Zn. Define the function f : Λ̂rev
K,con(Fn) −→

Λ̂K,coh(Fn/2) by:

f(λ) = λ|Fn/2 .

Since each member of Λ̂rev
K,con(Fn) is consistent f does map into f(λ). Suppose λ1 6= λ2 ∈ Λ̂rev

K,con(Fn). Then

λ1(xi) 6= λ2(xi) for some i ∈ Zn. If i < n/2, then of course f(λ1(xi)) 6= f(λ2(xi)). If, on the other hand,

i ∈ Zn \Zn/2, then since λ1 and λ2 are l-reverse-complementary, and since σrev
Z2n,Z2n

(j) = 2n− j+ 1, we have
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that

λ1(xn−i+1) = −λ1(xi) = −λ2(xi) = λ2(xn−i+1).

Since i ∈ Zn \ Zn/2, we must have n − i + 1 ∈ Zn/2, so that f(λ1) 6= f(λ2). Thus, f is injective. Given a

member λ of Λ̂K,coh(Fn/2), we can define λ′ on Fn by setting

λ′(x) =


λ(xi) i ∈ Zn/2

−λ(xn−i+1) i ∈ Z2n

Then λ′ ∈ Λ̂rev
K,con(Fn) and f(λ′) = λ. Thus, f is surjective.

Let n be an odd positive integer. Denote the pairs in Fn by xi = {2i− 1, 2i}, for i ∈ Zn. As with even n,

for a K-labelling of Fn to be l-reverse-complementary, the sequence of the labels of pairs x1, . . . , xn, in that

order, must be the same as the sequence of the negations of the labels of the pairs in reverse order. Because

n is odd, the label of the pair xdn/2e in the middle of the sequence must be equal to its own negation. This

fact is illustrated in Figure 2.12(a). Here an l-reverse-complementary K-labelling of F7 is depicted. The

sequence of labels of the pairs read from left to right must be the reverse of the negations of the sequence

of labels of the pairs read from right to left. Since xd7/2e = x4 is in the middle, its label must be its own

negation. A strategy for counting Fn for odd n is illustrated in Figure 2.12(b). First, for some integer

K ′ < K, a K ′-element subset of the set of symbols ZK is chosen to become the projection of the label of

the pair xdn/2e = x4 in the middle. In this case, K ′ = 2 and the chosen 2-element subset of ZK is {3, 4}.

Since the label of x4 must be its own negation, the label will be ±{3, 4}. Labels of other pairs in Fn may

have projection intersecting the projections of the label of xdn/2e. We choose a p-element subset of the pairs

x1, . . . , xbn/2c preceeding the middle pair. In this example the (p = 1)-element subset is {x1}. The chosen

subset of pairs together with their counter-parts in the other half (here, x7 is the counterpart of x1 and in

general xi is the counterpart of xn−i+1 = x7−i+1) will be precisely the pairs in the labelling whose labels

have projection intersecting the projection of the label of the middle pair x4. Since x4 will be assigned the

palindromic label ±{3, 4} and because the resulting labelling must be consistent, we have that the labels

of x1 and its counterpart x7 will also be ±{3, 4}. The subgraph of G(F7) induced by the remaining pairs

x2, x3, x5 and x6 is isomorphic to Fn−2p−1 = F4 via the mapping f = σfwd
{3,4,5,6,9,10,11,12},Z8

. Any member

of Λ̂rev
2,con(F4) can be mapped into Λ̂rev

4,con(F7) using f and using the label ±{3, 4} for the pairs x1, x4 and

x7. The general result of reducing the count of the set Λ̂rev
K,con(Fn) to sets Λ̂rev

K′,con(Fn′), where K ′ < K, and

n′ < n, and n′ is even is stated in Theorem 2.3.13.
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(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
f f f f

1 2 3 4 5 6 7 8

x1

L1

x2

L2

x3

L3

x4

±L4

x5

−L3

x6

−L2

x7

−L1

x1

±{3, 4}
x2 x3 x4

±{3, 4}
x5 x6 x7

±{3, 4}

y1

{1, 2}
y2

{−1,−2}
y3

{−1,−2}
y4

{1, 2}

Figure 2.12: A generic l-reverse-complementary K-labelling of F7 in (a) and an illustration of how to derive
a member of Λ̂rev

4,con(F7) by combining a member of Λ̂rev
2,con(F4) with a labelling of {x1, x4, x7}. (a) illustrates

that the sequence of labels of the pairs x1, . . . , x7 of an l-reverse-complementary K-labelling of F7 read from
left to right must be the same as the sequence of negations of the labels of the pairs read from right to left.
(b) illustrates how the expression on the right-hand side of Theorem 2.3.13 counts the set Λ̂rev

K,con(Fn). Here,
K ′ = 2, p = 2. The K ′-elements subset of ZK chosen to be the projection of the label of xdn/2e = x4 is
{3, 4} and the set of pairs in the left half whose labels share the same projection is the set {x1}.

Theorem 2.3.13. Let K and n be positive integers and suppose n is odd. Then:

|Λ̂rev
K,con(Fn)| = 1 +

|K|−1∑
K′=1

bn/2c−1∑
p=0

(
K

K ′

)(
bn/2c
p

)
· `coh(K −K ′, n− 2p− 1

2
).

Proof. Denote the pairs in Fn with xi = {2i−1, 2i}, for i ∈ Zn. Denote with Pl the set Pl = {x1, . . . , xbn/2c}.

For partitions Pl = P1 t P2 and ZK = S1 t S2 of Pl and ZK , where P2, S1 and S2 are all non-empty, define

the set Ω(P1, P2, S1, S2) to be the set of all members of Λ̂rev
K,con(Fn) which assign the label ±S1 to all pairs

in P1 and to xdn/2e and whose restriction to P2 is a coherent K-labelling of P2, which is complete in S2:

Ω(P1, P2, S1, S2) = {λ ∈ Λ̂rev
K,con(Fn) : λ(P1 ∪ {xdx/2e}) = {±S1} and λ|P2

∈ Λ̂K,S2,coh(P2)}.

Denote with λ0 the K-labelling of Fn which assigns the label ±ZK to every pair in Fn. In the remainder of

the proof, we show that:

Λ̂rev
K,con(Fn) \ {λ0} =

⊔
P1tP2=Pl

⊔
S1tS2=ZK

Ω(P1, P2, S1, S2),

where the partitions indexing the unions must satisfy that P2, S1 and S2 are non-empty. Set U =⊔
P1tP2=Fn

⊔
S1tS2=Pl

Ω(P1, P2, S1, S2). Recall that we only need to concern us with the labelling of the

35



the pairs x1, . . . , xdn/2e for l-reverse-complementary labellings of Fn because their labels uniquely determine

the labels of the remaining pairs.

By definition, U ⊆ Λ̂rev
K,con(Fn). Since S1 is a proper subset of ZK , no member of U labels xdn/2e with

±ZK , so that λ0 /∈ U .

Conversely, let λ ∈ Λ̂rev
K,con(Fn) \ {λ0}. Let P1 = {x ∈ Pl : λ(x) = λ(xdne)} and let P2 = Pl \ P1. Let

S1 = proj(λ(xdne)) and let S2 = ZK \ S1. Then P1 and P2 partition Pl and S1 and S2 partition ZK . If

P2 is empty, then P1 = Pl, so that all pairs must have label λ(x) = λ(xdn/2e), so that completeness implies

λ = λ0, which is a contradiction. Similarly, S2 = ∅ implies that proj(xdn/2e) = ZK . Because n is odd

and λ lreverse-complementary, we must then have λ(xdn/2e) = ±ZK , so that the label of any pair intersect

the label of xdn/2e. But then consistency of λ implies that λ = λ0, which is again a contradiction. Since

xdn/2e must have some label, S1 is non-empty. Since λ is l-reverse-complementary and n is odd, we must

have that λ(xdn/2e) = ±S1. By definition of P1, λ(P1 ∪ {xdn/2e}) = {±S1}. Consistency of λ implies that

whenever λ(x) ∩ λ(y), then λ(x) = λ(y), so that supp(λ(P2)) ∩ S1 = ∅. But then completeness of λ implies

that supp(λ(P2)) = ZK \ supp(λ(P1)) = ZK \ S1 = S2. Consistency of λ implies coherence of λ|P2
. Thus,

λ|P2
∈ Λ̂K,S2,coh(P2), as desired.

To count consistent K-labellings of a set of pairs by counting the ways parts of it can be labelled and

in how many ways these partial labellings can be combined to form labellings of the entire set, we need to

establish how labellings and sets of labellings are combined. For two K-labellings λ1, λ2 of two disjoint sets

of pairs P1, P2, respectively, let their union be the K-labelling of P1 ∪ P2 defined by:

λ1 ∪ λ2(x) =


λ1(x) x ∈ P1

λ2(x) x ∈ P2.

For two sets Λ1,Λ2 of K-labellings of two disjoint sets of pairs P1, P2, respectively, let their concatenation

be the set of K-labellings of P1 ∪ P2 defined by:

Λ1 ◦ Λ2 = {λ1 ∪ λ2 : λ1 ∈ Λ1, λ2 ∈ Λ2}.

In Figure 2.9, the union of the 8-labellings λ1 of P1 =
{
{1, 6}, {2, 5}, {3, 4}

}
, λ2 of P2 =

{
{7, 11}, {8, 12}

}
,

and λ3 of P3 =
{
{13, 18}, {14, 15}, {16, 17}

}
, which assign the labels depicted in the figure to the respective

pairs, is the member λ1 ∪ λ2 ∪ λ3 of Λ8(P1) ◦ Λ8(P2) ◦ Λ8(P3).

In a set of pairs P some pairs may never be labelled with the same symbols or the negations of the symbols

used in the label of other pairs. For example, in the set of pairs depicted in Figure 2.9, no two of the pairs
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{1, 6}, {2, 5}, {3, 4}
}

may have use the same symbol in their label, or negations of the same symbol since it

would violate the condition in Proposition 2.3.10. Additionally, the label of the pair {13, 18} may not share a

symbol or negation thereof with the label of any other pair in the pairing because the structure in its closure

is unique preventing a graph isomorphism between the graph GP [{13, 18}] and GP [x], for any other x ∈ P

other than {13, 18} itself. This leads to the conclusion that consistent K-labellings of a set of pairs P may

not exist if K is too small depending on the structure of P . For a set of pairs P ⊆
(
ZN
2

)
denote with µ(P )

the minimum integer K, such that there exists a complete and consistent K-coloring of P . For example, the

minimum number of symbols required to consistently label the set of pairs P1 =
{
{1, 6}, {2, 5}, {3, 4}

}
in

Figure 2.9, is µ(P1) = 3, since by Proposition 2.3.10, mutual containment of the pairs in P1 requires pairwise

disjoint projections of their labels and since any 3-labelling of P1 using any permutation of the labels {1},

{2}, and {3} to label the pairs in P1 is consistent.

Using the aforementioned recursive approach to counting the number of consistent K-labellings of a set

of pairs P , a central problem becomes to count the number of K-labellings of the set {x} and the number

of consistent K-labellings of
◦
P = x̄ \ {x} and how often these labellings can be combined to a consistent

K-labelling of P . Figure 2.13 illustrates this problem on the set of pairs P = {x, y1, y2, y3}. Here, we

seek to count the number of consistent K-labellings λx of {x}, the number of consistent K-labellings λy

of
◦
P = {y1, y2, y3}, and to count how often the two labellings can be combined to a consistent K-labelling

λx ∪ λy of P . Proposition 2.3.10 implies that the projection of Lx must be disjoint from the support of

{L1, L2, L3}. Counting the set Λ̂K,con(P ) then requires partitioning the set ZK into a set S ⊆ ZK which

will be the projection of Lx and its complement ZK \ S which will be the support of {L1, L2, L3}. The

complement of S must then contain at least µ(
◦
P ) elements, so that the size s of S is restricted to the set

Z
K−µ(

◦
P )

. Note that the label λx(x) = Lx can only be palindromic when the labelling λy of x̄ \ {x} is l-

reverse-complementary. Then the union of any member of Λ̂rev
K,ZK\S,con(

◦
P ) and any member of Λ̂K,S,con({x})

forms a consistent K-labelling of all of P , whereas the unions of members of Λ̂nrev
K,ZK\S,con(

◦
P ) with members

of Λ̂K,S,con({x}) are consistent only if the latter come from the set Λ̂nrev
K,S,con({x}) ⊆ Λ̂K,S,con({x}).

Theorem 2.3.14. Let P be a pairing of ZN where x = {1, N} ∈ P . Denote with
◦
P the set P \ {x} Then:

Λ̂K,con(P ) =

K−µ(
◦
P )⊔

s=1

⊔
S∈(ZKs )

[(
Λ̂K,S,con({x}) ◦ Λ̂rev

K,ZK\S,con(
◦
P )
)
t
(

Λ̂nrev
K,S,con({x}) ◦ Λ̂nrev

K,ZK\S,con(
◦
P )
)]
,
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1 2 3 4 5 6 7 8

x

Lx

y1

L1 y2

L2

y3

L3

Figure 2.13: A pairing P = {x, y1, y2, y3} of Z8 where x̄ = P . If the pairs x, y1, y2, y3 have labels
Lx, L1, L2, L3, respectively, then the labelling is consistent only if proj(Lx) ∩ supp({L1, L2, L3}) = ∅. Addi-
tionally, any member of Λ̂K,S,con({x}) combined (via union) with any member of Λ̂rev

K,ZK\S,con(P \ {x}) is a

member of Λ̂K,con(P ). However, to form labellings in Λ̂K,con(P ), members of Λ̂nrev
K,ZK\S,con(P \ {x}) can only

be combined with members of Λ̂nrev
K,S,con({x}).

so that:

|Λ̂K,con(P )| =
K−µ(

◦
P )∑

s=1

(
ZK
s

)[
(2s + 1) ·

∣∣Λ̂rev
K−s,con(

◦
P )
∣∣+ 2s ·

∣∣Λ̂nrev
K−s,con(

◦
P )
∣∣]

=

K−µ(
◦
P )∑

s=1

(
ZK
s

)[∣∣Λ̂rev
K−s,con(

◦
P )
∣∣+ 2s ·

∣∣Λ̂K−s,con(
◦
P )
∣∣].

Proof. Let s ∈ Z
K−µ(

◦
P )

and S ∈
(
ZK
s

)
. Let λx ∈ Λ̂K,S,con({x}) and λy ∈ Λ̂rev

K,ZK\S,con(
◦
P ). Set λ =

λx ∪ λy. Let y1, y2 ∈ P . Since supp(λ({x})) = supp(λx({x})) and supp(λ(
◦
P )) = supp(λy(

◦
P )) are disjoints,

intersecting projections of labels of y1 and y2 imply that y1 = y2 = x, or y1, y2 ∈
◦
P . Suppose λ(y1)∩λ(y2) 6= ∅.

If both y1 and y2 are members of
◦
P , then consistency of λy implies that ȳ1, ȳ2 ⊆

◦
P and y1

∼=fwd
◦
P,λy

y2.

Hence, y1
∼=fwd
P,λ y2. If on the other hand y1 = y2 = x, then of course y1

∼=fwd
P,λ x

∼=fwd
P,λ y2. Now, suppose

λ(y1) ∩ −λ(y2) 6= ∅. If both y1 and y2 are members of
◦
P , then analogous to the previous case, y1

∼=rev
P,λ y2.

If on the other hand y1 = y2 = x, then consistency of λx implies that λ(x) = −λ(x). Furthermore, since λy

is l-reverse-complementary, the mapping σrev
ZN ,ZN

is a graph isomorphism of G(
◦
P ) with itself which negates

labels. Since σrev
ZN ,ZN

maps the end points of x into the end points of x, and the label of x is its own negation,

σrev
ZN ,ZN

is a graph isomorphism of G(P ) = G(x̄) with itself which negates labels. Thus, x ∼=rev
P,λ. Then λ is

consistent. Since supp(λx({x}) = S and supp(λy(
◦
P )) = ZK \S, we have that supp(λ(P )) = ZK . Therefore,

λ ∈ Λ̂K,con(P ).

The case where λx ∈ Λ̂nrev
K,S,con({x}) and λy ∈ Λ̂nrev

K,ZK\S,con(
◦
P ), works the same way except that λ(y1) ∩

−λ(y2) 6= ∅ implies that y1, y2 6= x.

To show the reverse containment, let λ ∈ Λ̂K,con(P ), set S = proj(λ(x)) and set λx = λ|{x} and λy = λ| ◦
P

.

Proposition 2.3.10 and completeness of λ imply that supp(λy(
◦
P )) = ZK \ S and then K − |S| ≥ µ(

◦
P ), so
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that |S| ∈ Z
K−µ(()

◦
P )

. We now have λ = λx ∪ λy, λx ∈ Λ̂K,S,coh({x}), and λy ∈ Λ̂K,ZK\S,coh(
◦
P ).

What remains to be shown is that if λy is not reverse-complementary, then λx is not reverse-

complementary, too. Suppose λx is l-reverse-complementary. Then λx(x) = −λx(x). Consistency of λ

implies that σrev
ZN ,ZN

is a graph isomorphism of x̄ = P with itself, which negates labels. Then it is also a

graph isomorphism of
◦
P with itself which negates labels, so that λy is l-reverse-complementary.

The second part of the result follows from the first and the fact that {x} can be consistently labelled with

support S in |pal(S)| ways and consistently and non-reverse-complementary labelled with the same support

in | apal(S)| ways.

1
. . .

n− 1 n n+ 1 n+ 2
. . .

2n

...

Ln

L2

L1

Figure 2.14: The pairing SN(n). For any two pairs x, y ∈ SN(n), either x w y, or y w x. If the labels
L1, . . . , Ln describe a consistent K-labelling, then their projections must be disjoint and whenever any of
the Li is palindromic, all labels below must be palindromic, as well.

As a special case of Theorem 2.3.14 we consider the pairing SN(n) =
{
{1, 2n}, {2, 2n−1}, . . . , {n, n+1}

}
of Z2n, which we will call the simply nested set of n pairs. The pairing SN(n) is depicted in Figure 2.14.

Observe that for any two pairs x, y ∈ SN(n), either x w y, or y w x, so that by Proposition 2.3.10,

any consistent labelling of SN(n) must label the pairs with labels that have pairwise disjoint projections.

Furthermore, if λ is a consistent K-labelling of SN(n) and λ({x}) = ±λ(x), for some x ∈ SN(n), then

λ(y) = ±λ(y), for any y ∈ SN(n), where x w y.

Proposition 2.3.15. Denote the pairs in SN(n) by xi = {i, 2n− i+ 1}.

Λ̂K,coh(SN(n)) =
⊔

S∈{ZKn }

⊔
γ:P

bij−→S

n⊔
i=0

(
i◦

j=1
Λ̂nrev
K,γ(xj),con({xj})

)
◦
(

n◦
j=i+1

Λ̂rev
K,γ(xj),con({xj})

)
,

so that:

|Λ̂K,coh(SN(n))| =
∑
S∈{Sn}

∑
γ:P

bij−→S

(
1 +

n∑
i=1

i∏
j=1

2|γ(xj)|
)

Proof. Suppose λ ∈ Λ̂K,coh(SN(n)). For all xi, Xj ∈ SN(n), we have that either xi w xj , or xj w xi.

Then by completeness of λ, the projections proj(x1), . . . ,proj(xn) of the pairs in SN(n) partition ZK .

Furthermore, xi w xi+1, . . . , xn, for every i ∈ Zn, so that whenever λ(xi) is palindromic, the restriction
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of λ to {xi+1, . . . , xn} is l-reverse-complementary, which is the case if and only if all the labels of all of

xi+1, . . . , xn are palindromic. Let i be the smallest index for which λ(xi) is non-l-reverse-complementary, or

set i = 0 when no such index exists. Then we must have that {λ(xj) : j ≤ i} consists of anti-palindromic

labels and {λ(xj) : j > i} consists of palindromic labels. Thus, if j ≤ i, the restriction of λ to xj is a member

of Λ̂nrev
K,proj(λ(xj)),con({xj}), and if j > i, it is a member of Λ̂rev

K,proj(λ(xj)),con({xj}). Then λ is a member of

⊔
S∈{ZKn }

⊔
γ:P

bij−→S

n⊔
i=0

(
i◦

j=1
Λ̂nrev
K,γ(xj),con({xj})

)
◦
(

n◦
j=i+1

Λ̂rev
K,γ(xj),con({xj})

)
,

where S = {proj(xi) : i ∈ Zn}, and γ is defined by xi 7−→ proj(xi).

To show reverse containment, let S ∈
{
ZK
n

}
, let γ : P −→ S be a bijection. For some i ∈ {0, 1, . . . , n},

let λj ∈ Λ̂nrev
K,γ(xj),con({xj}), for j = 1, . . . , i, let λj ∈ Λ̂rev

K,γ(xj),con({xj}), for j = i + 1, . . . , n, and let

λ = λ1 ∪ · · · ∪ λn. Since each of the λj is complete in γ(xj), γ is a bijection and S is a partition of ZK , we

have that λ is complete in ZK . Let j, j′ ∈ Zn and suppose λ(xj)∩proj(λ(xj′)) 6= ∅. By definition of λ, and by

disjointness of the supports supp(λj(xj)) and supp(λj′(xj′)), we must have j = j′. Clearly, xj ∼=fwd
SN(n),λ xj .

If λ(xj) ∩ −λ(xj), then λ(xj) = ±λ(xj because λj is consistent. Then λj ∈ Λ̂rev
K,γ(xj),con({xj}), so that

j > i. Since x̄j = {xj′ : j′ ≥ j}, all members of the closure of xj are labelled palindromically, so that

σrev
dom(x̄j),dom(x̄j)

is a graph isomorphism of GSN(n)[xj ] which negates labels. Thus, xjσ
rev
SN(n),λxj .

The second part of the result follows immediately from the first part and the fact that for any pair

x ∈
(
ZN
2

)
, Λ̂rev

K,S,con({x}) consists of only one K-labelling, which assigns the label ±S to x, and Λ̂nrev
K,S,con({x})

consists of of the K-labellings, which assign any one of the 2|S| members of apal(S) to x.

Recall that to simplify our task, we have restricted our recursive counting strategy of all consistent K-

labellings of sets of pairs to non-crossing sets of pairs. Theorems 2.3.5 and 2.3.11 allow us to count the set of

consistent K-labellings of the 0th level of any set of pairs and Theorems 2.3.12 and 2.3.13 provide the counts

of the subset of l-reverse-complementary K-labellings. Although it is not restricted to non-crossing sets of

pairs, Theorem 2.3.14 provides a way of reducing the count of consistent K-labellings of the closure of any

pair x, which is not a member of the 0th level of a set of pairs, to counting the set of consistent K-labellings

of x̄ \ x and the subset of l-reverse-complementary K-labellings. Combining these results we still cannot

count the set Λ̂K,con(P ) for all non-crossing pairings P .

For example, the consistent K-labellings of the non-crossing sets of pairs P2 and P3 in Figure 2.15 can

be counted using these results, but the consistent K-labellings of the non-crossing set of pairs P2 ∪ P3

cannot be counted this way. The count of Λ̂K,con(P2) is reduced by Theorem 2.3.14 to counting the set of

consistent K-labellings and the subset of reverse-complementary K-labellings of a copy of F2, which can be
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done using Theorems 2.3.5, 2.3.11, and 2.3.12. Similarly, the count of Λ̂K,con(P3) can be repeatedly reduced

using Theorem 2.3.14 to counting Λ̂K′,con(F1) and Λ̂rev
K′,con(F1), for various K ′ < K. These two sets can

then be counted using Theorems 2.3.5, 2.3.11, and 2.3.13. Alternatively, Λ̂K,con(P3) can be counted using

Proposition 2.3.15. However, none of the results so far allow us to count P2 ∪ P3. The reason for that is

that all of these results except for Theorem 2.3.14 only apply to pairings which have height 0. Additionally,

Theorem 2.3.14 does not apply here because there is no single pair x whose closure is all of P2∪P3. In order

to be able to recursively count the consistent K-labellings of P2∪P3, we need a way of combining the counts

of consistent K-labellings for the two sets.

By extension, a general result which reduces counting the consistent K-labellings of a sequence P1, . . . , Pr

of sets of pairs where max(dom(Pi)) < min(dom(Pi+1)) to counting the consistent K-labellings of the

individual sets Pi would allow us to count the consistent K-labellings of any non-crossing pairing P . However,

obtaining such a result is challenging due to the fact that in a consistent K-labelling λ of P1 ∪ · · · ∪ Pr, the

supports of the λ(Pi) are not necessarily disjoint. A consistent K-labelling of P2 ∪ P3 in Figure 2.15, for

example, may assign the same labels or negations thereof to any subset of the pairs {6, 7}, {8, 9} and {13, 14}.

Denote with κK(P1, . . . , Pr) the set of partitions ZK = (S1, . . . , Sr) ∈
{
S
r

}
of ZK into r parts, ordered in

such a way that for each ith member Si of S, |S`| ≥ µ(Pi):

κK(P1, . . . , Pr) =

{
(S1, . . . , Sr) ∈

{
ZK
r

}
: |Si| ≥ µ(Pi), for i ∈ Zr

}
.

For the pairings P1, P2, P3 in Figure 2.15, we have µ(P1) = 1, µ(P2) = 2, and µ(P3) = 3, so that any partition

of ZK into a sequence of parts (S1, S2, S3) where Si ≥ i, for i ∈ Z3 is a member of κK(P1, . . . , P3).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P1

P2 P3

Figure 2.15: Three sets of pairs P1, P2, and P3 whose union is a pairing of Z16. The sets P2, and P3 are
non-crossing, while P1 is not. Using Theorems 2.3.5, 2.3.11, 2.3.12, 2.3.13, and 2.3.14, the consistent K-
labellings of the non-crossing sets of pairs Λ̂K,con(P2) and Λ̂K,con(P3) can be counted. Even though P2 ∪ P3

is non-crossing these results do not provide the necessary tools to count Λ̂K,con(P2 ∪ P3).

Theorem 2.3.16. Let r ≥ 2 and let P1, . . . , Pr be sets of pairs of ZN , where max(dom(Pi)) <

min(dom(Pi+1)), for i ∈ Zr−1. Let K ≥
∑r
i=1 µ(Pi) and denote with Λ the set of all complete and consistent

K-labellings λ of P1 ∪ · · · ∪ Pr, where supp(λ(Pi)) ∩ supp(λ(Pj)) = ∅, for all {i, j} ∈
(
Zr
2

)
. Then every
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member of Λ is non-l-reverse-complementary and:

Λ = ◦
(S1,...,Sr)∈κK(P1,...,Pr)

Λ̂K,Si,con(Pi),

so that:

|Λ| =
∑

(S1,...,Sr)∈κK(P1,...,Pr)

r∏
i=1

∣∣Λ̂|Si|,con(Pi)
∣∣.

Proof. Let λ ∈ Λ and for i ∈ Zr, set λi to be the restriction of λ to Pi and set Si to be the support of

λ(Pi). Then by definition of Λ, S1 ∪ · · · ∪ Sr = ZK . Since max(dom(Pi)) < min(dom(Pi+1)), for i ∈ Zr−1,

the closures of any two pairs x, y from different sets Pi and Pj are disjoint. Then consistency of λ implies

consistency each of the λi. Thus λi ∈ Λ̂K,Si,con(Pi), for i ∈ Zr and thus |Si| ≥ µ(Pi).

For the reverse containment, let (S1, . . . , Sr) ∈ κK(P1, . . . , Pr), let λi ∈ Λ̂K,Si,con(Pi), for i ∈ Zr and

set λ = λ1 ◦ · · · ◦ λr. Since the sets S1, . . . , Sr partition ZK and each of the λi is complete in Si, we

have that λ is complete in ZK . If for any two pairs x, y ∈ P1 ∪ · · · ∪ Pr, we have that λ(x) ∩ ±λ(y), then

disjointness of the Si implies that x and y are members of the same set Pj , for some j ∈ Zr. Then since

max(dom(Pi)) < min(dom(Pi+1)), their closures are contained in Pj , so that by consistency of λj , we have

that λ(x) ∩ λ(y) implies x ∼=fwd
P,λ y and λ(x) ∩ −λ(y) implies x ∼=rev

P,λ y. Thus, λ is consistent. By definition,

supp(λ(Pi)) ∩ supp(λ(Pj)) = Si ∩ Sj , for {i, j} ∈
(
Zr
2

)
, so that λ ∈ Λ.

The second part of the result follows immediately from the first.

2.4 Relationship of Pairings and Labellings to Older Models

In this section, attention returns to rearrangement maps where no two MDSs in the mic overlap, or correspond

to the same regions in the mac (except for pointer overlap at the ends of successive regions in the mac).

A variety of models of rearrangements is defined here and their connection to pairings and labellings is

established by a set of bijective, surjective and injective relationships summarized in Figure 2.17. An example

for each of the models is given in Figure 2.16, all of which correspond to the rearrangement schematic in

Figure 2.16(f).

Under the simplifying assumption a rearrangement is readily described by a sequence of symbols repre-

senting the MDSs in their order of appearance in the mic, where each symbol carries two pieces of information

about an MDS:

1. The position of the matching region in the mac relative to the other matched regions,

2. The relative orientations of the matching segments in the mic and mac.
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Definition 2.4.1. An MDS sequence of length N is a sequence of symbols Xk1 · · ·XkN , where

{k1, . . . , kN} = ZN , and Xki ∈ {Mki ,Mki}, for i ∈ ZN .

In this representation, the subscripts of the symbols in an MDS sequence indicate the position of the

matching region in the mac relative to the others and the bar above the symbol is added when the matched

micronuclear and macronuclear regions are located on opposite strands. An MDS sequence is shown in

Figure 2.16(a) and the corresponding rearrangement schematic in Figure 2.16(f).

M3 M2 M4 M1

(a)

1 2 3 4 5 6 7 8

{3} {−2} {−4} {1}

(b)

2 3 2 1 4 3 0 1

(c)

2 3 2 1 3 1

(d)

[1 2 1 3 2 3]∼

(e)

precursor

product

(f)

(g)

Figure 2.16: Various models of the same rearrangement. An MDS sequence (Definition 2.4.1) is shown
in (a), the corresponding simple arrangement (Definition 2.4.2) in (b), the augmented pointer sequence
(Definition 2.4.5) in (c), the pointer sequence (Definition 2.4.4) in (d), the assembly word (Definition 2.4.8)
in (e), and the assembly graph (Definition 2.4.12) in (g). A schematic of the modelled rearrangement is
shown in (f). The colors of the MDSs in (f) correspond to the respective segments in (g). The notation [w]∼
in (e) denotes the equivalence class of w under the relation ∼.

MDS sequences are in one-to-one correspondence with certain pairs (π, λ) consisting of a pairing π and

a labelling λ of π.

Definition 2.4.2. An arrangement of ZN is a pair (π, λ), where π ∈ Π(2N) is a pairing π and λ a

labelling of π. An arrangement (π, λ) of ZN is simple if π is the flat pairing, λ is complete in ZN , and λ(π)

consists of singletons with pairwise distinct projections.
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After establishing the bijective correspondence between simple arrangements and MDS sequences in

Proposition 2.4.3, their relationship to assembly words, as defined in [3, 9], is discussed. Due to the

lack of a straightforward one-to-one correspondence between the two structures, the differences between

simple arrangements and assembly words are described by presenting the relationships between successive

intermediates between the two structures as shown in Figure 2.17. Finally, observations made during the

investigation of these relationships are combined to a result that provides some insight into assembly

numbers which are heavily studied in [3, 9].

To each MDS sequence X = Xk1 · · ·XkN , a simple arrangement AX = (πX , λX) can be associated by

setting πX = FN and letting

λX({2i− 1, 2i}) =


{ki}, if Xki = Mki

{−ki}, if Xki = Mki ,

for i ∈ ZN .

Proposition 2.4.3. The mapping X 7−→ AX is a bijection between the collection of MDS sequences of

length N and simple arrangements of ZN .

Proof. Suppose X = Xk1 · · ·XkN and X ′ = Xl1 · · ·XlN are distinct MDS sequences. Then for some i ∈ ZN ,

either ki 6= li, or ki = li and (Xki , Xli) ∈
{

(Mki ,M li), (Mki ,Mli)
}

. In the first case, λX({2i − 1, 2i}) =

{ki} 6= {li} = λX′({2i− 1, 2i}). In the latter case, either λX({2i− 1, 2i}) = {ki} 6= {−li} = λX′({2i− 1, i}),

or λX({2i− 1, 2i}) = {−ki} 6= {li} = λX′({2i− 1, i}).

Next, let A = (π, λ) be a simple arrangement. Let X = Xk1 · · ·XkN , where:

Xki =


Mki if λ({2i− 1, 2i}) = {ki}

Mki if λ({2i− 1, 2i}) = {−ki}.

Then AX = A.

The intermediate structures between simple arrangements and assembly words considered here are derived

from the sequence of pointers in their order of appearance in the mic. The difference between the two

intermediate structures is that one contains two additional symbols which disambiguate the rearrangement

modelled by the pointer sequence, if any.

Definition 2.4.4. A pointer sequence on N letters is a word w over the alphabet ZN in which every

symbol of ZN appears exactly twice.
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Definition 2.4.5. An augmented pointer sequence on N letters is a word w over the alphabet ZN ∪{0}

obtained from a pointer sequence on N − 1 letters by inserting two additional letters 0 and N .

Remark 2.4.6. The mapping associating to every augmented pointer sequence w on N letters, the pointer

sequence
◦
w obtained from w via removal of letters 0 and N is a surjection onto the set of pointer sequences

on N − 1 letters.

A pointer sequence represents the sequence of pointers at the ends of MDSs in their order of appearance

on the mic, labelled according to their order of appearance in the mac. Since the assumption is made

here that no two MDSs overlap, or correspond to the same regions in the mac, the order of the pointers

is well-defined and each pointer appears exactly twice. The symbols added to a pointer sequence in an

augmented pointer sequence can be thought of as the positions of telomere addition sites at the ends of the

terminal MDSs. The same pointer sequence w can be obtained from multiple augmented pointer sequences

v1, . . . , vk (i.e. w =
◦
v1 = · · · =

◦
vk). By disregarding the locations of the pointer-less ends of terminal

MDSs, information about the exact position of these terminal MDSs is lost in a pointer sequence in contrast

to an augmented pointer sequence. In fact, it is possible that the same pointer sequence corresponds to

both ordered and disordered augmented pointer sequences. For example, the word 11 may correspond to

the augmented pointer sequences 0121, and 0112. The former, corresponds to the scrambled MDS sequence

M1M2, whereas the latter corresponds to the non-scrambled MDS sequence M1M2.

Let A = (π, λ) be a simple arrangement of ZN . For i ∈ ZN denote with ki the symbol in the projection

proj(λ({2i − 1, 2i})) = {ki}. An augmented pointer sequence wA on N letters can be associated to A by

setting wA = a1a2 · · · a2N , where for all i ∈ ZN ,

(a2i−1, a2i) =


(ki − 1, ki), if λ({2i− 1, 2i}) = {ki},

(ki, ki − 1), if λ({2i− 1, 2i}) = {−ki}.

Note that for each augmented pointer sequence wA = a1 · · · a2N on N letters associated to a simple

arrangement A, and for every even index i ∈ Z2N , the symbols ai−1, ai in wA, are immediate successors in

the integer ordering (i.e. |ai−1 − ai| = 1).

Proposition 2.4.7. The mapping A 7−→ wA is an injection from the set of simple arrangements of ZN into

the set of augmented pointer sequences on N letters.
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Proof. Let A = (π, λ),A′ = (π′, λ′) be two simple arrangements of ZN . Suppose wA = wA′ = a1 · · · a2N .

Then for all i ∈ ZN ,


λ({2i− 1, 2i}) = λ′({2i− 1, 2i}) = a2i, if a2i−1 < a2i,

λ({2i− 1, 2i}) = λ′({2i− 1, 2i}) = −a2i−1, if a2i−1 > a2i.

Non-surjectivity of the mapping A 7−→ wA can be observed by noting that there are pointer sequences

w = a1 · · · a2N where |ai − ai−1| 6= 1, for some number of indices i ∈ ZN . For example, in the word

1351352424, no two consecutive letters are immediate successors in the integer ordering. Augmenting such a

pointer sequence can compensate for this issue by inserting 0 next to a 1 and N + 1 next to an N . However,

only two letters of the original word would have their immediate successors as neighbors in the augmented

pointer sequence, while the remaining symbols do not.

Note that in an augmented pointer sequence, there is only one way the MDSs can appear between the

pointers. If w = a1 · · · a2N is an augmented pointer sequence, then the MDSs must fall between every other

pair of consecutive symbols, i.e. the first MDS is defined by pointers a1, a2, the second by pointers a3, a4, etc.

The coupling of every other pair of consecutive symbols in an augmented pointer sequence which correspond

to pointers of the same MDSs is consistent with the model of MDS descriptors presented in [19]. However,

there are many ways to add symbols 0 and N to a pointer sequence on N − 1 letters, causing different pairs

of pointers in the resulting augmented pointer sequence to correspond to the ends of MDSs between them.

Definition 2.4.8. Two pointer sequences w1 = a1 · · · a2N and w2 = b1 · · · b2N , are equivalent if for some

permutation f of ZN , either w1 = f(b1) · · · f(b2N ), or w1 = f(b2N ) · · · f(b1). When w1 and w2 are equivalent,

we write w1 ∼ w2. An assembly word is the equivalence class of a pointer sequence under the equivalence

relation ∼.

Remark 2.4.9. The mapping associating to every pointer sequence w its equivalence class under ∼ is a

surjection.

Considering only equivalence classes under the relation defined in 2.4.8 leads to further loss of informa-

tion. In some instances, some pointer sequences in an equivalence class W may admit augmented pointer

sequences w such that w = wA, for some simple arrangement A, whereas other pointer sequences from the

same equivalence class do not admit any augmented pointer sequences that can be obtained from a simple

arrangement via the mapping A 7−→ wA. For example, the pointer sequences 113322 and 112233 are equiv-

alent. The word 112233 admits both scrambled and non-scrambled augmented pointer sequences (such as
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10122334, and 01122334), whereas no augmented pointer sequence obtained from 113322 corresponds to an

MDS sequence.

Figure 2.17 summarizes the relationship between MDS sequences, simple arrangements, and assembly

words discussed here. The bijection between MDS sequences and simple arrangements shows that simple

arrangements model rearrangement maps which do not contain MDSs that overlap in the mic or correspond

to the same regions in the mac. The successive mapping from simple arrangements via intermediates to

assembly words, illustrates the various facets of the divergence between the models. Augmented pointer

sequences contain the same information as simple arrangements, but not all augmented pointer sequences

can be expressed as simple arrangements. pointer sequences miss the information of the exact positioning

of terminal MDSs. Finally, assembly words have no knowledge of the correspondence between symbols in

the word and pointers in the rearrangement. It should be noted that augmented pointer sequences, pointer

sequences, or assembly words, which do not correspond to MDS sequences still model rearrangements of

MDSs, but of MDSs from more than one mac contig.

simple arrangements
bijection

Proposition 2.4.3
MDS sequences

injection Proposition 2.4.7

augmented pointer words

Remark 2.4.6surjection

pointer words

Remark 2.4.9surjection

assembly words
bijection

[3]

Isomorphism classes
of assembly graphs

Figure 2.17: The relationship between the various models discussed in this section.

Assembly words are derived in [3, 9] from a spatial graph model called assembly graph. Central to an

assembly graph is the notion of rigid vertices which represent the alignments of recombination sites.

Definition 2.4.10. A cyclic equivalence (x1, . . . , xd)
cyc

on a d-tuple (x1, . . . , xd) is the set of all cyclic

permutations of the tuple and their reverses:

(x1, . . . , xd)
cyc

=
{

(x1, . . . , xd), (x2, . . . , xd, x1), . . . , (xd, x1, . . . xd−1),

(xd, xd−1, . . . , x1), (xd−1, . . . , x1, xd), . . . , (x1, xd, . . . , x2)
}

A rigid vertex in a multigraph with loops G = (V,E) is a pair
(
u, (e1, . . . , ed)

cyc)
, where u ∈ V , and

(e1, . . . , ed)
cyc

is the cyclic equivalence of a d-tuple of all edges incident to u in some ordering (loops incident
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to u are listed twice). Two edges ei, ej incident to a rigid vertex (u, (e1, . . . , ed)
cyc

are called neighbors

with respect to u if |i− j| = 1, or {i, j} = {1, d}.

Figure 2.16(g) depicts a rigid vertex graph. Each vertex is represented by a small disk and the its cyclic

equivalence is illustrated by the order in which its incident edges intersect the segment boundary. Listing

the members of the cyclic equivalence of a vertex amounts to listing all possible ways of choosing an edge

incident to a vertex, then choosing a direction clockwise or counter-clockwise, and finally putting the edges

incident to the vertex in order starting from the chosen edge in the chosen direction.

Definition 2.4.11. A transverse path in a rigid vertex graph is a sequence (v0, e1, v1, . . . , en, vn) of vertices

vi, and edges ej , where no vertex or edge is repeated, except possibly for the first and last vertex, and where

no two successive edges ei, ei+1 are neighbors with respect to the vertex vi between them.

A polygonal path in a rigid vertex graph is a sequence (e0, v1, e1, . . . , vn, en) of vertices vi, and edges

ej , where no vertex or edge is repeated, except possibly for the first and last edge, and where every two

successive edges ei−1, ei are neighbors with respect to the vertex vi between them.

For any polygonal, or transverse path γ in a graph G, denote with E(γ) the sequence of edges in the

order they appear in γ.

The colored segments on the rigid vertex graph depicted in Figure 2.16(g) form a polygonal path. Two

polygonal paths are considered disjoint if they have no edges, or vertices in common, except possibly for the

first and last edges.

Definition 2.4.12. An assembly graph is a finite multigraph with loops consisting of rigid 1- and 4-valent

vertices. An assembly graph with a Eulerian transverse path is called simple.

Two assembly graphs are considered isomorphic if there exists a graph isomorphism between them which

preserves the cyclic equivalences of rigid vertices. Informally, the Eulerian transverse path in a simple assem-

bly graph can be thought of as the micronuclear DNA molecule folding in on itself to align recombination

sites (matching pointer sequences). MDSs and IESs are encountered along the Eulerian transverse path in

an alternating manner. A polygonal path connects the MDSs in the right order and orientation. The first

and last edge of a polygonal path correspond to terminal MDSs which have only one pointer and are thought

of as taking up only a portion of the edge closest to the vertex neighboring the edge in the path. When a

polygonal path begins and ends with the same edge, the terminal MDSs are thought of as taking up disjoint

portions of the edge at opposite ends. In the trivial case of a polygonal path consisting of only one edge, the

corresponding MDS rearrangement consists of a single MDS without pointers and is thought of as a taking

up a small portion in the middle of the edge which does not touch the vertices incident to the edge.
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An assembly graph models the simultaneous alignment of recombination sites (pointers) in the mic. More

precisely, vertex-smoothing operations defined in [3] split the 4-valent vertices in an assembly graph in such

a way that polygonal paths stay intact and represent the rearranged product sequences. It was shown in [3]

that the isomorhpism classes of assembly graphs are in one-to-one correspondence with assembly words.

In a simple assembly graph, each vertex is traversed exactly twice by its Eulerian transverse. In [3, 9],

the minimum numbers of pairwise disjoint polygonal paths which form a Hamiltonian set in an assembly

graph, called the assembly number, is heavily studied. Observations made in this section led to insights

about the assembly number. Proposition 2.4.13 characterizes augmented pointer sequences that describe

assembly graphs with assembly number 1. Corollary 2.4.14 derives a necessary condition for the existence

of an augmented pointer sequence which corresponds to an assembly graph with assembly number 1.

Proposition 2.4.13. Let w = a1 · · · a2N be an augmented pointer sequence. Then w = wA for some simple

arrangement A if and only if the graph Gw = (Vw, Ew) with vertices Vw = Z2N and edges Ew defined by:

{i, j} ∈ Ew ⇐⇒


{i, j} 6= {t− 1, t} for some even t ∈ Z2N and ai = aj , or

{i, j} = {t− 1, t} for some even t ∈ Z2N and |ai − aj | = 1

is connected.

Proof. Suppose w = wA for a simple arrangement A = (π, λ) of ZN . Simplicity of A implies that

proj(λ(π)) = {{k}, for k ∈ ZN}, so that the set of pairs {ai−1, ai} for even indices i ∈ Z2N in some

ordering forms the sequence of pairs S =
(
{0, 1}, {1, 2}, {2, 3}, . . . , {N − 1, N}

)
. Then {i− 1, i} ∈ Ew, for all

even indices i ∈ Z2N . Note also that each k ∈ ZN , except for k = N appear in the sequence S once in a pair

together with k − 1 and once together with k + 1. Denote with t+k the index of the appearance of symbol k

in w which occurs in the sequence S together with k + 1 and denote with t−k the index of the appearance of

symbol k in w which occurs in S together with k − 1. Additionally, let t0 and tN be the indices of symbols

0 and N in w, respectively. Then the sequence (t0, t
−
1 , t

+
1 , t
−
2 , . . . t

+
N−2, t

−
N−1, t

+
N−1, tN ) forms a path in Gw

containing all vertices.

Conversely, assume Gw is connected. Vw has 2N vertices. Since Gw is connected, Ew must have at least

2N − 1 edges. There are precisely two occurrences of the letters 1, . . . , N − 1 in w, so that at most N − 1

edges are of the form {i, j}, where ai = aj . Then at least N edges must appear between vertices {i − 1, i}

where i ∈ Z2N is even. Since there are exactly N even numbers in Z2N , there is an edge {i − 1, i} in Ew

for every even i ∈ Z2N . Then |ai−1 − ai| = 1, for all even i ∈ Z2N . Since Gw is connected, and all vertices

are 1- or 2-valent, the graph is linear. Thus, the pairs {ai−1ai} can be ordered to form the the sequence S.
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Then the labelling λ of FN is defined by:

λ({i− 1, i}) =


{k}, if k = ai = ai−1 + 1

{−k}, if k = ai + 1 = ai−1.

Then A = (FN , λ) is simple and w = wA.

In [9], the authors established that the addition of loops in an assembly graph affects its assembly number.

This can be attributed to the fact the a polygonal path can traverse a loop in only one way, unless it is the

end point of the path. Loops in assembly graphs correspond to factors of the form aa in pointer sequences.

In terms of augmented pointer sequences, an assembly number higher than 1 corresponds to the lack of a

simple arrangement which maps to the word. The effect a factor of the form aa has on the existence of a

simple arrangement mapping to an augmented pointer sequence is summarized in Corollary 2.4.14.

Corollary 2.4.14. Let w = a1 · · · a2N be an augmented pointer sequence. If ai0−1 = ai0 for some even

i0 ∈ Z2N , then there is no simple arrangement A, such that w = wA.

Proof. Since ai0−1 = ai0 and i0 is even, there is no edge between i0 − 1 and i0. Then because there are

precisely N even numbers in Z2N , and N − 1 symbols appearing exactly twice in w, there must be less than

2N − 1 edges in Gw. Since |Vw| = 2N , Gw is not connected.
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Chapter 3

Algorithms for Annotating DNA Rearrangements in Ciliates

3.1 Introduction

Sequence alignment tools such as BLAST and LFASTA are usually insufficient for the analysis of DNA

rearrangements in ciliates. Such tools are able to establish a correspondence between matching segments

between the micronuclear and macronuclear genomes in the form of a large collection of local sequence

alignments. Automation is required to systematically make the various rearrangement maps accessible for

further analyses, such as the detection of repeating MDSs, overlapping MDSs or scrambled rearrangement

maps. Furthermore, these tools are typically designed for the comparison of sequences on an evolutionary

scale. Precursor and product genomes analyzed in the context of DNA rearrangements are a single generation

apart (i.e. mother to daughter cell), as opposed to one or more steps on the phylogenetic tree. By default,

the popular BLAST algorithm adds gaps to produce long high-scoring alignments. On an evolutionary scale

such gaps correspond to mutation events, where sections of DNA were inserted or deleted. Such events

occur rarely and are not expected to be observed between mother and daughter cell. Frequently, consecutive

MDSs in the macronucleus with little pointer overlap appear in non-scrambled order in the mic. When these

mac-consecutive MDSs appear close to each other in the mic, the combined region might falsely be identified

as a long gapped alignment as opposed to two separate MDSs. BLAST can be instructed to only return

ungapped alignments. However, in some cases combining the alignments to larger gapped alignments via

the introduction of very short gaps may be more desirable than keeping them separate. Gaps introduced in

this way must be very short to be able to qualify as sequencing, or assembly errors, or allelic variations, as

opposed to mutational events on an evolutionary scale. A framework for combining ungapped alignments to

gapped alignments in a controlled way is beneficial.

Past analyses of the rearrangement maps of O. trifallax used custom scripts to obtain the required anno-

tations [11, 16]. These scripts are unavailable for reuse or adaptation and address repeating and overlapping

MDSs by filtering them out, leading to a loss of information potentially significant to the underlying Biology.

The only available software tool dedicated to annotating features relevant for DNA unscrambling known

to the author is MIDAS [12]. MIDAS lacks transparency in the method it uses to generate rearrangement

maps which present the correspondence between MDSs in the micronuclear and macronuclear genomes. The
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rearrangement maps do not address overlapping MDSs and uses a definition of srambling that works best

without the presence of repeating or overlapping MDSs.

So far, O. trifallax has been the model organism for the types of DNA rearrangements studied here. This

is due in part to the high degrees of scrambling detected by [16] after sequencing the entire micronucleus.

However, other ciliate organisms that had not been studied may be subject to comparably severe DNA

rearrangements. It is desireable to sequence the genomes of other ciliates in the future and compare the

rearrangements taking place between the various species. A tool that is capable of handling a variety of

organisms, must be adaptable to the diverse characteristics.

In Section 3.2, an algorithm for the annotation of features relevant to DNA rearrangements in ciliates

is provided. Additionally, a generalization of the current notion of scrambling that can be applied to rear-

rangement maps in the presence of repeating and overlapping MDSs is proposed. An algorithm to detect

scrambling in the output of the annotation algorithm is presented, as well. Next, the implementation of a

pipeline incorporating the two algorithms is discussed. A variety of parameters is provided along with the

algorithms and their implementation to allow for adaptability and user control over the computation. The

effect of the parameters on the pipeline computation is tested and the results are discussed. The pipeline is

executed with a carefully chosen set of parameter values for a comparison of the annotation it produces with

the analyses in [11] and [16]. Finally, the pipeline is run on a more recent macronuclear genome assembly of

O. trifallax published in [28].

The annotation algorithm includes a method for combining ungapped alignments to larger gapped align-

ments in a controlled way. This method is developed further in Section 3.3 and its potential in the more

general context of gapped sequence alignment algorithms is explored. A command-line tool implementing

the algorithm is introduced. The software is rigorously tested and compared to the gapped alignment step

executed by BLAST.

3.2 Annotation algorithm for DNA rearrangements in ciliates

Existing computational tools for analyzing sequence data from the micronuclear and macronuclear genomes

of O. trifallax in the context of DNA rearrangements are based on simplifying assumptions. When applying

these tools, some more complex cases which do not satisfy the assumptions are addressed insufficiently or

must be filtered out [12, 16, 42]. These tools also lack in transparency and flexibility which complicates the

reproducibilty of resulting annotations, and hinders cross-species comparisons. In this section, an algorithm

that computes annotations of a precursor genome and its product is presented. The produced annotations

describe a rearrangement of segments analogous to the extraction and recombination of MDSs from the

micronucleus to form a functioning macronucleus in ciliate biology. Additionally, we specify a notion of
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scrambling that generalizes upon previous definitions and can be applied to more complex arrangements.

An algorithm to detect these scrambled arrangements among those produced by the first algorithm is given,

as well. An implementation of the algorithms called Scrambled DNA Rearrangement Annotation

Pipeline (SDRAP) is presented with a choice of various parameters, such that other genomes undergoing

similar rearrangements but with specific differences can still be accommodated and processed with this

software. Altogether, this annotation tool facilitates the analysis of scrambled pairs of genomes, such as

those found in ciliates, in a consistent, automated, adaptable and reproducible way. The effects the software

parameters have on the computation is assessed in a series of test runs with various parameter value sets.

Furthermore, results obtained from SDRAP using a carefully chosen set of parameter values and the same

genomes from [42] (mac) and [16] (mic), are crossreferenced with results given in [11, 16] based on existing

annotations. Finally, the pipeline is applied to the most recent macronuclear genome published in [28] and

the results are discussed.

3.2.1 Rearrangement Annotations and Properties

The annotation algorithm implemented by SDRAP accepts as input nucleotide sequences which make up

the precursor (micronucleus or germline) and product (macronucleus or somatic) genomes. By convention,

we read nucleotide sequences as oriented from the 5’ end to the 3’ end. Specifically, we define precursor

sequences and product sequences to be words over the alphabet ΣDNA = {A, C, G, T}. In this section we

establish the terminology which we use to describe the severity of disorder in which segments of product

sequences are observed inside precursor sequences.

For the remainder of the section, let C and G denote a precursor and a product sequence, respectively. The

algorithm locates substrings of the precursor sequence C that resemble substrings of the product sequence G

to determine how the product is distributed along the precursor. In ciliate biology these substrings found in

the precursor and product are called macronuclear destined sequences, or MDSs. They describe the

fragments of DNA that are spliced out of the micronucleus, possibly inverted, ligated and retained in the

macronucleus during the genome rearrangement process.

Definition 3.2.1. Define a match of G on C to be a triple M = (Prec,Prod, σ), where Prec ⊂ [1, |C|] and

Prod ⊂ [1, |G|] are integer intervals specifying the coordinates of the homologous substrings of C and G, and

where σ ∈ {0, 1} indicates their relative orientation. The first component, Prec, is the precursor interval

of M , and is denoted Prec(M). The second component, Prod, is the product interval of M , denoted

Prod(M), and the third component, σ, is the orientation of M , denoted σ(M). The starting points of

the precursor and product intervals of M are min(Prec(M)) and min(Prod(M)), respectively. The ending

points are max(Prec(M)) and max(Prod(M)), respectively.
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A match describes the location of an MDS in the precursor and its corresponding matching region in

the product, as well as the relative orientation of the two segments. A match does not describe the actual

nucleotide sequences at the matched regions in the precursor and product sequence. We follow the convention

that σ(M) = 1 indicates that the homologous subsequences of C and G defined by Prec(M) and Prod(M)

appear in the same orientations, whereas σ(M) = 0 indicates that the reverse complementary sequence of

one matches the other.

Collections of matches between two sequences are used to describe the rearrangement map from C to G.

Define M(C,G) = {M : M is a match of G on C} to be the set of all matches of G on C.

Definition 3.2.2. A subset A ⊆ M(C,G) is an arrangement of G on C if for any M1,M2 ∈ A, we have

that Prod(M1) ⊆ Prod(M2) implies Prod(M1) = Prod(M2). A subarrangement of A is simply a subset

of A.

Denote the set {Prod(M) : M ∈ A} of product intervals of matches in an arrangement A with AProd

and similarly write APrec = {Prec(M) : M ∈ A}.

An example of an arrangement is illustrated in Figure 3.1(a). This particular arrangement has five

matches, four (M1,M2,M3 and M4) with equally oriented (σ = 1), and one (M5) with oppositely oriented

precursor and product intervals.

Precursor intervals of matches found by the annotation algorithm may only be close approximations

of the actual regions which survive the rearrangement and make it into the product genome. Hence, we

allow for leniency in the scrambling detection algorithm for the extend of the overlap between two precursor

intervals necessary to be considered relevant, as explained below.

Definition 3.2.3. Let B ⊆ A be a subarrangement of an arrangement A and let s be a positive integer.

Two matches M1,M2 ∈ B are s-overlapping, if |Prec(M1) ∩ Prec(M2)| ≥ min{s, |Prec(M1)|, |Prec(M2)|}.

B is said to be s-overlapping if it contains two distinct matches which are s-overlapping.

Note that the s-overlapping property does not depend on the product intervals of M1 and M2. The

parameter s gives a threshold that defines when the matches corresponding to two overlapping precursor

intervals are considered to be overlapping matches. Small overlaps (< s) at the ends of precursor intervals

are disregarded by the algorithm depending on the magnitude of s. In particular, when s = 1, any nonzero

intersection between the precursor intervals of two matches to be considered s-overlapping. The exact value

for s is left as input parameter for the algorithm.

Since the product intervals of an arrangement do not contain one another, the intervals can be ordered

in a natural way according to their starting points. According to this ordering, define an index of a match
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(a)

precursor

1 3 2

-4
precursor

1 3 1

-4
precursor

3 1 2

(b)

Figure 3.1: (a): A representation of an arrangement of a product sequence on a precursor sequence (intro-
duced in Definition 3.2.2). The horizontal black lines at the top and bottom signify the precursor and product
sequences, respectively. Line segments annotated on the precursor sequence depict the precursor intervals
of matches labelled with their starting points a1, a2, a3, a4, a5 and end points b1, b2, b3, b4, b5. Similarly, the
segments annotated on the product sequence represent the product intervals of matches with their start
points c1, c2, c3, c4 and end points d1, d2, d3, d4 labelled. Each of the black lines connecting a precursor and
a product interval corresponds to one of the matches M1,M2,M3,M4,M5 in the arrangement. The intervals
of the match M5 are oppositely oriented (σ(M5) = 0) illustrated by the loop in the line connecting the
corresponding intervals. All other matches Mj (1 ≤ j ≤ 4) in this arrangement have orientation σ(Mj) = 1.
Thus, depicted in this arrangement are the matches M1 = ([a1, b1], [c1, d1], 1), M2 = ([a3, b3], [c1, d1], 1),
M3 = ([a2, b2], [c3, d3], 1), M4 = ([a4, b4], [c2, d2], 1), and M5 = ([a5, b5], [c4, d4], 0). (b): A simplified repre-
sentation of three subarrangements of the arrangement shown in Figure 3.1(a). Only the precursor intervals
of the matches are shown, labelled by the indices (Definition 3.2.4) of the corresponding matches in the
arrangement (i.e. the product interval corresponding to a precursor interval with label i occurs in the i’th
position on the product sequence relative to the other product intervals of the matches in the arrangement).
The index of the match associated with the rightmost product interval is negated to mark that the match
has orientation 0. White unlabelled segments indicate matches from the original arrangement that were left
out of the subarrangements. Observe that the subarrangement at the top is s-overlapping (Definition 3.2.3)
since the matches corresponding to the precursor intervals labelled by the indices −4 and 2 are s-overlapping.
The subarrangement in the middle is repeating (Definition 3.2.5) since the matches corresponding to the
two precursor intervals labelled by the index 1 have the same product interval. The subarrangement at the
bottom is maximal non-repeating and non-s-overlapping. It is maximal with these properties since addition
of any more matches from the original arrangement results in the presence of repeating or s-overlapping
matches.

in an arrangement which indicates the position of the product interval of a match relative to the positions

of the product intervals of the other matches in the arrangement. More precisely, the relation < defined on

the set AProd by:

Prod(M) < Prod(M ′) if min(Prod(M)) < min(Prod(M ′))

is a well defined order.
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Definition 3.2.4. Let Prod(A) be the ordered sequence (Prod1, . . . ,Prodt), where {Prod1, . . . ,Prodt} =

AProd, and where Prod1 < Prod2 < · · · < Prodt. If M ∈ A and Prodi = Prod(M), then i is said to be the

index of M in A, denoted iA(M).

Definition 3.2.5. If some M 6= M ′ in a subarrangement B ⊆ A have the same product interval (i.e.

Prod(M) = Prod(M ′)), then iA(M) = iA(M ′) and we say M and M ′ repeat in B. In this case, the two

matches M and M ′ are said to be repeats of each other. A subarrangement B ⊆ A is repeating if it

contains a match which repeats in B.

In the example arrangement A depicted in Figure 3.1(a), the sequence of product intervals is Prod(A) =

([c1, d1], [c2, d2], [c3, d3], [c4, d4]) (since c1 < c2 < c3 < c4), so that iA(M1) = iA(M2) = 1, iA(M3) = 3,

iA(M4) = 2 and iA(M5) = 4. Figure 3.1(b) depicts three subarrangements of A. The subarrangement at

the top is s-overlapping since the matches corresponding to the precursor intervals labelled by the indices −4

and 2 are s-overlapping. The subarrangement in the middle is repeating since the matches corresponding to

the two precursor intervals labelled by the index 1 have the same product interval. The subarrangement at the

bottom is maximal non-repeating and non-s-overlapping. It is maximal with these properties since addition

of any more matches from the original arrangement results in the presence of repeating or s-overlapping

matches.

As demonstrated above, deciding whether or not a given arrangements is scrambled is complicated by

s-overlapping and repeating matches because they pose ambiguities. However, the underlying biological

process somehow resolves these ambiguities. Since the precise mechanism is not yet fully understood, any

computational decision of one choice over another risks being arbitrary and lead to loss of information.

The general approach taken here is to consider as many maximal non-repeating and non-s-overlapping

subarrangements of each arrangement as possible and not hide any information. A subarrangement in

consideration is maximal with these properties in the sense that the addition of any other match from

the arrangement would result in a repeating or s-overlapping subarrangement. To shorten the phrase,

call a maximal non-repeating and non-s-overlapping subarrangement unambiguous. For unambiguous

subarrangements, intuitive notions of scrambling as in [12, 16] can be applied. Despite the maximality of a

given subarrangement in consideration, some product intervals may be missing in the set of product intervals

of the subarrangement. Hence, considering possibly proper subsets of an arrangement suggests the need to

include a notion of completeness of product intervals in the definition of scrambling. To determine whether

or not an unambiguous subarrangement is scrambled, three elementary properties are considered. These

arrangement properties reflect the state of disorder of matches in the unambiguous subarrangement and the

completeness of the product intervals with respect to its parent arrangement.
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Definition 3.2.6. An unambiguous subarrangement B ⊆ A is complete in A if BProd = AProd, and it is

considered consecutive in A if {iA(M) : M ∈ B} forms a consecutive sequence of integers. Since B is non

s-overlapping, the set BPrec forms a sequence Prec(B) = (Prec1, . . . ,Prec|B|), ordered by their starting points

the same way as the sequence Prod(A) is ordered. B is said to be ordered in A if all members of B have

the same orientation σ and Precj = Prec(M), Preck = Prec(M ′), for j < k either implies iA(M) < iA(M ′)

and σ = 1, or iA(M) > iA(M ′) and σ = 0.

Note that completeness of an unambiguous subarrangement implies consecutivity. The property of being

ordered is similar to what [12] consider non-scrambled, except that product intervals may be missing in the

arrangement.

In Figure 3.2(a), the two unambiguous subarrangements are {1, 3} and {2, 3}. Both are ordered, neither

is complete, and {2, 3} is consecutive. The unambiguous subarrangements of (b) are {1,−2} and {1, 3} and

neither is complete while only the latter of the two is ordered and the former is consecutive. Here, {1,−2}

is not ordered because the orientations of the two matches differ. In (c), the unambiguous subarrangements

are {−1, 2, 3} and {2, 1, 3}, both of which are complete, but not ordered.

Definition 3.2.7. For a nonempty subset S ⊆ {ordered, consecutive, complete}, define an unambiguous

(sub-)arrangement to be S-scrambled if at least one of the properties listed in S does not hold. An arbitrary

arrangement is then considered weakly S-scrambled if at least one of its unambiguous subarrangements

is S-scrambled and it is considered strongly S-scrambled if all of its unambiguous subarrangements are

S-scrambled.

Weak and strong versions of the properties ordered, consecutive and complete for arbitrary arrangements

are defined analogously. The choice for the combination of properties that comprise the set S is left as input

parameter for the algorithm.

Three examples of arrangements are depicted in Figure 3.2. All depicted overlaps are assumed to be

of size ≥ s. The arrangement in 3.2(a) is strongly S-scrambled if the property “complete” is in the set

S. The arrangement is neither weakly not strongly S-scrambled if S = {ordered} and it is weakly but not

strongly S-scrambled if the property “consecutive” but not the property “complete” is in the set. In 3.2(b),

one of the two unambiguous subarrangements {1, 3} is ordered but not consecutive and the other {1,−2}

is consecutive but not ordered. Thus the depicted arrangement is strongly S-scrambled if both properties

“ordered” and “consecutive” are in S. The arrangement in 3.2(c) is strongly complete and consecutive, but

strongly S-scrambled if the property “ordered” is in the set S.
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(a)

precursor

1
2 3

(b)

precursor

1 −2
3

(c)

precursor

−1 2 1 3

Figure 3.2: The precursor intervals of the matches of three arrangements labelled by their corresponding
indices. The overlaps in (a) and (b) are assumed to be of length at least s. Each of the three arrange-
ments has exactly two unambiguous subarrangements. Neither of the unambiguous subarrangements of the
arrangement in (a) is complete, so it is neither weakly nor strongly complete. One of the two unambiguous
subarrangements is ordered, and the other is both ordered and consecutive. The arrangement depicted in
(b) is weakly ordered and weakly consecutive, but strongly S-scrambled if {ordered, consecutive} ⊆ S. All
unambiguous subarrangements of the arrangement shown in (c) are complete and consecutive, but none are
ordered, so that the arrangement is strongly S-scrambled if “ordered” is a member of S.

3.2.2 Mergeability of Matches

The arrangement annotation algorithm takes as input a set of local alignments between a precursor sequence

and a product sequence and returns an arrangement constructed from it. Such alignments can be obtained

using softwares such as BLAST [1, 2, 14, 33, 45] or LFASTA [29, 35].

In ciliate biology, the comparison between micronucleus and macronucleus in the context of DNA rear-

rangements can be expected to show little change on an evolutionary scale. Very strict sequence similarity

is expected for the alignments between the two genomes. Popular sequence alignment tools, such as BLAST

and LFASTA, however, are optimized for sequence alignments with the purpose of detecting homology over

evolutionary distances. To ensure a high degree of similarity between the aligned regions, the input align-

ments are assumed to be ungapped. While ungapped alignments do not allow for insertions and deletions,

slight discrepancies caused, for example, by sequencing artifacts or allelic variations, are to be expected.

Thus, by forbidding gaps, long alignments that reflect true biological relationships may be fragmented in

the data into smaller ungapped alignments separated by numbers of nucleotides that differ from precursor

to product sequence. Due to the differing distances between the ungapped fragments of a gapped alignment,

a large ungapped alignment encompassing both fragments may not achieve high sequence similarity. This is

caused by the alignment of at least one of the two fragments in the encompassing alignment to be shifted,

not matching up the same basepairs as were matched up originally. The introduction of even very small

gaps could drastically improve sequence similarity and describe more accurately the actual distribution of

matches across the micronuclear and macronuclear genomes. A specific way of combining alignments to

larger possibly gapped alignments is discussed here. This technique of merging alignments is designed to

offer a high level of control over the lengths of the gaps and the potentially dissimilar regions between

ungapped alignments that are incorporated into a larger gapped alignment.
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Definition 3.2.8. Define the shift between two equally oriented matches M1 = ([a1, b1], [c1, d1], σ1) and

M2 = ([a2, b2], [c2, d2], σ2) as:


max{|(a1 − a2)− (c1 − c2)|, |(b1 − b2)− (d1 − d2)|}, if σ1 = σ2 = 1

max{|(a1 − a2)− (d2 − d1)|, |(b1 − b2)− (c2 − c1)|}, if σ1 = σ2 = 0.

In Definition 3.2.8, the maximum is taken over the difference of positions based on starting points and

based on end points to be able to apply the notion to gapped alignments, where these two differences may

not be the same.

Definition 3.2.9. For nonnegative integers t and d, we say that two matches are (t, d)-mergeable if they

have the same orientation, their shift does not exceed t, and their precursor and product intervals are at

most d base pairs apart. To say that M1 = ([a1, b1], [c1, d1], σ) is merged with M2 = ([a2, b2], [c2, d2], σ)

means that M1 is extended to the match ([min{a1, a2},max{b1, b2}], [min{c1, c2},max{d1, d2}], σ).

The shift between two equally oriented matches represents the amount by which the relative positions

of the precursor intervals differ from the relative positions of the product interval. When the orientation

of the two matches is zero, then the difference of the end points of the precursor intervals is compared to

the difference of the starting points of the product intervals because the regions of the precursor sequence

defined by the precursor intervals correspond to the reverse complement of the DNA substrings in the product

sequence defined by the product intervals. Similarly, with reversed orientations, the distance between the

difference of the starting points of the precursor intervals and the difference of the end points of the product

intervals is computed and limited by t to account for the inverted orientation while determining how alike the

precursor and product intervals are relatively positioned. Observe that the shift also represent the difference

in length of the precursor and product intervals of the resulting merged match. Any end-to-end sequence

alignment between two different length sequences must insert gaps of total length at least as much as the

sequences differ in length. Thus, limiting the shift by the parameter t directly controls the possible gap length

introduced via merging. Note that when precursor and product intervals of two (t, d)-mergeable matches do

not overlap, the resulting merged alignment aligns some of the characters between the intervals. Frequently

such characters may be mismatches, especially if the original alignments already are locally optimal. Thus,

the parameter d limits the number of mismatches that can be introduced in this way. The values for t and

d are left as input parameters for the algorithm.

Various configurations of equally oriented matches M1 = ([a1, b1], [c1, d1], σ1) and M2 =

([a2, b2], [c2, d2], σ2) in Figure 3.3 illustrate examples and non-examples of (t, d)-mergeable matches. In (a),
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σ1 = σ2 = 1, and a1 and a2 are positioned relative to each other identically to how c1 and c2 are positioned

(i.e. a1− a2 = c1− c2) and analogously b1, b2 are positioned the same way as d1, d2, the shift is 0. Similarly,

in (b), σ1 = σ2 = 0, and (a1, a2) and (b1, b2) are positioned the same way as (d2, d1) and (c2, c1), respectively,

so that the shift is 0, as well. The distance between precursor intervals differs from the distance between

product intervals in (c) and (f) implying a non-zero shift. These two cases are (t, d)-mergeable if the shift

is not greater than t and if the space between precursor intervals as well as product intervals is not larger

than d. The intervals in (d) have no basepairs in between them, but there is a difference in the length of the

overlap. If this non-zero shift exceeds t, the two matches are not (t, d)-mergeable. The intervals in (e) are

not in a favorable configuration for merging since the order of precursor intervals and corresponding product

intervals coincide even though the matches have orientation σ1 = σ2 = 0. The shift of these two matches

here is the larger of the two distances |(a1 − a2)− (d2 − d1)| and |(b1 − b2)− (c2 − c1)|. Since (a1 − a2) and

(b1 − b2) are negative, but (d2 − d1) and (c2 − c1) are positive due to the configuration of the intervals, the

shift is much larger than if the intervals appeared in opposite order in one of the two sequences. Even for

relatively high values of t, the two matches are not (t, d)-mergeable.

3.2.3 Arrangement Annotation Algorithm

The input set of alignmentsHmay not be an arrangement because the product intervals of some may properly

contain the product intervals of others. Consequently, the set HProd of product intervals of members of H

may not be totally ordered under the desired order relation and the indices of the members of H are not

well defined. Without the indices of the members of H defined, the arrangement properties introduced in

Section 3.2.1 cannot be determined. As a solution to this problem, the algorithm first computes a smaller

preliminary set A0 that is an arrangement by giving precedence to alignments of higher quality according

to bitscore and percent identity, which are given for all local alignments as part of the output of sequence

alignment tools such as BLAST. Next, the algorithm combines A0 with a set A1 of additional matches

computed from H whose product intervals may contain or be contained in product intervals of members of

A0. The resulting set A0 ∪A1 is treated by the pipeline to be the final arrangement of the current product

on the precursor. To the members of A0 the algorithm assigns their index in A0 and to the members of A1

it assigns the index of those members of A0 whose product intervals they intersect sufficiently, as explained

in the detailed algorithmic description of this procedure below.

To obtain the set of preliminary matches A0, the input alignments are sorted lexicographically by bitscore

and percent identity as primary and secondary sort keys, respectively, so that alignments of better quality

are given precedence over those of lower quality. The arrangement A0 is built from the sorted sequence H0 of

members of H by deciding for each H ∈ H0, one by one, whether or not to add H to the current arrangement,
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Figure 3.3: Various configurations of equally oriented matches M1 = ([a1, b1], [c1, d1], σ1) and M2 =
([a2, b2], [c2, d2], σ2) illustrating examples and non-examples of (t, d)-mergeable matches. In (a), σ1 = σ2 = 1,
and a1 and a2 are positioned relative to each other identically to how c1 and c2 are positioned (i.e.
a1 − a2 = c1 − c2) and analogously b1, b2 are positioned the same way as d1, d2, the shift is 0. Similarly, in
(b), σ1 = σ2 = 0, and (a1, a2) and (b1, b2) are positioned the same way as (d2, d1) and (c2, c1), respectively,
so that the shift is 0, as well. Since the shift is 0 and there are no basepairs between the precursor or product
intervals, these two cases illustrate examples of (t, d)-mergeable matches. The distance between precursor
intervals differs from the distance between product intervals in (c) and (f) implying a non-zero shift. These
two cases may still be (t, d)-mergeable if the shift is not greater than t and if the space between precursor
intervals as well as product intervals is not larger than d. The intervals in (d) have no basepairs in between
them, but there is a difference in the length of the overlap. If this non-zero shift exceeds t, the two matches
are not (t, d)-mergeable. The intervals in (e) are not in a favorable configuration for merging since the order
of precursor intervals and corresponding product intervals coincide even though the matches have orientation
σ1 = σ2 = 0. The shift of these two matches here is the larger of the two distances |(a1−a2)− (d2−d1)| and
|(b1− b2)− (c2− c1)|. Since (a1− a2) and (b1− b2) are negative, but (d2− d1) and (c2− c1) are positive due
to the configuration of the intervals, the shift is much larger than if the intervals appeared in opposite order
in one of the two sequences. Even for relatively high values of t, the two matches are not (t, d)-mergeable.

and if so, whether or not it should be merged with or replace members of the current arrangement, as

explained below.

Let A′0 be the current arrangement, let H ∈ H0 be the next alignment being considered and let

NG(A′0, H) = Prod(H) ∩
(
G \

⋃
M∈A′0

Prod(M)
)
.

The set NG(A′0, H) represents the subset of Prod(H) that is not contained in the product interval of any

of the members of the current arrangement A′0. When |NG(A′0, H)| ≥ cmin, for some predefined positive

number cmin, the alignment H continues to the next phase in which it is added to A′0 after potential removal
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of redundant alignments in A′0 and potential merging with alignments of A′0. When |NG(A′0, H)| < cmin,

the alignment is disregarded, and the algorithm continues with the next alignment. The parameter cmin

establishes the threshold of how many base pairs in G that are not already covered by product intervals of

members of A′0 must be covered by H to qualify for placement in A′0. The value cmin is left as an input

parameter of the algorithm. To place H in A′0 appropriately, when it qualifies, each member M ∈ A′0 is

checked for (t, d)-mergeability with H. Whenever that is the case, H is merged with M and M is removed

from A′0. Next, the algorithm checks for each M in the new set A′0 whether |Prod(M) \ Prod(H)| < cmin,

so as to test whether M is now made redundant to H. Whenever that is the case, M is removed from

A′0. Finally, H is added to A′0 and the algorithm continues with the next alignment in H0. A flowchart for

this algorithm and stages of its execution when finding A0 from an example input set H of alignments is

illustrated in Figure 3.4.

The returned set of preliminary matches A0 is sorted according to the order relation for its product

intervals defined in Section 3.2.1. Indices of the preliminary matches in A0 can easily be computed at this

point via a linear traversal of the list A0. The set A1 of additional matches is obtained from the subset

H′ ⊆ H of alignments which do not make up members of A0 already. The algorithm for additional match

annotation begins with the input set H′ and an empty set A′1. One by one, the algorithm considers the next

member H from H′ in any order. First, H is merged with any (t, d)-mergeable member currently contained

in A′1. Each member of A′1 that H is merged with in this way is removed from the set. Next, for each

member M of A0, the size of the intersection between the product intervals of M and H is computed. If

|Prod(M)∩Prod(H)|/|Prod(H)| meets or exceeds a predefined threshold r, a copy of H is added to A′1 with

the same index as M . Note that multiple copies of H may be added to A′1 with different indices assigned

to them. While not technically part of the definition, here two matches are considered different if their

(artifically assigned) index differs. When |Prod(M) ∩ Prod(H)|/|Prod(M)| is smaller than the threshold

r, it is still added to A′1, but flagged as insufficient match. None of the insufficient matches are considered

additional matches, but during the execution of the algorithm, they may still merge into other alignments.

At the end, the set A′1 without the matches flagged as insufficient is returned as the set A1 of additional

matches. The threshold r determines the proportion of the product interval of a preliminary match that

must be covered by an additional match for it to be considered a match of the same index. The value for r

is left as input parameter for the algorithm.

At the end of the additional match annotation step, the combined sets A0 ∪ A1 is returned as the

arrangement of G on C. In total the algorithm, takes O(|H|2) time. The parameters t, d, cmin and r, offer

substantial control over the decisions made during the computation.
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for each H ∈ H0 do

|NG(A0, H)| ≥ cmin

yes

for each M ∈ A0 do
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(t, d)-mergeable
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merge H with M

A0 = A0 \ {M}

for each M ∈ A0 do
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yes
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A0 = A0 ∪ {H}
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H′ H4
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Figure 3.4: (a): The flowchart for the preliminary arrangement annotation algorithm. Beginning with a
sequence of alignments H0 sorted lexicographically by (bitscore, percent identity), and the output set A0

empty, the algorithm processes one member H of H0 at a time. First, the size of the set NG(A0, H) of
positions in G covered by Prod(H) but none of the product intervals of members of A0 is computed. If that
number is less than cmin, then the algorithm continues with the next member of H0. If |NG(A0, H)| does
meet or exceed the threshold cmin, then H is merged with any member of A0 that is (t, d)-mergeable with
H. Each match in A0 that was merged into H, is removed. Next, any member of A0 whose product interval
does not cover more than cmin positions that are not already cover by the product interval of the merged
match H is removed. Lastly, H is added to A0. The set A0 is the set of preliminary matches returned at
the end of the algorithm. (b): An example input H (top) and A0 at the ends of the second (middle) and
last (bottom) iterations of the outermost loop shown in (a). The numbers in parentheses below the labels
of the alignments in the representation of H at the top, are their bitscores. The alignments H1 and H2 are
assumed to be (t, d)-mergeable. The members of the sequence H0 are considered in the order of decreasing
bitscore: H2, H3, H4 and then H1. After the second iteration, A0 consists of H2 and H3. Neither of the
conditionals in the two inner loops evaluates to true at any time during the first two iterations. During
the third iteration (H = H4), the conditional in the second inner loop evaluates true when M = H3, since
|Prod(H3) \ Prod(H4)| = 0 < cmin. Thus, H4 replaces H3 in A0. During the fourth iteration (H = H1),
the conditional in the first inner loop evaluates true when M = H2, so that H1 and H2 are merged to
form H ′ which replaces H2 in A0. Observe that we assume that during every iteration of the outermost
loop, the conditional at the top of the loop body evaluates true. This means that at any point during the
execution of the algorithm, at least cmin base pairs fall into the product interval of the alignments currently
in consideration but not into the product intervals of current members of A0.

3.2.4 Property Computation

Given an unambiguous subarrangement of an arrangement of a product on a precursor sorted by the order

of starting points of precursor intervals, a straightforward linear scan suffices to determine whether or not
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the subarrangement is complete, consecutive, or ordered in the parent arrangement. Note that the number

of matches in an arrangement of a product on a precursor is at most the number of HSPs between the two

sequences, so that O(|A|) = O(|H|). Therefore, computing the weak and strong versions of these properties

for an arrangement A with all its m unambiguous subarrangements B1, . . . ,Bm given sorted by starting

points of precursor intervals, takes O(
∑m
j=1 |Bj |) = O(m|A|) = O(m|H|) time.

In order to find the unambiguous subarrangements of an arrangement A, we reduce the problem to the

problem of listing all maximal cliques in a graph. Consider the graph G = (A, E) with vertex set A (the set

of matches), where two vertices (matches) M1 6= M2 ∈ A are adjacent if and only if they are not repeats of

each other and they are not s-overlapping. We call G the graph induced by the arrangement A. Then

two vertices in G do not have an edge between them if and only if the corresponding matches are repeats

of each other or are s-overlapping. Thus, the unambiguous subarrangements of A are precisely the maximal

cliques in G.

The algorithm listing the maximal cliques in the graph induced by a given arrangement used in this

algorithm is based on the results by Makino et al. [30] and it is output sensitive in the number of maximal

cliques being computed. Arbitrary graphs can have a exponential number of maximal cliques [32]. Thus,

an upper bound u (1 ≤ u ∈ Z) is imposed to limit the computational complexity of the algorithm. The

computation of maximal cliques in each of the t connected components of a graph induced by an arrangement

is terminated after u cliques were obtained. The algorithm finds the maximal cliques of an arrangement A

in O(t|A|3 · u) time.

Forming the graph G = (A, E) induced by an arrangement A can be done in O(|A|2) time via pairwise

comparison of the indices of the matches and the overlaps between their precursor intervals. Next, the

pipeline obtains the connected components G1, . . . , Gt of G using a simple recursive DFS algorithm, which

takes O(|A| + |E|) time. Thus, computing the properties of A takes O(t|H|3 · u) = O(|H|4 · u) time. For

the algorithm computing the properties of the arrangements control over the computation is provided by

specifying the values of s, u, and S.

3.2.5 Scrambled DNA Rearrangement Annotation Pipeline

The arrangement annotation and arrangement property computation algorithms were implemented as a

web application called Scrambled DNA Rearrangement Annotation Pipeline, or SDRAP, using

PHP 5.3.3 and MySQL 5.6.31 with Apache 2.2.15 on a linux server running with the CentOS 6.7 operating

system. The user interface was implemented using HTML, CSS and javascript and can be accessed at

https://knot.math.usf.edu/SDRAP. The application accepts the input genomes in FASTA format. The

code for SDRAP and documentation are available at https://github.com/JasperBraun/SDRAP. The steps
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of the pipeline are:

1. Detect and mask telomeric sequences at the ends of product sequences.

2. BLAST product sequences as query against precursor sequences as subject.

3. Annotate arrangements.

4. Compute arrangement properties.

SDRAP implements its own telomere detection algorithm which is a heuristic adaptation of the Smith-

Waterman gapped local sequence alignment algorithm [41]. Since many such variants exist which use the

same or a similar strategy (such as BLAST and LFASTA), the algorithm is not discussed here. BLAST

is run internally after telomeres are masked as the second step of the pipeline. SDRAP uses Nucleotide-

Nucleotide BLAST 2.2.31+ with parameters -task megablast -ungapped -lcase masking -word size

18 -dust no -max hsps 10000 -max target seqs 10000. In the remainder of the computation, SDRAP

only considers the portions of the product sequences between the detected telomeres at either end, if any.

When a telomere at the 5’ or 3’ end is missing, the product sequence included in subsequent steps includes

the entire prefix or suffix, respectively.

SDRAP applies the arrangement annotation algorithm discussed in Section 3.2.3 to the set of local align-

ments returned by BLAST during the second step. It returns annotations of precursor and product intervals

of the resulting matches. In addition to t, d, cmin, and r discussed in Section 3.2.3, the software accepts min-

imum thresholds `pre, bpre, ppre for length, bitscore and percent identity that alignments returned by BLAST

must satisfy to be included in the set H of alignments used for preliminary match annotation. Another

set of parameters badd, padd is provided which define minimum bitscore and percent identity thresholds that

alignments must satisfy to be included in the set H′ of alignments used for additional matches.

Precursor and product interval annotations are complemented with annotations of pointers, gaps, frag-

ments and eliminated sequences, which are defined here. Let A0 be the preliminary arrangement of a

precursor and a product sequence. A pointer is the region of overlap, if any, between two consecutive

product intervals in the sequence Prod(A0), together with the corresponding two regions in the precursor.

These repeats in the precursor genome take a guiding role for the recombination during macronuclear for-

mation. Since no two alignments in the preliminary arrangement A0 determined by the algorithm described

in Section 3.2.3 have the same product interval, the overlapping region between two product intervals of

alignments Ai, Aj that are immediate successors in Prod(A0) corresponds to exactly two regions in the pre-

cursor sequence. These two regions are located at the ends of Prec(Ai) and Prec(Aj). Pointer annotations

for both precursor and product are returned. The gaps in a product sequence with respect to a precursor
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sequence are the regions in the product complementary to the product intervals of the preliminary matches.

Gaps represent regions that are not covered by the precursor sequence, i.e. gaps in coverage. The regions

complementary to the precursor intervals of the union of all arrangements on a precursor sequence are an-

notated as eliminated sequences. Eliminated sequences represent the sequences in a precursor that are

separated from the DNA that contributes to the macronuclear DNA, i.e. the sequences that are eliminated

during macronuclear formation. Minimum length thresholds `ptr, `gap, and `elim define the minimum lengths

of pointers, gaps, and eliminated sequences, respectively, to be annotated as such. When one of these fea-

tures is shorter in length than its respective threshold, it is not annotated. All three length thresholds are

provided as input parameters. Fragments of matches are those matches in the set H′1 that are not returned

as additional matches at the end of the additional match annotation algorithm described in Section 3.2.3.

A match H in H′1 is not included in the additional match annotation if for all preliminary matches M ,

|Prod(H) ∩ Prod(M)|/|Prod(M)| < r. All such matches H are annotated as fragments. Fragments repre-

sent statistically significant alignments that were not captured by the annotation because they are redundant

to larger or higher scoring alignments. Whenever a fragment satisfies the inequality:

|Prod(H) ∩ Prod(M)|/|Prod(M)| ≥ r′

for some preliminary match M and a smaller threshold r′ < r, then a copy of it is annotated as a fragment

with the index of M . When a fragment does not satisfy the inequality for any preliminary match M , it

is annotated as a fragment without index. The threshold r′ is provided as another input parameter of

the software. All annotations are given labels providing as much information as possible to establish the

correspondence of the annotated features in one genome with location of corresponding annotations in the

other genome.

Arrangement properties of the arrangements are returned as a simple table listing each arrangement and

its various arrangement properties. To be able to further limit computational complexity the parameters s, u,

and S of the arrangement property computation algorithm discussed in Section 3.2.4, are supplemented with

a threshold q that determines the proportion of the product sequence that must be covered by preliminary

matches of a precursor sequence for arrangement properties of the arrangement between the two sequences

to be computed.

One of the goals of the software is to offer a uniform way to analyze not only the DNA rearrangements of

O. trifallax but also of other genome pairs undergoing a similar process, such as the genomes of other ciliates.

Many parameter values should be chosen on a context-specific basis, so an optimal choice of default parameter

values is difficult. To assess the effect different parameter values have on the computation, the pipeline was
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run with various parameter values on the precursor and product genomes of the organism Oxytricha trifallax,

obtained from [16] and [42], respectively. An outdated version of the macronuclear genome was chosen so

that the results can be corroborated with previous analyses that used the same genome without having to

account for differences in the genome assembly. For each parameter, a low, a center and a high value were

chosen and an initial test run was performed with all parameters at their center value. Next, one test run

was carried out for each parameter at their low and high value with all other parameters fixed at their center

values. Only the parameter `pre was held fixed at its lower value instead of its center value and its lower

value was also used for the initial center run. Since there is no natural concept of low or high values for

S, the values for this parameter were chosen to reflect different levels of stringency for the properties that

an unambiguous subarrangement must satisfy to be considered scrambled. The “low” value was chosen as

S = {ordered}, the “mid” value as S = {ordered, consecutive}, and the “high” value as S = {ordered,

consecutive, complete}. Since “ordered” was a member in all three choices for S, an additional run with

S = {consecutive, complete} was conducted. High sequence similarity for aligned precursor and product

segments is desirable for DNA rearrangements in ciliates. Consequently, the percent identity threshold for

preliminary match annotation ppre was additionally tested for two stricter values than chosen as the “high”

value. The exact parameter values used are listed in Appendix A.

A variety of descriptive statistics was obtained from the annotations to evaluate the effect of the individual

parameter variations. For all test runs the execution time of the program and the number of arrangements was

obtained. The test runs for parameters `pre, bpre, ppre, cmin, t, d, badd, padd, r, r′, `gap, and `ptr are considered

relevant to the arrangement annotation step implementing the algorithm described in Section 3.2.3. For

these tests, two subsets A30 and A90 of the set of arrangements were extracted. A30 and A90 consist of those

arrangements where the product sequence without gaps takes up 30% and 90%, respectively, of the total

product sequence (only the product region between telomeric ends, if any, is considered). The alignments

between precursor and product sequences that have arrangements in A30 and A90 were counted. From

these, the number of alignments which satisfy the three thresholds `pre, bpre and ppre, and the number of

alignments which satisfy the two thresholds badd and padd were extracted. Next, the numbers of preliminary

and additional matches were counted. Additionally, the number of matches derived from two or more merged

alignments was counted. Finally, the numbers of gaps, pointers, and fragments was obtained. To describe

the effect the parameters S, s, u, and q have on the outcome, the sets of arrangements Aq, and A90 with

respective coverages at least q, and 90%, were computed. Next, the numbers of arrangements which had

more unambiguous subarrangements than u was obtained. The remaining counts were restricted to the sets

A∗q and A∗90 of arrangements with coverage at least q and 90%, which did not have more than u unambiguous

subarrangements. From the arrangements in A∗q and A∗90, the numbers of repeating, s-overlapping, as well
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as both repeating and s-overlapping arrangements were counted. Additionally the numbers of weakly and

strongly scrambled arrangements were obtained.

The results of the test runs are stored in Tables A.2 through A.6 in Appendix A. Some observations

made from the tables are discussed for the remainder of this section. In Tables A.2, A.3, and A.4, it can be

observed that the test runs of `pre resulted in a significant change in the total number of arrangements (22.5

to 35.3% decrease compared to center run), but had little impact on the sizes of A30 and A90 (0.1 to 1.2%

decrease compared to center run). This suggests that the majority of arrangements in A30 and A90 achieved

their high coverages through long alignments, and that many of the shorter alignments align sequence pairs

that otherwise do not have alignments. For all other statistics, the test runs of parameter `pre deviated only

moderately (0.4 to 6.5%) from the center run.

Running SDRAP with bpre at its low value resulted in an extreme increase of the total number of

arrangements (>1800% more than center), but only a small increase in the sizes of A30 and A90 (< 1.4%

increase compared to center). At its low value, a considerable decrease of the total number of arrangements

was observed (57.0% less than center). Despite this large impact on the total number of arrangements, the

sizes of A30 and A90 deviated only moderately (3.4 to 9.7%) from the center run. This suggests that a the

majority of high coverage arrangements is captured by the “mid” value for bpre. The remaining statistics were

impacted by bpre only moderately when at its “low” value (0.2 to 4.2% deviation from center). The “high”

value for this parameter resulted in significant reductions of the counts of preliminary matches, merged

matches and pointers (9.6 to 23.2% decrease compared to center), indicating an overall significant loss of

information. Note that the “high” value for bpre is 100 which requires a length of at least 52 base pairs

(using default megablast scoring parameters), so that setting bpre to 100 led to the exclusion of previously

discovered shorter MDSs [16].

The parameter ppre had a high impact on all statistics (>14% deviation from center for A30, or A90

column in “high”, or “low” test run). A higher value for this parameter generally decreased the counts,

except the numbers of additional matches and merged matches in members of A30. These counts are larger

than the center value for ppre at its “high” value and the additional run with the parameter set to 95%, but

are much lower (>75% less than center) when ppre = 99%. Thus, enforcement of high sequence similarity

using high values for ppre must be approached with care.

The parameter cmin had a moderate impact on the numbers of additional and merged matches in both A30

and A90, as well as on the number of fragments in A30 (0.7 to 3.1% deviation from center) its impact on all

other statistics was insignificant (<1% deviation from center). The test runs of t and d deviated moderately

from the center run in the numbers of preliminary, additional and merged matches (>1% deviation for A30, or

A90 when at “low” or “high” value) with d having more significant impact on the numbers of merged matches
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(8.8 to 13.3% deviation from center). This suggests that many merged alignments only have a small overlap

at the ends of their precursor or product intervals. The two parameters also notably affected the numbers

of fragments (up to 14.0% deviation from center). Parameters specific to the additional match annotation

step (badd, padd, and r) had a significant impact (>10.6% deviation from center at “low” or “high” value)

on the numbers of additional matches, merged matches and fragments. As intended, badd and padd also had

a significant impact (14.3 to 25.6% deviation from center at “high” value) on the numbers of alignments

that satisfy the two thresholds. These three parameters had no significant effect on any other statistic (<1%

deviation from center). The parameters r′, `gap and `ptr had no significant impact (<1% deviation from

center) in all statistics except for the numbers of fragments, gaps and pointers, respectively.

From Tables A.5, and A.6, it can be observed that s had no significant impact on the number of ar-

rangements which had more than u unambiguous subarrangements (<1% deviation from center). On the

other hand, the numbers of s-overlapping arrangements, and consequently the numbers of arrangements that

are both repeating and s-overlapping were affected by s considerably (48.6 to 85.5% increase compared to

center when at its “low” value and 12.1 to 15.4% decrease when at its “high” value). The strong increase in

s-overlapping arrangements when s is at its “low” value indicates frequent short overlaps of length at most

5 (“mid” value for s). The test runs of S had no impact on any of the statistics except for the numbers

of weakly and strongly S-scrambled arrangements in A∗q and A∗90. When “complete” was added to S (the

“high” run for S), the number of strongly S-scrambled alignments increased considerably (29.6 to 30.3%

increase compared to center). Less significant deviations from the center run (6.3 to 9.9%) where observed

for the number of weakly S-scrambled arrangements and the “low” value test run of S. Removing the prop-

erty “ordered” from the set S led to a drastic decrease in the number of weakly and strongly S-scrambled

arrangements (58.6 to 66.1% fewer than center). Arrangements can only have incomplete or non-consecutive

unambiguous subarrangements when they have repeats, or are s-overlapping. Less than 20% of the arrange-

ments in A∗q and A∗90 are repeating or s-overlapping (in center run). Thus, a much lower number of scrambled

arrangements when S does not include the property “ordered” is not surprising. Setting the parameter u

to its “high” value caused a reduction of the sizes of Aq \A∗q and A90 \A∗90 by 29.8 and 31.8%, respectively,

compared to the center run. With the increase in arrangements in A∗q and A∗90, the number of repeating

and s-overlapping arrangements increased by 27.6 to 29.6% compared to center. Interestingly, the numbers

of arrangements in A∗q and A∗90 which are both repeating and s-overlapping increased by 93.4 and 97.6%,

respectively, suggesting that many arrangements with more than 4 (“mid value for u) unambiguous sub-

arrangements are among these. The “high” value for u also significantly increased the numbers of weakly

scrambled arrangements (∼11% increase compared to center). The numbers of strongly scrambled arrange-

ments, on the other hand, increased only moderately (4.3 to 4.5% compared to center). Setting u to its

69



“low” value had the opposite effect but similar in magnitude. As expected, the parameter q had no effect on

A∗90, but had a high impact on A∗q (>17% deviation from center in all counts). This is not surprising since

the size of Aq varies between 76569 and 124066 across the test runs of q.

3.2.6 Comparison of Annotations

To demonstrate how the software SDRAP measures up against previous annotation procedures [12, 16], the

program was run two more times. Both of the additional tests used the micronuclear genome published

in [16] and the macronuclear genome published in [42]. Except for ppre, padd, `ptr, q, and u, all parameters

were kept at the “mid” values discussed in Section 3.2.5 and listed in Table A.1 in Appendix A. To enforce

high sequence similarity appropriate for the close relationship between two genomes of the same organism,

ppre and padd were set to 99% and 95%, for one of the tests and to 95% and 90%, respectively, for the other.

Since pointers as short as two base pairs were observed in O. trifallax, `ptr = 2 for both tests. In [12, 16],

arrangements with coverage of the product sequence less than 30% were excluded from their observations, so

that q = 30 was used in the SDRAP test runs. To maximize the number of unambiguous subarrangements

explored, the parameter u was set to 10 for all test runs.

Table 3.1: Set of parameter values used for additional test runs of the software SDRAP. For the parameters
`pre, bpre, cmin, t, d, badd, r, r

′, `gap and s, the “mid” values listed in Table A.1 in Appendix A are used. The
two parameter value sets differ only in the percent identity thresholds for alignments considered in the
preliminary and additional match annotation steps.

Parameter strict lenient

ppre 99.0 95.0
padd 95.0 90.0
`ptr 2 2
u 10 10
q 30.0 30.0

Tables A.7 and A.8 organize various statistics obtained from the SDRAP test runs and corresponding

results presented in [16] and [12], respectively. Due to the different approaches taken in the extraction

of rearrangement maps from sequence data, the statistics listed for [16] and [12] are not always perfect

equivalents of the counterparts listed for SDRAP. The attempt was made to choose values as close as

possible in meaning to the compared results. In some cases, more than one statistic that may be relevant for

the comparison is listed. When an alignment considered during the additional match annotation algorithm

intersects more than one preliminary match sufficiently, it may be annotated multiple times as additional

match, each time inheriting the index of the intersecting preliminary match. To ensure the bias in the

number of matches introduced by these double counted alignments is taken into consideration, the number
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of times alignments are annotated in excess of the first time (i.e. an alignment annotated n times as an

additional match, is counted n− 1 times here), is listed in the tables.

The results in [16] are restricted to arrangements and matches of 1- or 2-telomeric product sequences in

arrangements with product sequence coverage of at least 90%. Thus, all statistics from SDRAP in Table A.7

are taken only from this restricted set of arrangements and matches. In addition, repeats were filtered in [16],

and no concept analogous to “preliminary” and “additional” matches exists. For that reason, several statistics

are listed twice, once obtained solely from preliminary matches and once from all matches together. It can be

observed that even with the more lenient of the two choices of percent identity thresholds, SDRAP appears

to find much fewer matches than [16] (over 15% less matches). However, [16] used ungapped alignments from

BLAST whereas SDRAP sometimes merges alignments to form matches. Counting the number alignments

that constitute the matches returned by SDRAP, there are only 7.3% less compared to the number of MDSs

reported in [16] SDRAP obtains a much higher number of arrangements with a single preliminary match.

In the more lenient test run, over 45% of these preliminary matches consist of merged matches. Hence,

some of the discrepancy between the numbers of single alignment product sequences can be attributed to the

fragmentation of alignments in [16] due to the use of ungapped alignments. Smaller numbers of matches per

product sequence kb were obtained from SDRAP (both for weakly scrambled and strongly non-scrambled

arrangements). The fragmentation due to the use of ungapped alignments in [16] may be a contributing

factor to this difference. Similarly, the median length of matches in both weakly scrambled and strongly

nonscrambled arrangements is longer than in [16] It should be emphasized that these test runs used bpre and

badd values of 49, which effectively led to the disregard of all alignments of length less than 25. In [16], the

word size parameter for BLAST was set to 20, indicating that the minimum alignment length in their data

is 20. No other threshold imposed on the alignment lengths is documented in [16].

Table A.8 compares the annotation of SDRAP with the results in [12]. As observed in Section 3.2.5, the

results of SDRAP vary greatly with the choice of ppre and padd. SDRAP obtains more preliminary matches

but only the lenient percent identity thresholds resulted in more matches overall (preliminary and additional).

The number of arrangements with coverage at least 30% was significantly lower for the two SDRAP test runs

(47 and 30% less than [12]) Additionally, SDRAP provides notably lower values in almost all other counts,

except for the numbers of strongly complete arrangements with coverage at least 90%. In fact, SDRAP

detects 36% more scrambled arrangements among strongly complete high coverage arrangements than [12].

However, this comparison must be viewed with caution. A different mac genome was used in [12] and the

statistics listed for the SDRAP test runs are not necessarily equivalent to their counterparts in [12]. Note

that the number of times additional matches were double counted is relatively large (contributing between

8.5 and 14.9% of the matches). These double counted matches are investigated in Section 3.2.7.
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3.2.7 Classification of Extended Data

The models introduced in Chapter 2 are applied to four annotations produced by SDRAP. These annotations

were generated by applying each of the two parameter value sets described in Table 3.1 to the micronuclear

genome from [16] and the macronuclear genome from [42] and from [28].

For each arrangement, a pairing and its labelling was derived from the data. Three subsets of the arrange-

ments in each annotation were chosen representative sets. The set A is simply the set of all arrangements.

The set A30 is the set of all arrangements where the complement of the gaps in the product sequence (be-

tween telomeres, if any) takes up at least 30%. Similarly, the set A2T
90 contains all arrangements where the

product sequence is covered at least 90%, but further restricts itself to arrangements of 2-telomeric prod-

uct sequences. The proportions of unidirectional, crossing and flat pairings, and consistent and coherent

labellings derived from arrangements from the three different sets is listed in Table A.9. As expected, the

vast majority of pairings (> 99% in most cases) are unidirectional. Only in the lenient test with the genome

from [42] does the proportion of unidirectional pairings derived from arrangements in A and A30 drop below

99% to 98.7 and 97.3%, respectively. The proportion of coherent and consistent labellings unexpectedly

drop as low as 92.4%. This is unexpected since the properties of coherence and consistency were expected

to apply to all labellings obtained from arrangements in real-world data. This unexpectedly low proportion

of coherent and consistent labellings is potentially a result of the additional match annotation algorithm In

this algorithm, an alignment is annotated as a match for each preliminary match whose precursor interval it

intersects sufficiently. When the alignment contains the precursor interval of multiple preliminary matches,

it is annotated as additional match multiple times with different indices. In the derived pairing and labelling,

such a match would translate into a pair x with a label containing all the indices of the intersected prelimi-

nary matches. Furthermore, the preliminary matches whose precursor intervals it intersected translate into

pairs x′ 6= x where x w x′ and λ(x′) ⊂ λ(x). Such a setup violates the property of consistence. The issue of

double counted additional matches is investigated further below. The proportions of flat and non-crossing

pairings are relatively high indicating that the majority of arrangements do not have overlapping precursor

intervals. The absolute numbers of arrangements and product sequences in A2T
90 as well as the subsets of

non-flat arrangements, and repeating arrangements, and product sequences which can only be found in non-

flat arrangements and product sequences which can only be found in repeating arrangements are displayed

in Table 3.2. The table suggests that SDRAP is capable of providing a meaningful annotation of up to 7.2%

more mac chromosomes and 7.4% more arrangements than previous annotation procedures.

The high density and height values observed in pairings derived from the annotations produced by SDRAP

deserve further attention. Based on previous experiences with the data, densities as high as reported in
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Table 3.2: Total numbers of arrangements and product sequences, as well as non-flat arrangements and
product sequences found only in non-flat arrangements and repeating arrangements and product sequences
found only in repeating arrangements in the SDRAP test runs applying parameter values listed in Table 3.1
to the micronuclear genome from [16] and the macronuclear genomes from from [42] and [28].

mac genome from [42] mac genome from [28]

(99.0, 95.0) (95.0, 90.0) (99.0, 95.0) (95.0, 90.0)

# arrangements∗ 10071 15683 23718 33705
# non-flat arrangements∗ 110 512 842 1552
# arrangements with repeats∗ 181 628 409 1062

# product sequences∗ 9166 12701 21580 27204
# product sequences only in non-flat arrangements∗ 94 313 776 1182
# product sequences only in arrangements with
repeats∗

150 488 343 850

∗ Only arrangements and product sequences from arrangements in A2T
90 are considered.

Table A.9 come as a surprise. To further investigate, the frequencies of nontrivial height (> 0) and density

(> 1) were plotted in Figures A.1, A.3, A.2, and A.4 in Appendix A for pairings derived from the arrangement

sets of interest in the four test runs. It is evident from the figures that only a small fraction of arrangements

produces high density, or height values. Furthermore, the maximum observed heights and densities drop

severly when restricting attention to A2T
90 , which can also be observed in Table A.9. To show that such high

values in height and density are due to double counting of additional matches, the annotations were filtered

according to a set of thresholds T = {0, 5, 25, 50, 75, 95, 100}. For each threshold T ∈ T , a filtered set AT

was obtained by excluding all additional matches which intersect the preliminary match of the same index

by less than T% of the size of the precursor interval of the additional match (i.e. an additional match Madd

which has the same index as preliminary match Mpre is filtered out if 100 · |Prec(Madd)∩Prec(Mpre)|
|Prec(Madd)| < T ).

The various maximum densities and heights that can be observed in the filtered data sets are plotted in

Figure 3.5. The maximum densities and heights drop significantly as the intersection threshold increases and

no change is observed between the data sets filtered by thresholds T = 75, 95, and 100. Thus, combining this

observation with the low observed frequencies of high density and height values, it can be concluded that

the surprisingly high values in density and height are caused by a double counting of additional matches in

a few isolated arrangements.

To further investigate how big the impact of the double counting of matches is on the quality of the an-

notation, the numbers of arrangements in A,A30, and A2T
90 where alignments were annotated more than once

during the additional arrangement annotation step were obtained and are listed in Table A.10. Additionally,

the table lists the average number of times per arrangement in A30 and A2T
90 that an alignment was double

counted. Furthermore, these counts were duplicated for arrangements with high density and high height,
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where high density and height are defined by the max height and density values that remained stable for high

thresholds in Figure 3.5. The numbers of 1- and/or 2-telomeric sequences in arrangements where additional

matches are double counted are presented in Table A.11. These numbers were also duplicated for high density

and high height arrangements. From Table A.10 it can be observed that the majority of arrangements which

contain alignments that were double counted has low coverage, or lacks telomeres. Furthermore, the average

number of double counted matches in high density and high height arrangements are up to two times higher

for the macronuclear genome from [42] and over sixty times higher for the macronuclear genome from [28],

than the overall average number of double countings in arrangements in A30. From Table A.11 it can be

observed that the number of product sequences which appear in high density and height arrangements is

negligible.
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Figure 3.5: The maximum density values (top) and maximum height values (bottom) for SDRAP test runs
with (ppre, padd) = (99.0, 95.0) in blue and (ppre, padd) = (99.0, 95.0) in yellow, applied to the macronuclear
genomes from [42] (left) and [28] (right). The x-axes indicate thresholds used to filter out additional matches
that are counted more than once. For each threshold T , any additional match Madd which is annotated as a

repeat of a preliminary match Mpre is filtered out if 100 · |Prec(Madd)∩Prec(Mpre)|
|Prec(Madd)| < T , i.e. if the intersection of

the precursor intervals covers the interval of Madd by less than T%. When T = 0, then no match is filtered
out.
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3.3 Alignment pasting

A frequent computational task in the field of Bioinformatics is the search for regions of high similarity between

two sequences. It typically requires the arrangement of the two sequences alongside each other in a way that

maximizes the similarity between two regions within the sequences. If the aligned regions must include

both sequences end-to-end, the task is referred to as global sequence alignment. When alignments of possibly

proper sub-regions of the sequences are sought, the task is referred to as local sequence alignment. The aligned

regions are only interesting if they strongly resemble each other by some chosen similarity assessment, which

typically takes into consideration each aligned pair of characters in two sequences of equal length. Usually,

not all characters of the two regions have to match. In the context of gapped sequence alignments, characters

may, in fact, be added to either sequence to improve similarity and/or obtain sequences of equal length. Of

course, such insertions need to be taken into account by the similarity assessment of the alignment. The

space of possible alignments between two sequences is drastically inflated by allowing insertions. Ungapped

alignments only involve two regions of equal length. Once a pair of regions is chosen, there is only one way

the two regions can be aligned. Gapped alignments, on the other hand, do not limit themselves to pairs of

regions of equal length since insertion of characters allows for modifying the lengths. Furthermore, given a

pair of regions, there is no one unique way of inserting characters in those regions to obtain equal length

sequences.

An algorithm solving this problem was introduced by Smith and Waterman in [41], which is based on a

dynamic programming algorithm for global sequence alignment by Needleman and Wunsch in [34]. Similarity

of alignments in this algorithm is evaluated by assigning a score to alignments in which identical matches

contribute positively and mismatches as well as insertions contribute negatively. Informally, this algorithm

explores a subset of the possible local alignments between two sequences and returns a set of alignments which

optimize the assigned alignment scores. The Smith-Waterman algorithm has time and space complexity

proportional to the product of the lengths of the two sequences, which is better than brute force, but

may be considered insufficient for large data sets. In order to achieve lower complexity, many algorithms

decreasing the size of the space of alignments explored. Two popular softwares - BLAST [1, 2, 14, 33, 45] and

LFASTA [29, 35] - implement variations of the Smith-Waterman algorithm which apply various heuristics to

reduce the space of possible alignments searched at the cost of the small possibility of producing a suboptimal

result. These softwares begin by obtaining a set of ungapped alignments. Next, heuristic variations of the

Smith-Waterman algorithm are applied to extend ungapped alignments to larger gapped alignments. Despite

the heuristic nature of their variations of the Smith-Waterman algorithm, these softwares still explore a large

space of possible alignments which are not included in the output.
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A fast method for combining ungapped alignments to obtain larger high-scoring gapped alignments

inspired by the technique for merging alignments described in Section 3.2.2 is discussed in this section. The

potential of this method in the more general context of gapped sequence alignment algorithms is explored.

An algorithm which applies this method to a set of alignments and its implementation are presented. A

command-line tool implementing the algorithm is introduced and the software is rigorously tested and

compared to the gapped alignment step executed by BLAST.

3.3.1 Formal Definitions of Sequence Alignments and Alignment Scores

For a word u = a1 · · · an over any alphabet and positive integers i < j ≤ n, denote with u[i,j] the factor

ai · · · aj of u. Denote with ΣDNA the alphabet {A, C, G, T}. Call the symbol - the gap character and let

L−DNA = Σ∗DNA � {-} be the set of shuffles of words over ΣDNA with the gap character. All definitions in

this section are illustrated by Figure 3.6.

Definition 3.3.1. Let u, v be two words over the alphabet ΣDNA. An alignment of (u, v) is a pair (û, v̂)

of shuffles û = â1 · · · âk ∈ u� {-} ⊆ L−DNA and v̂ = b̂1 · · · b̂k ∈ v � {-} ⊆ L−DNA of u and v, respectively, of

equal length, where for all i = 1, ..., k, (âi, b̂i) 6= (-, -). Each maximal factor in û or v̂ of the form (-)m is

called a gap-opening. An ungapped alignment is an alignment without gap-openings. A local alignment

between two words u, v ∈ Σ∗DNA is an alignment between a pair of factors of u and v.

Figure 3.6 shows a local alignment between two words u and v. The two words u and v as well as the

aligned factors u[i,j] and v[k,l] are located at the top and bottom, respectively. The shuffles û and v̂ of u[i,j]

and v[k,l] with -shown stacked on top of each other in-between u and v constitute the local alignment (û, v̂).

The gap-openings in the alignments are the factors -- and ---- of û and v̂, respectively.

In the context of DNA sequence alignments, we treat opposite strands of the same DNA molecule as

two distinct words over the alphabet Σ∗DNA and assume that all alignments referred to in this discussion are

alignments of strands from distinct molecules.

Definition 3.3.2. For an alignment A = (û, v̂) ∈ L−DNA × L
−
DNA of a pair of words (u, v) ∈ Σ∗DNA × Σ∗DNA,

define the matches φ(A) of A to be the multiset {(âi, b̂i) : i = 1, . . . , |û|}. A match (a, b) ∈ φ(A) is called

an identity if a = b, a gap-extension if one of a or b is the gap character and a mismatch if a 6= b and

neither a nor b are the gap character.

Denote with id(A),m(A), and g(A) the numbers of identities, mismatches and gap-extensions, respec-

tively, in φ(A) and denote with ∆(A) the number of gap-openings in A.
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Definition 3.3.3. Given positive integers id0,m0, g0,∆0, the alignment score of an alignment A is defined

as:

s(A) = id0 · id(A)−m0 ·m(A)− g0 · g(A)−∆0 ·∆(A).

For the remainder of the chapter we keep id0,m0, g0, and ∆0 fixed and call these constants the match

reward, mismatch penalty, gap-extension cost, and gap-opening cost, respectively.

Definition 3.3.4. The percent identity pid(A) of A is defined as 100 · id(A)
|φ(A)| .

In Figure 3.6, the matches of A are the pairs of symbols of û and v̂ stacked above each other. Vertical

lines between the two symbols of a match indicate identities. In this alignment, id(A) = 9, m(A) = 2,

g(A) = 6, and ∆(A) = 2. Thus, s(A) = id0 · 9−m0 · 2− g0 · 6−∆0 · 2, and pid(A) = 100 · 9
17 ≈ 52.9.

u: . . . TGCAGTGCTGATAGTGCCTAATCAA . . .

u[i,j]

i j

û: TGCT--GATAGTGCCTA

v̂: TACTCCGATTG----TA

v: . . . AAGCTATACTCCGATTGTACCTTGGGCT . . .
k l

v[k,l]

Figure 3.6: A gapped local alignment A = (û, v̂) between two sequences u and v. Coordinates i, j and k, l
indicate beginning and end of the two aligned factors u[i,j], and v[k,l], respectively. The two gap-openings
in this alignment are the two factors -2 of û and -4 of v̂, (so that ∆(A) = 2). The matches of A consist
of the pairs of symbols of û and v̂ stacked on top of each other (φ(A) = {(T, T), (G, A), (A, C), (T, T), (-, C),
(-, C), (G, G), (A, A), (T, T), (A, T), (G, G), (T, -), (G, -) (A, -), (A, -), (T, T), (A, A)}). Identities are indicated via
vertical connecting lines between symbols. φ(A) contains 9 identities (id(A) = 9). The 2 mismatches are the
matches (G, A) and (A, T). The 6 gap-extensions (g(A) = 6) are those matches which contain -. Thus, the
alignment score of A is s(A) = id0 · 9−m0 · 2− g0 · 6−∆0 · 2, and its percent identity is pid(A) = 100 · 9

17 .

3.3.2 Pasting a Pair of Ungapped Alignments

High-scoring sequence alignments generally consist of sections of relatively high-scoring ungapped alignments

interrupted by comparatively short gaps and regions of low similarity. The higher the score of an alignment,

the fewer and shorter are the gapped regions and regions of low similarty and the longer and higher scoring

are the ungapped regions. Ungapped local sequence alignment search algorithms can find the ungapped

subregions of high-scoring gapped alignments. With large portions of the gapped alignments already deter-

mined, the method described here can be used to quickly connect the ungapped alignments and form larger

high-scoring gapped alignments. While this method may not produce optimal alignments, the results may

still indicate a high level of similarity between the aligned regions, especially when the original ungapped
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alignments are already highly similar and they are favorably positioned. When determining how to connect

two alignments, only one possible ungapped alignment enveloping the two is considered, so that the space

of explored gapped sequence alignments is minimized drastically. In fact, the estimates of the numbers of

identities, mismatches, gap-openings and gap-extensions for the resulting gapped alignment is derived solely

from the relative positions and the underlying sequences can be ignored entirely. Thus, if only the locations,

scores and percent identities of the gapped alignments are of interest, alignments can be represented compu-

tationally as a combination of coordinates of the aligned factors and counts of the different types of matches.

As opposed to having to store and examine arbitrarily long sequences, such a fixed size memory footprint

further decreases computational time and space complexity.

Two local alignments may not always be positioned favorably for being combined to a larger alignment.

Definition 3.3.5. Two pairs of factors (u1 = u[i1,j1], v1 = v[k1,l1]) and (u2 = u[i2,j2], v2 = v[k2,l2]) of a pair

of words (u, v) ∈ Σ∗DNA × Σ∗DNA are said to be in legal configuration if:

(i) i1 < i2 and j1 < j2.

(ii) k1 < k2 and l1 < l2.

Two local alignments between u and v are said to be in legal configuration if the pairs of factors of u and

v they align are in legal configuration.

Three examples of pairs of legally configured pairs of factors (u1, v1) and (u2, v2) of two sequences u, v ∈

Σ∗DNA are shown in Figure 3.7. Non-examples would involve containment of one of the aligned factors in

another (i.e. u1 ⊆ u2, or v1 ⊆ v2, or vice versa), or reversed order of appearance of the aligned factors in u,

or v (i.e. u1 appearing before u2 in u, but v2 appearing before v1 in v, or vice versa).

The method for combining ungapped local alignments to larger gapped local alignments discussed here

only applies to pairs of alignments in legal configuration. For the remainder of this section, let A1 = (û1, v̂1)

and A2 = (û2, v̂2) be two legally configured ungapped local alignments, of two pairs of factors (u1, v1) =

(u[i1,j1], v[k1,l1]) and (u2, v2) = (u[i2,j2], v[k2,l2]) of a pair of words (u, v) ∈ Σ∗DNA × Σ∗DNA. We wish to define

a pasted alignment A1 ◦ A2 = (û′, v̂′), as an alignment of the pair of factors (u′ = u[i1,j2], v
′ = v[k1,l2])

enveloping the original factors. The method by which û′ and v̂′ are determined is easily understood when

split into three cases which are illustrated by Figure 3.7.

Case 1: j1 < i2 and l1 < k2. Let Du = i2−j1−1 be the distance between u1 and u2 and let Dv = k2−l1−1

be the distance between v1 and v2. Denote with u0 the factor of u between u1 and u2 and denote with v0
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the factor of v between v1 and v2:

u0 = u[j1+1,i2−1] v0 = v[l1+1,k2−1].

Let G = | Du−Dv |. When Du = |u0| ≤ |v0| = Dv, define û′, v̂′ as the concatenations:

û′ = û1u0(-)G û2 v̂′ = v̂1v0v̂2.

When Dv ≤ Du, then the roles are simply reversed by placing the gap (-)G in v̂′ between v0 and v̂2, instead.

In the worst case, G > 0 and the characters of the shorter of u0 and v0 aligned with the prefix of the longer

are all mismatches, so that:

s(A1 ◦A2) ≥ s(A1) + s(A2)−m0 ·min{Du,Dv} − g0 · G −∆0. (3.1)

Case 2: j1 ≥ i2 and l1 < k2. The case where j1 < i2 and l1 ≥ k2 works analogously. Let O = j1 − i2 + 1

be the length of the overlap between u1 and u2 and let D = k2 − l1 − 1 be the the distance between v1 and

v2. Recall that A1 and A2 are assumed to be ungapped, so that ûz = uz and v̂z = vz for z = 1, 2. Denote

with suff(û2) the suffix of û2 obtained by omitting the first O symbols and denote with v0 the factor of v

between v1 and v2:

suff(û2) = u[j1+1,j2] v0 = v[l1+1,k2−1].

Let G = D+O. Define û′, v̂′ as the concatenations:

û′ = û1(-)G suff(û2) v̂′ = v̂1v0v̂2.

In the worst case, the aligned characters between the prefices of û2 and v̂2 of length O cut out of the

alignment are all identities, so that:

s(A1 ◦A2) ≥ s(A1) + s(A2)− id0 · O−g0 · G −∆0. (3.2)

Case 3: j1 ≥ i2 and l1 ≥ k2. Let Ou = j1− i2 + 1 be the length of the overlap between u1 and u2 and let

Ov = l1 − k2 + 1 be the length of the overlap between v1 and v2. Recall again that A1 and A2 are assumed

to be ungapped, so that ûz = uz and v̂z = vz for z = 1, 2. Denote with suff(û2) the suffix of û2 obtained

by omitting the first Ou symbols and denote with suff(v̂2) the suffix of v̂2 obtained by omitting the first Ov
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Case 1

u
u1 u0 u2

Du

û1 = u1 u0 (-)G û2 = u2

v̂1 = v1 v0 v̂2 = v2

v1 v0 v2

Dv

v

(a)

Case 2

u
u1

u2

O

û1 = u1 (-)G suff(û2)

v̂1 = v1 v0 v̂2 = v2

v1 v0 v2

D

v

(b)

Case 3

u
u1

u2

Ou

û1 = u1 (-)G suff(û2)

v̂1 = v1 suff(v̂2)

v1
v2

Ov
v

(c)

Figure 3.7: Three cases of legally configured local alignments A1 = (û1, v̂1), A2 = (û2, v̂2) between words
u, v ∈ Σ∗DNA. The thick black lines at the top and bottom represent u and v, respectively. The pairs of factors
(u1, v1) and (u2, v2) of u and v aligned by A1 and A2 are depicted in light blue and dark blue, respectively,
along u and v. The actual sequence alignments (û1, v̂1), and (û2, v̂2) are stacked on top of each other in the
middle and color coded the same way. In (a), the length of the gap introduced by combining the alignments
is G = | Du−Dv |, in (b), G = | D+O |, and in (c), G = | Ou−Ov |.

symbols:

suff(û2) = u[j1+1,j2] suff(v̂2) = v[k1+1,k2].

Let G = | Ou−Ov |. When Ou ≥ Ov, define û′, v̂′ as the concatenations:

û′ = û1(-)G suff(û2) v̂′ = v̂1 suff(v̂2).

When Ov ≤ Ou, then the roles are simply reversed by placing the gap (-)G in v̂′ between v0 and suff(v̂2),

instead. In the worst case, G > 0 and the aligned characters between the prefixes of û2 and v̂2 cut out of the

alignment, are all identities, so that:

s(A1 ◦A2) ≥ s(A1) + s(A2)− id0 ·max{Ou,Ov} − g0 · G −∆0. (3.3)

The precision of the bounds in all three cases depends on the quality of the alignments A1 and A2 and

their relative positions. Unless, u1 and u2 as well as v1 and v2 are immediately adjacent, these bounds are

all equalities if pid(A1) = pid(A2) = 1. When G = 0 in cases 1 and 3, then no gap is introduced and ∆0 does

not need to be subtracted on the right-hand-side of the bounds in 3.1 and 3.3. When u1 and u2 as well as

v1 and v2 are immediately adjacent (i.e. j1 + 1 = i2 and l1 + 1 = k2), then the score of the pasted alignment

A0 is precisely the sum of the scores of A1 and A2 (assuming neither alignment ends in a gap).

Note that only the overlapping portions of u1, u2 or v1, v2 needed to be aligned without gaps in the

original two alignments for the bounds on the pasted alignment scores to be valid. Thus, pairs of gapped
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alignments may be pasted using the same method as long as the overlapping prefices/suffices do not contain

gaps. In all three cases, the alignment of A1 was incorporated into A1 ◦ A2 without modifications, whereas

in cases 2 and 3, only portions of A2 made it into A1 ◦A2. This could have been done the other way around,

leaving A2 intact and modifying A1 as needed, but would not have impacted the lower bounds on the scores.

Additionally, in case 1, the gap could have been placed before u0 in the alignment without affecting the

upper bound on the score. Deciding where to place the gap in case 1, and whether to keep A1, or A2 intact

in cases 2 and 3 can affect the length of the longes ungapped suffix, or prefix of the pasted alignment.

The three Inequalities 3.1, 3.2, and 3.3 can be expressed as a single lower bound for s(A1)A2. All three

bounds consist of the sum of the scores of A1 and A2 minus some penalty for introducing a gap, a penalty

for adding possible mismatches (case 1) and a penalty for removing possible identities (cases 2 and 3). The

penalties depend on the size of the introduced gap as well as the numbers of potential mismatches added, or

identities removed. These numbers can all be immediately obtained from the end coordinates j1, l1 of u1, v1

and the start coordinates i2, k2 of u2, v2, respectively.

Definition 3.3.6. The offset of (A1, A2) in u is defined by:

ou(A1, A2) = i2 − j1 − 1,

and similarly, the offset of (A1, A2) in v is defined by:

ov(A1, A2) = k2 − l1 − 1.

In case 1, ou(A1, A2) = Du and ov(A1, A2) = Dv, which are the lengths of u0 and v0, respectively,

in Figure 3.7(a). In case 2, ou(A1, A2) = −O and ov(A1, A2) = D. Here, ou(A1, A2) is the negation

of the length of the overlap between u1 and u2 and ov(A1, A2) is the length of v0 in Figure 3.7(b). In

case 3, ou(A1, A2) = −Ou and ov(A1, A2) = −Ov. The offsets ou(A1, A2) and ov(A1, A2) are depicted in

Figure 3.7(c) as the negations of the overlap lengths between u1, u2 in u and v1, v2 in v, respectively. In

general, if the offset of (A1, A2) in w ∈ {u, v} is positive, the two aligned factors in w are a distance of

ow(A1, A2) apart, and when it is negative, the two factors have an overlap of length |ow(A1, A2)|. The exact

relationship between the offsets of (A1, A2) in u and v and the values Du,Dv,D,O,Ou,Ov, and G described

in the three cases is established in Definition 3.3.7.
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Definition 3.3.7. Let w ∈ {u, v}. Define the distance Dw(A1, A2) of (A1, A2) in w and simply the

distance D(A1, A2) of (A1, A2) by:

Dw(A1, A2) = max{0, ow(A1, A2)} D(A1, A2) = min{Du(A1, A2),Dv(A1, A2)}.

Define the overlap Ow(A1, A2) of (A1, A2) in w and simply the overlap O(A1, A2) of (A1, A2) by:

Ow(A1, A2) = |min{0, ow(A1, A2)}| O(A1, A2) = max{Ou(A1, A2),Ov(A1, A2)}.

Define the shift of (A1, A2) as the distance between the offsets:

G(A1, A2) = |ou(A1, A2)− ov(A1, A2)|.

In all three cases, G(A1, A2) = G. In case 1, Du(A1, A2) = Du, Dv(A1, A2) = Dv, and Ou(A1, A2) =

Ov(A1, A2) = 0. In case 2, Du(A1, A2) = 0, Dv(A1, A2) = D, Ou(A1, A2) = O, and Ov(A1, A2) = 0. In case

3, Du(A1, A2) = Dv(A1, A2) = 0, Ou(A1, A2) = Ou, and Ov(A1, A2) = Ov. By the constructions outlined

in the three cases, we have:

id(A1 ◦A2) ≥ id(A1) + id(A2)−O(A1, A2)

m(A1 ◦A2) ≤ m(A1) +m(A2) +D(A1, A2)

g(A1 ◦A2) ≤ g(A1) + g(A2) + G(A1, A2)

∆(A1 ◦A2) ≤


∆(A1) + ∆(A2), if G(A1, A2) = 0

∆(A1) + ∆(A2) + 1, otherwise.

(3.4)

Thus:

s(A1 ◦A2) ≥ s(A1) + s(A2)−O(A1, A2) · id0−D(A1, A2) ·m0−G(A1, A2) · g0−1Z>0
(G(A1, A2)) ·∆0, (3.5)

where 1Z>0
is the characteristic function of the set of positive integers.

Definition 3.3.8. The right-hand side of Inequality 3.5 is called the pasted alignment score of A1 ◦A2,

denoted s̃(A1 ◦A2).
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A lower bound on the percent identity of A1 ◦ A2 can be obtained using the bounds in 3.4. Recall

that the percent identity of an alignment is the number of percentage of identities in the set of matches

of an alignment. At most O(A1, A2) identities from A1 and A2 are removed when pasting the alignments.

Furthermore, G(A1, A2) many gap-extensions and at most D(A1, A2) many mismatches are added to the

multiset of pairs of A1 ◦A2 in addition to the mismatches and gap-extensions of A1 and A2. Thus:

pid(A1 ◦A2) ≥ id(A1) + id(A2)−O(A1, A2)

|φ(A1)|+ |φ(A2)|+ G(A1, A2) +D(A1, A2)
. (3.6)

Definition 3.3.9. The right-hand side of Inequality 3.6 is called the pasted percent identity of A1 ◦A2,

denoted p̃id(A1 ◦A2).

By pasting alignments, we generally wish to improve the overall alignment quality. With Inequalities 3.5,

and 3.6 testable without much computational effort, imposing thresholds for the score and percent identity

comes naturally. While the score of a pasted alignment may be better than the average of the two original

alignments, the average percent identity of the original alignments always meets or exceeds that of the pasted

alignment. Thus, it may be desirable to enforce improvement of the average alignment score and impose a

fixed threshold on the percent identity that must be satisfied for two alignments to be pasted. Additionally,

in some contexts, such as that of DNA rearrangements in ciliates, it may be desirable to limit the shift

of A1 and A2. In particular, when two successive MDSs in a macronuclear chromosome only have a short

pointer overlap, and appear in the correct order only a small distance apart in the micronucleus, they may be

mistakenly pasted and information can be lost. This situation can be expected to occur with high frequency

in the genome of O. trifallax due to its tendency for short pointers and IESs and mostly unscrambled MDS

arrangements [16]. Additionally, limiting the shift during pasting offers direct control over the maximum

gap lengths introduced through pasting.

Definition 3.3.10. Let s, p, γ be non-negative. A1 and A2 are (s, p, γ)-pastable if the resulting pasted

alignment A1 ◦A2 satisfies:

(I) s̃(A1 ◦A2) ≥ s,

(II) p̃id(A1 ◦A2) ≥ p, and

(III) G(A1, A2) ≤ γ.

A1 ◦A2 is said to improve the average score if s̃(A1 ◦A2) ≥ 1
2 (s(A1) + s(A2)).
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3.3.3 Pasting Multiple Gapped Alignments

Gapped alignments may contain more than two ungapped alignments connected by gaps and regions of low

similarity. Repeated pasting of alignments using the method for pasting two ungapped alignments introduced

in Section 3.3.2 is problematic because gaps may be introduced along the way. Thus, a generalization of the

method from Section 3.3.2 that applies to gapped alignments is desirable. Note that for the construction

outlined in Section 3.3.2 and the associated Inequalities 3.4, 3.5, and 3.6 the only part of A1 and A2 that

needed be ungapped was the prefix of A2 of length O(A1, A2) in cases 2 and 3. This is necessary to ensure

that this prefix of the alignment corresponded to the longer of the potentially overlapping regions between u1

and u2, or v1 and v2. If there were gaps within that prefix, a longer portion of the alignment would need to be

removed to avoid double-counting the scores of symbols within the overlapping region that are aligned twice,

once in A1 and once in A2. Do determine the exact length of the prefix of A2 that would require removal,

closer examination of the shuffles û2 and v̂2 would be necessary. Much of the computational efficiency of

the pasting method presented in Section 3.3.2, however, stems from the ability to avoid examinations of the

actual sequences in the alignment.

A generalized version of the alignment pasting method discussed in Section 3.3.2 might require that

only the prefix of A2 must be ungapped. However, it is possible to achieve the same bounds established in

Section 3.3.2, by keeping A2 intact during pasting and trimming the suffices of length O(A1, A2) off A1. In

that case, the generalized version of alignment pasting might only require that the suffix of A1 be ungapped,

instead. The tradeoff between these two choices is that when trimming the suffix of A1 the resulting pasted

alignment may potentially have a shorter maximal ungapped prefix, and a longer maximal ungapped suffix

than the pasted alignment obtained by trimming the prefix of A2, and vice versa. To distinguish between

these two choices for pasting strategies, two generalized versions of alignment pasting are defined. Denote

with prefk(w) and suffk(w) the prefix and suffix, respectively, of a word w of length k. Here, the same

notation for A1, A2 from Section 3.3.2 is used, except that the alignments now may have gaps.

Definition 3.3.11. A1 and A2 are considered to be in left-legal configuration if they are in legal config-

uration and the prefix of length O(A1, A2) + 1 of A2 does not contain any gap-extensions. Suppose A1 and

A2 are in left-legal configuration. The left-pasted alignment A1 ◦L A2 is the alignment:

(û1u0(-)Gu suffsu(û2), v̂1v0(-)Gv suffsv (v̂2)),

where for w ∈ {u, v}, sw = |ŵ2| − Ow(A1, A2), and w0 is the factor of w of length Dw(A1, A2) starting
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immediately after w1, and where:

(Gu,Gv) =


(G(A1, A2), 0), if ou(A1, A2) ≤ ov(A1, A2)

(0,G(A1, A2)), otherwise

Note that an ungapped prefix of length O(A1, A2) + 1 is required in Definition 3.3.11 instead of a prefix

of length O(A1, A2) to ensure that the gap introduced by pasting, if any, is not adjacent to a gap internal

to A1. With this requirement, the parameter γ in the definition of (s, p, γ)-pastability still represents the

maximum length that could possibly be introduced via pasting.

Definition 3.3.12. A1 and A2 are considered to be in right-legal configuration if they are in legal

configuration and the suffix of length O(A1, A2) + 1 of A1 does not contain any gap-extensions. Suppose A1

and A2 are in right-legal configuration. The right-pasted alignment A1 ◦R A2 is the alignment:

(prefpu(û1)(-)Guu0û2, prefpv (v̂1)(-)Gvv0v̂2),

where for w ∈ {u, v}, pw = |ŵ2| − Ow(A1, A2), and w0 is the factor of w of length Dw(A1, A2) ending

immediately before w2, and where

(Gu,Gv) =


(G(A1, A2), 0), if ou(A1, A2) ≤ ov(A1, A2)

(0,G(A1, A2)), otherwise

The maximal ungapped prefices and suffices of A1 ◦L A2 and A1 ◦R A2 depend on the maximal prefix

and suffix of A1 and A2 and whether G(A1, A2) > 0. When A1 and A2 are ungapped, then left-pasting

introduces the gap, if any, as far as possible toward the end of the alignment, and right-pasting introduces it

as far as possible towards the beginning of the alignments. Thus, the length of the maximal ungapped prefix

of A1 ◦L A2 is maximized, whereas the length of the maximal ungapped suffix of A1 ◦R A2 is maximized.

When A1 and/or A2 are gapped, however, this behavior cannot be guaranteed.

3.3.4 Alignment Pasting Algorithm

The task of the algorithm described in this section is to improve the average score of a set A of ungapped

local alignments between two sequences u and v by pasting pairs of alignments where appropriate without

introducing gaps of length longer than some fixed length γ0, and without dropping below some fixed score sfin,

and percent identity pfin. It should be noted that pasting alignments in different orders may yield different

results. For example, given three alignments A1, A2, A3 positioned favorably for pasting, A1 ◦R (A2 ◦R A3)
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may not be the same as (A1 ◦L A2) ◦L A3. Also, it is possible that (A1, A2), and (A2, A3) are left-(s, p, γ)-

pastable, but (A1 ◦L A2, A3) are not.

Informally, the strategy chosen here begins with sorting A in three ways: by alignment score, starting

coordinate in u, and ending coordinate in u. Next, alignments are processed one-by-one from the score-sorted

list from high score to low. Each alignment is extended to the left and right via pasting with the help of the

other two lists. During this process, lower intermediate thresholds sint, pint are used to test for left- and right-

(sint, pint, γ0)-pastability. Whenever the alignment being extended satisfies the higher thresholds sfin, pfin,

and also improves average score, it is marked as stable. Once extension halts, the alignment is reverted to

its last stable version. By temporarily allowing satisfaction of lower intermediate bounds, regions of low

similarity may be absorbed by surrounding regions of higher similarity. Alignments that were processed this

way are marked and candidates for pasting with the alignment currently being processed are chosen only

from the unmarked alignments, which all have a lower score. The main reason to paste alignments in this

order is that it enables the calculation of a bound on the distance in u from the alignment being extended,

past which alignments are not (sint, pint, γ0)-pastable.

Lemma 3.3.13. If s(A1) ≥ s(A2) and A1, A2 are left- or right-(s0, p0, γ)-pastable, then:

Du(A1, A2) ≤ 2 · s(A1)− s0

m0
+ γ.

Proof. By pastability, | Du(A1, A2)−Dv(A1, A2)| ≤ G(A1, A2) ≤ γ. Then:

D(A1, A2) = min{Du(A1, A2),Dv(A1, A2)} ≥ Du(A1, A2)− γ. (3.7)

Also, s(A1) ≥ s(A2) implies that:

2 · s(A1)−D(A1, A2) ·m0 ≥ s̃(A1 ◦A2) ≥ s0.

Then by Inequality 3.7,

2 · s(A1)− s0

m0
≥ D(A1, A2) ≥ Du(A1, A2)− γ.

By processing higher scoring alignments first, and removing processed alignments from consideration,

Lemma 3.3.13 can be used to limit how far to the left and right of an alignment the algorithm should look to

find candidates for pasting. This strategy is particularly efficient if the alignments in A are spread far apart
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resulting in only a small fraction of the members of A to populate the search space at any given time. On

the other hand, when the factors aligned by members of A are crowded near the same position in u, then

the bound does not narrow down the search space by much.

To detect the next candidates for left- and right-pasting onto an alignment A, the algorithm uses two

procedures named NextLeft, and NextRight. Pseudocode for NextLeft is given in Appendix B.

Informally, the procedure takes the list Lend of alignments in A sorted by decreasing end coordinate in

u and an integer l and continues incrementing l until either it is out of range (i.e. l > |Lend|), or

Du(Lend[l], A) > 2·s(A)−sint
m0

, or Lend[l] is unmarked, (Lend[l], A) is in left-legal configuration, and left-

(sint, pint, γ0)-pastable. When the distance threshold was exceeded, the procedure returns |Lend|+1; otherwise

it returns l. NextRight works analogously, searching the list Lstart sorted by increasing start coordinate

and tests for right-pastability.

Whenever the algorithm finds two candidates Al and Ar for left- and right-pasting, respectively, onto A,

the algorithm decides which to prefer using a simple relation �A defined on the pairs of alignments (Al, Ar)

that are left-, right-(sint, pint, γ0)-pastable with A, respectively. This relation is defined by, Al �A Ar if and

only if one of the following is true:

• Al, A are left-(sfin, pfin, γ0)-pastable, but A,Ar are not right-(sfin, pfin, γ0)-pastable, or

• Al, A and A,Ar are left-, right-(sfin, pfin, γ0)-pastable, respectively, and (s̃(Al ◦L A), p̃id(Al ◦L A)) ≥

(s̃(A ◦R Ar), p̃id(A ◦R Ar)), lexicographically.

• Neither Al, A nor A,Ar are left-, right-(sfin, pfin, γ0)-pastable, respectively, and (s̃(Al ◦L A), p̃id(Al ◦L

A)) ≥ (s̃(A ◦R Ar), p̃id(A ◦R Ar)), lexicographically.

Deciding whether Al �A Ar requires a constant number of comparisons.
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Algorithm 1: Alignment pasting algorithm.

1 Lpasted ← [ ]
2 Ls ← A sorted by decreasing score
3 Lstart ← A sorted by increasing starting coordinate in u
4 Lend ← A sorted by decreasing end coordinate in u
5 for A in Ls do
6 Mark A
7 l, r ← position of A in Aend, Astart, respectively
8 Lunmark ← [ ]
9 l← NextLeftLegal(Lend, l, A)

10 r ← NextRightLegal(Lstart, r, A)
11 A′ ← A
12 Astable ← None
13 while l ≤ |Lend| or r ≤ |Lstart| do
14 if r > |Lstart| or Lend[l] �A Lstart[r] then
15 A′ ← Lend[l] ◦L A′
16 Mark Lend[l]
17 Append Lend[l] to Lunmark

18 else
19 A′ ← A′ ◦R Lstart[r]
20 Mark Lstart[r]
21 Append Lstart[r] to Lunmark

22 end

23 if s̃(A′) ≥ sfin and p̃id(A′) ≥ pfin and A′ improves average score then
24 Astable ← A′

25 Empty Lunmark

26 end
27 l← NextLeftLegal(Lend, l, A′)
28 r ← NextRightLegal(Lstart, r, A

′)

29 end
30 Unmark each member of Lunmark

31 if Astable not None then
32 Append Astable to Lpasted

33 end

34 end

In order to decide whether two gapped alignments are (sint, pint, γ0)-pastable, it must be determined

if the overlapping regions contain gaps. In general, this task may take time linear in the length of the

alignments. However, the length of the longest prefix and suffix without gaps in each alignment can be

stored internally, and adjusted whenever an alignment is pasted with another, so that determining pastability

can be determined in constant time. At the beginning of the algorithm, all alignments are ungapped.

Whenever left-pasting two alignments A1, A2, either the the longest ungapped prefix of A1 becomes the

longest ungapped prefix of A1 ◦L A2 unless A1 was ungapped to begin with. When A1 is ungapped and

G(A1, A2) > 0, the longest ungapped prefix of A1 ◦LA2 is the prefix of length |A1|+D(A1, A2). When A1 is

ungapped and G(A1, A2) = 0, then the length of the longest ungapped prefix depends on where gaps appear

in A2 and on how big O(A1, A2) is. Denote with `pref and `suff the lengths of the largest ungaped prefix

and suffix of A2, respectively. Recall that during left-pasting, the prefix of length O(A1, A2) is removed
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from A2. Therefore, if O(A1, A2) ≤ `pref , then the length of the longest ungapped prefix of A1 ◦L A2 is

|A1|+D(A1, A2) + (`pref −O(A1, A2)). When O(A1, A2) > |A2| − `suff , then all gaps from A2 are removed

before left-pasting, so that A1 ◦L A2 is ungapped. When `pref < O(A1, A2) ≤ |A2| − `suff , then the longest

ungapped prefix of A1 ◦L A2 cannot be determined from `pref and `suff . The simplest solution then is to air

on the safe side by simply assigning |A1| + D(A1, A2) as the longest ungapped prefix length. Determining

the lengths of the longest ungapped suffix of A1 ◦L A2, as well as the longest ungapped prefix and suffix

of two right-pasted alignments works analogously. This method of tracking longest ungapped prefix and

suffix lengths is not always perfectly accurate, but ensures that they are not overestimated without causing

computational overhead. Additionally, testing whether an alignment improves average score in constant time

can be made possible if each alignment is equipped with a counter for the number of alignments that were

pasted onto it and a cumulative score of these alignments. With these methods in mind, the computational

complexity of Algorithm 1 is

O(|A| · log(|A|) ·Davg),

where Davg is the average number of alignments within a distance of 2·s(A)−sint
m0

in u for members of A.

Typically, Smith-Waterman derived heuristics have complexity at least linear in the size of the longer of the

two sequences. Algorithm 1 ignores the sequences entirely and does not depend on their lengths. In most

cases, the number of high-scoring ungapped local alignments between two sequences should be much smaller

than the lengths of the sequences. However, Algorithm 1 requires a set of ungapped local alignments as its

input.

3.3.5 Implementation of Pasting Algorithm

Algorithm 1 was implemented as a C++ command line application named PasteAlignments available at

https://github.com/JasperBraun/PasteAlignments. The software accepts as input a set of ungapped

local alignments between a set of query sequences and a set of subject sequences in a format that can

be obtained from BLAST. The total size (in basepairs) of the subject sequence set is also required in order to

compute alignment evalues. PasteAlignments returns a set of alignments obtained from the input alignments

by pasting where appropriate according to Algorithm 1. Intermediate and final thresholds can be specified

as parameter values. The same scoring parameter values supported by gapped blastn and megablast are

also supported by PasteAlignments. By default, pasted alignment sequences are constructed by chopping

and combining input alignments. The character N is used to align with a gap, or to fill in regions between

pasted alignments (which are treated as mismatches) to avoid the necessity of looking up nucleotides at

corresponding positions of the underlying sequences. To improve computational time and space efficiency,

the software can be run in “blind mode” in which case it does not require alignment sequences in the input and
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does not construct the pasted alignment sequences. The requirement that pasted alignments must improve

average score to be considered stable (line 23 in Alorithm 1), is optional. If average score improvement is

not specified, pasted alignments must still satisfy final percent identity and score thresholds, in order to be

considered stable. PasteAlignments can be instructed to output some descriptive statistics for each pair of

query and subject sequences, as well as a summary for the entire output data set.

The software was tested on the set of subject sequences comprising the micronuclear genome and the set of

query sequences comprising the macronuclear genome of O. trifallax. The micronuclear genome was obtained

from mds ies db (data originally published in [16]) and the macronuclear genome from GenBank (originally

published in [28]. Three sets of scoring parameters (id0,m0,∆0, g0) ∈ {(1, 2, 0, 2.5), (1, 5, 0, 5.5), (2, 7, 4, 2)},

seven values for γ0 ∈ {2, 4, 6, 8, 10, 20, 40}, and four values for the xdrop parameter of the final gapped align-

ment step of gapped blast (40, 60, 80, and 100) were chosen. For each set of scoring parameters, nucleotide

blast (BLAST+ 2.2.31 [45]) was run with the ungapped and megablast flags. Using the ungapped alignment

output, the PasteAlignments software was run with each of the 7 choices for γ0. In all runs PasteAlignments

was instructed to enforce that pasted alignments improve average score. For each combination of scoring

parameters and xdrop parameters, BLAST was run with the megablast flag only gapped alignments. All

runs were done 5 times and average runtime and its standard deviation were measured. These steps were

repeated, instructing BLAST and PasteAlignments to omit the actual alignment sequences. The results are

summarized in Tables B.1, B.2, and B.3 in Appendix B, which contain statistics for all test runs with scoring

parameter values (id0,m0,∆0, g0) = (1, 2, 0, 2.5), (1, 5, 0, 5.5), and (2, 7, 4, 2), respectively.

As expected, larger values for γ result in fewer and on average longer alignments and a larger number of

(stable) pastings that were performed. For all 3 scoring parameter sets, the highest average percent identity

is achieved by the ungapped alignments. The average percent identities of gapped alignments returned by

BLAST and PasteAlignments are about the same, where alignments produced by PasteAlignments have

slightly larger percent identity, except for gapped blast runs with xdrop parameter value at 40 compared to

PasteAlignments with γ = 40. Average alignment scores increase, as leniency for the introduction of gaps

increases. PasteAlignments increases the average score of the set of ungapped input alignments by 5-15%

and gapped BLAST increases the average score by 7-32%. Gapped BLAST always achieves higher average

score values than PasteAlignments except when run with the xdrop parameter value at 40 and compared

to PasteAlignments with γ = 40. Note that PasteAlignments only returns an underestimate of the actual

optimal score between aligned regions.

To compare the runtime of the gapped alignment step of BLAST, the execution time of PasteAlign-

ment was compare with the difference of the execution times of ungapped and gapped BLAST. While

this difference may not accurately reflect the time the gapped alignment step in BLAST takes, it does
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provide a point of comparison for the two alternative workflows - gapped BLAST, or ungapped BLAST to-

gether with PasteAlignments - for generating gapped alignments from scratch. For scoring parameter values

(id0,m0,∆0, g0) = (1, 2, 0, 2.5), PasteAlignments ran on average 31% faster than the gapped alignment step of

BLAST. When run in blind mode, PasteAlignments ran 50% faster. For scoring parameter values (2, 7, 4, 2),

PasteAlignments ran 94% faster (95% in blind mode). For scoring parameter values (1, 5, 0, 5.5), gapped

BLAST outperformed ungapped BLAST. On average, it was 22.6 seconds faster to run gapped BLAST than

ungapped BLAST followed by PasteAlignments. When running in blind mode, gapped BLAST was 17.6

seconds faster. The average performance of ungapped BLAST with the three different scoring parameter

value sets falls between 415 and 477 seconds (387 and 451 without sequences), and PasteAlignments falls

on average between 20 and 26 seconds (16 and 22 in blind mode). Gapped BLAST however, was much

less consistent and varied between 418 and 1194 seconds (393 and 1171 without sequences), which suggests

that the combination of ungapped BLAST and PasteAlignments has a more reliable runtime than gapped

BLAST.

PasteAlignments allows for direct control over the size of the gaps that may be introduced via the

parameter γ. Gapped BLAST allows for control over the size of the gaps less directly by use of the xdrop

parameter. The xdrop parameter limits how far below the bitscore associated with a path in the dynamic

programming matrix may drop below the highest bitscore achieved along the path, so far. When the bitscore

drops too far, the current path is not explored further. Thus, the longest gap in gapped alignments returned

by BLAST must be short enough, so that the corresponding gap penalty in bits does not exceed the xdrop

parameter value. For reference, the maximum gap lengths for the different runs of gapped BLAST is shown

in Table 3.3. Since the more lenient scoring systems (1, 2, 0, 2.5) and (2, 7, 4, 2) allowed for much longer gaps

than the strict scoring system (1, 5, 0, 5.5), the space of possible alignments considered during the gapped

alignment step is much larger, and thus, the algorithm takes longer.

Table 3.3: The maximum gap length in alignments obtained via gapped BLAST for different scoring systems
and final gapped xdrop parameter values.

(id0,m0,∆0, g0)

xdrop (1, 2, 0, 2.5) (1, 5, 0, 5.5) (2, 7, 4, 2)

40 19 5 30
60 21 7 41
80 30 9 54

100 43 11 70

Finally, it should be emphasized that the outcome of this analysis varied greatly based on the different

scoring parameter values. Since only three scoring systems were tested, conclusions must be drawn with
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caution. However, if these three scoring systems are any indication, then gapped BLAST seems to be

better suited for stricter scoring system, such as (1, 5, 0, 5.5), which enforces higher sequence similarity. For

more lenient scoring systems, such as (1, 2, 0, 2.5) and (2, 7, 4, 2), gapped BLAST still finds more optimal

alignments, but using PasteAlignments is faster with a subjectively small decrease in quality.
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Chapter 4

Concluding Remarks

4.1 Modelling interactions between multiple genes

In [11, 16], it was pointed out that MDSs of different genes often interleave, or overlap. In [6], particularly

interesting cases of interleaving genes, involving several levels of nested genes in the precursor were investi-

gated. The theoretical models in Chapter 2 do not address the interactions of multiple genes, but rather look

at individual genes in isolation. A pairing only describes the relative locations of MDSs in the precursor.

Labellings, on the other hand, take on the responsibility of indicating where in the macronuclear genomes

the MDSs belong. It seems natural to extend the definition of labellings to add the capability of modelling

rearrangements of MDSs of multiple mac sequences. This can be done, for example, by partitioning the

symbols in labels do indicate MDSs in different mac sequences.

4.2 Ambiguities in the data

The sequence data of the mac and mic genomes of O. trifallax contains many ambiguities, such as multi-

ple regions in the mic matching the same region in the mac and vice versa. Extracting an unambiguous

rearrangement map for each macronuclear chromosome requires preference of some alignments over others.

No method of making all decisions in a meaningful way exists. Therefore, theoretical models need to be

applicable to rearrangement maps containing these ambiguities. Chapter 2 introduces a model that is appli-

cable to rearrangements where there is no clear 1-1 correspondence between the segments in the precursor

and product. In Chapter 3, an algorithm extracting rearrangement maps from the data is developed and

implemented. Finally, it was shown that the amount of data that the new model applies to is over 7% larger

than what conventional models could be applied to.

However, in Sections 3.2.7, cases where some alignments contain multiple other alignments in the mac

are investigated. These cases represent additional ambiguities that are not anticipated by the theoretical

models and algorithms introduced in this work. Deciding between one long alignment or several shorter

alignments represents the decision between different fragmentations of a mac sequence. While the general

observation in Section 3.2.7 is that only an insignificant portion of the data exhibits this behavior, these

alignments may suggest multiple ways to partition the product sequence into MDSs. Furthermore, the only

observations made here are based on the genomes of O. trifallax and the algorithm and software is meant to
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be adaptable to genomes of other species where this behaviour could be more common. It would be useful

to adjust the algorithms and models presented in this work to respect the existence of multiple different

possible fragmentations of mac sequences in a meaningful way. All in all, the various ambiguities in the data

represent possible choices of how unambiguous subsets of alignments can be obtained from the data.

While the strategy presented in this work is to show and analyze all of the unambiguous subarrangements,

a method for rating the different possible choices for downstream analyses is desirable. Such methods may

be of quantitative nature, or probabilistic. Quantitative ways of rating different unambiguous subsets, may

naturally include an overall sequence alignment similarity assessment, but could also take other statistics

into consideration. For example, a measure for the mutual distance between matches in a set could be

an indicator of likelihood of the biological mechanism behind the rearrangement choosing one subset over

another. When matches are in close proximity, it is reasonable to assume that the rearrangement takes less

effort. Many quantitative measures could play a role in the rating and comparison of unambiguous subsets,

so one challenge with this approach likely involves how such measures can be combined appropriately. A

natural probabilistic rating of an unambiguous subset of an arrangement is its chance to have appeared

at random in the data. Such method requires an appropriate probabilistic model, and can benefit from a

high-confidence or computer generated data set.

4.3 Coverage of macronuclear chromosomes by multiple mic sequences

In [16], the authors point out that about 10% of the 1- to 2-telomeric mac sequences are not covered 90%

or more by MDSs from a single mic locus. This may be a result from the incomplete assembly of the mic

chromosomes, or the spread of MDSs of a single mac chromosome across multiple mic chromosomes. Using

the MDS arrangements produced by applying SDRAP to the most resent macronuclear assembly from [28]

and the mic assembly from [16] of O. trifallax with the parameters presented in Table 3.1 with (ppre, padd) =

(95.0, 90.0), coverage of mac chromosomes by matches from multiple mic sequences was compared to the

coverage by matches from single mic sequences. Only the regions on mac contigs between telomeres were

considered and coverage was obtained using bedtools v2.29.0 [40]. The results are pictured in Figure 4.1.

By combining MDSs from different mic loci, more mac chromosomes can be included in downstream

analyses. Figure 4.1 suggests that over 12% of the mac contigs which would have been filtered out by

analysis requiring 90% coverage or higher by MDSs from a single mic locus (as was done in [16]), are covered

by at least 90% by a combination of matches from multiple mic loci. Furthermore, this observation suggests

close proximity of the chromosomes which recombine from MDSs from different mic contigs, or the common

origin of the contigs from the same molecule. The information could potentially be used to further assemble

the mic genome, or draw conclusions about the spatial arrangement of the micronuclear chromosomes.
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Figure 4.1: The coverages of macronuclear contigs of O. trifallax by the combined collection of matches from
all micronuclear contigs (x-axis) plotted against the maximum coverage by matches from single micronuclear
contigs (y-axis). Each point corresponds to a mac contig. Points on the diagonal achieve their highest
coverage by the matches from a single mic locus. Points below the diagonal achieve higher coverage through
the combined collection of matches from all mic loci. Points on or above the dashed red line (y = 0.9)
indicate mac contigs which are covered by the matches of a single mic locus by at least 90%. Points on or
to the right of the yellow line (x = 0.9) indicate mac contigs which achieve at least 90% coverage by the
matches from all mic loci combined. Out of a total of 36,721 mac contigs, 4,599 (12.5%) are covered at least
90% by matches from all mic contigs combined, but less than 90% by matches from single mic loci (points
in the bottom right rectangle).

4.4 DNA rearrangements in other settings

The extreme magnitude of rearrangements that take place during conjugation of ciliates such as O. trifallax

make them a model organisms for the general study of DNA rearrangements that appear in various settings.

The software tool SDRAP offers a way to apply the same algorithms to a variety of ciliates and compare

the DNA rearrangements they undergo. By extracting rearrangement maps in a uniform way, a comparison

does not need to account for differences between the extraction of data from the genomes. Furthermore,

the numerous parameters provide a high level of control over the computation increasing the spectrum

of situations it can be applied to. Ultimately, SDRAP can be applied to any situation that involves the

comparison of two genomes, a precursor and a product, and the organization of data relevant to the mapping

of highly similar regions between the two. Such contexts appear in many areas of study, such as VDJ

combinations in immunology, or chromosomal rearrangements in the study of cancer.
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4.5 Pasting as a gapped alignment algorithm

The alignment pasting algorithm and implementation presented in 3.3 provide a fast method to obtain

gapped alignments from a set of ungapped alignments via the introduction of gaps. The resulting set of

gapped alignments will be less fragmented and on average have a higher alignment score. The test data

described in Section 3.3.5 suggests that the gapped alignment step by BLAST results in better alignment

scores and a less fragmented set of alignments, but at the cost of less predictable speed. In the extreme case,

the gapped alignment step performed by BLAST takes up to 20 times longer than the pasting algorithm.

Therefore, in general, the pasting alignment algorithm currently provides an alternative to the gapped

alignment step of the popular sequence alignment software BLAST that trades predictable fast run time for

relative small sacrifices in optimality of the results.

However, the algorithm leaves room for improvements. For example, when constructing pasted align-

ment sequences (not running in blind mode), the computation incurs a cost linear in the distance between

alignments. Due to its ignorance towards the underlying sequences, the constructed gapped alignments often

contain placeholder N-N matches which are treated as mismatches. Since the algorithm takes the time to

iterate through possibly long runs of N-N matches to include them in constructed alignments, it may as well

test the underlying sequences for potential matches. The overall alignment scores obtained by the algorithm

will improve in this way without increasing asymptotic time complexity.
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Notations

Symbol Description Page

ZN {1, 2, . . . , N} 9

~ai ith coordinate of ~a 10

| ~A| (| ~A1|, . . . , | ~A| ~A||) 10

G(R) The graph with vertex-set domain of relation R and edge-set R. 10

NR(a) The neighborhood of a in G(R) 10

Π(N) The set of all pairings of ZN 10

Πuni(N) The set of all unidirectional pairings of ZN 12

~L(π), ~R(π) The unique tuples ~L(π) = (L1, . . . , Lν(π)) and ~R(π) =

(R1, . . . Rν(π)), where L1 < R1 < L2 < R2 < · · · < Lν(π) <

Rν(π), (A < B for any A,B ⊆ Z, whenever a < b, for all

a ∈ A, b ∈ B)

12

ν(π) The length of the tuples ~L(π) and ~R(π) 12

~l(π) |~L(π)| 12

~r(π) |~R(π)| 12

M(π) Biadjacency matrix of π 13

T (~l, ~r) The set of all ν × ν block upper triangular binary block matrices

where ν is the number of coordinates of ~l and ~r and where each

(p, q)th block has is a ~lp × ~rq matrix

14

T ∗(~l, ~r) The subset of T (~l, ~r) of all members with no zero rows and

columns

14

±A
⋃
a∈A{a,−a} 19

ΛK(P ) The set of K-labellings of P 19

proj(A) {|a| : a ∈ A} 19

proj(F) {proj(A) : A ∈ F} 19

supp(F)
⋃
A∈F proj(A) 19
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Symbol Description Page

ΛK,S(P ) {λ ∈ ΛK(P ) : supp(λ(P )) ⊆ S} 20

Λ̂K,S(P ) {λ ∈ ΛK(P ) : supp(λ(P )) = S} 20

Λ̂K(P ) {λ ∈ ΛK(P ) : supp(λ(P )) = ZK} 20

−A {−a : a ∈ A} 21

ΛK,coh(P ) The set of coherent K-labellings of P 21

ΛK,S,coh(P ) ΛK,coh(P ) ∩ ΛK,S(P ) 21

Λ̂K,S,coh(P ) ΛK,coh(P ) ∩ Λ̂K,S(P ) 21

Λ̂K,coh(P ) ΛK,coh(P ) ∩ Λ̂K(P ) 21

≡proj

λ x ≡proj

λ y ⇐⇒ proj(x) = proj(y) 22

pal(S) {±S} 22

apal(S) {A : proj(A) = S;A ∩ −A = ∅} 22

coh(S) pal(S) ∪ apal(S) 22

Λ̂K,coh(P,S, f)
{
λ ∈ Λ̂K,coh(∪X∈PX) :

(
∪X∈PX

/
≡proj

λ

)
= P, and

proj(λ(∪X∈PX)) = S, and proj ◦λ = f
} 24

P pal
λ {x ∈ P : λ(x) = ±λ(x)} 25

P apal
λ {x ∈ P : λ(x) ∩ −λ(x) = ∅} 25

Λ̂pal
K,coh(P ) {λ ∈ Λ̂K,coh(P ) : P = P pal

λ } 25

Λ̂apal
K,coh(P ) {λ ∈ Λ̂K,coh(P ) : P = P apal

λ } 25

`pal
coh(K, p) |Λ̂pal

K,coh(P )|, where |P | = p 26

`apal
coh (K, p) |Λ̂apal

K,coh(P )|, where |P | = p 26

`coh(K, p) |Λ̂K,coh(P )|, where |P | = p 26

w {i1, j1} w {i2, j2} ⇐⇒ i1 ≤ i2 < j2 ≤ j1 27

x̄ {y ∈ P : x w y} 27

dom(X)
⋃
x∈X x 27

GP [x] The subgraph of G(P ) induced by dom(x̄) 28

σrev
A,B Order isomorphism between (A,>) and (B,<) 28

ΛK,con(P ) The set of consistent K-labellings of P 29

ΛK,S,con(P ) ΛK,con(P ) ∩ ΛK,S(P ) 29

Λ̂K,S,con(P ) ΛK,con(P ) ∩ Λ̂K,S(P ) 29

Λ̂K,con(P ) ΛK,con(P ) ∩ Λ̂K(P ) 29

hP (x) max{h : ∃ distinct y1, . . . , yh ∈ P \{x} where x w y1 w · · · w yh} 30
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Symbol Description Page

h(P ) max{hP (x) : x ∈ P} 30

Lh(P ) {x ∈ P : hP (x) = h} 30

Λ̂rev
K,S,con(P ) {λ ∈ Λ̂K,S,con(P ) : λ is l-reverse-complementary} 32

Λ̂nrev
K,S,con(P ) {λ ∈ Λ̂K,S,con(P ) : λ is non-l-reverse-complementary} 32

Λ̂rev
K,con(P ) {λ ∈ Λ̂K,con(P ) : λ is l-reverse-complementary} 32

Fn The unique non-crossing pairing of Z2n containing no two distinct

pairs x, y, where x w y

33

λ1 ∪ λ2(x)


λ1(x) x ∈ P1

λ2(x) x ∈ P2.

,

where λ1 ∈ ΛK(P1), λ2 ∈ ΛK(P2), and P1 ∩ P2 = ∅

36

Λ1 ◦ Λ2 {λ1 ∪ λ2 : λ1 ∈ Λ1, λ2 ∈ Λ2 36

µ(P ) min{K : ΛK,con(P ) 6= ∅ 37

SN(n)
{
{1, 2n}, {2, 2n− 1}, . . . , {n, n+ 1}

}
39

κK(P1, . . . , Pr)
{

(S1, . . . , Sr) ∈
{
ZK
r

}
: |Si| ≥ µ(Pi), for i ∈ Zr

}
41
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jandro A Schäffer. Database indexing for production megablast searches. Bioinformatics, 24(16):1757

– 1764, June 2008.

102



[34] Saul B Needleman and Christian D Wunsch. A general method applicable to the search for similarities

in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443 – 453, March 1970.

[35] William R Pearson and David J Lipman. Improved tools for biological sequence comparison. Proceedings

of the National Academy of Sciences, 85(8):2444 – 2448, April 1988.

[36] Dennis Pixton. Regularity of splicing languages. Discrete Applied Mathematics, 69(1-2):101 – 124,

August 1996.

[37] David M Prescott, Andrzej Ehrenfeucht, and Grzegorz Rozenberg. Molecular operations for dna pro-

cessing in hypotrichous ciliates. European Journal of Protistology, 37(3):241 – 260, 2001.

[38] David M Prescott and Arthur F Greslin. Scrambled actin i gene in the micronucleus of oxytricha nova.

Developmental Genetics, 13(1):66 – 74, 1992.
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Table A.1: Values used for parameters during test runs of SDRAP. For each parameter a “low”, “mid”, and
“high” value was chosen. An initial run with all parameters at their “mid” value was conducted. Only the
parameter `pre was set to its “low” value during the initial run. Next, two additional runs for each parameter
were performed. Each run differed from the initial test run only in one parameter value which was set to
its “low”, or “high” value. The parameter `pre was tested at its “mid” and “high” values instead. The
“low”, “mid”, and “high” values for the parameter S were {ordered}, {ordered, consecutive}, and {ordered,
consecutive, complete}. Additional test runs were conducted for some parameters, as indicated.

Parameter low mid high additional description

`pre 18∗ 30∗ 35 Minimum length of alignments for preliminary match annotation

bpre 20 49 100 Minimum bitscore of alignments for preliminary match annota-
tion

ppre 60 80 90 95, 99 Minimum percent identity of alignments for preliminary match
annotation

cmin 2 4 6 Minimum contribution to coverage by alignments for preliminary
match annotation

t 4 8 12 Maximum shift allowed for merging alignments

d 1 3 6 Maximum distance between alignments for merging

badd 25 49 100 Minimum bitscore of alignments for additional match annotation

padd 60 80 90 Minimum percent identity of alignments for additional match
annotation

r 0.5 0.8 0.9 Minimum proportion of product interval alignment must cover
to be annotated as additional match and inherit index

r′ 0.1 0.2 0.5 Minimum proportion of product interval alignment must cover
to be annotated as fragment that inherits index

`gap 2 4 8 Minimum length of non-covered region in product to be consid-
ered length

`ptr 1 3 5 Minimum overlap length between successive product intervals to
qualify as pointer

S ∗∗ Collection of properties indicating S-scrambling for unambiguous
subarrangements

s 0 5 10 Maximum size of precursor interval overlap tolerated for two
matches in an unambiguous subarrangement

u 2 4 10 Maximum number of unambiguous subarrangements extracted

q 25 50 75 Minimum proportion of product sequence that must be covered
by product intervals of preliminary matches for properties of ar-
rangement to be computed

∗ `pre = 18 was used as the fixed value across test runs for other parameters instead of 30.
∗∗ low: {ordered}, mid: {ordered, consecutive}, high: {ordered, consecutive, complete}, additional: {consecutive, complete}

106



Table A.2: Counts of arrangements and alignments of test runs of parameters related to the MDS annotation
step by SDRAP. When a value does not deviate from the value in the row for the center run, it is left blank.
The counts of tests of parameters r, r′, and `ptr do not deviate from the center run and were omitted entirely.

# arrangements # alignments satis-
fying `pre, bpre, ppre

thresholds∗∗

# alignments sat-
isfying badd, padd

thresholds∗∗

total in A30 in A90 in A30 in A90 in A30 in A90

center∗ 429566 117612 59885 1740567 891293 1740567 891293

`pre
mid∗ 332994 117510 59586 1720298 877743 1720298 877743
high 277861 117316 59168 1686785 856651 1686785 856651

bpre
low 8167735 119159 60303 1813861 923872 1744673 895206
high 184836 113585 54076 1435953 711786 1710538 814542

ppre

low 446673 130942 61289 1835682 927143 1772034 908144
high 366054 91517 47265 1220892 647596 1535790 712381
95% 283489 65588 27941 676173 329977 1186096 400808
99% 160400 30010 13485 269350 127346 423126 168381

cmin
low 429582 117603 59829 1740479 890265 1740479 890265
high 429560 117612 59908 1740682 891611 1740682 891611

t
low 117613 59933 1740576 891874 1740576 891874
high 117608 59870 1740533 891153 1740533 891153

d
low 117627 60010 1740707 893098 1740707 893098
high 117597 59855 1740387 890457 1740387 890457

badd
low 1808171 919285
high 1451418 763590

padd
low 1782502 906120
high 1294164 746688

`gap
low 117588 59825 1740450 890390 1740450 890390
high 117655 60130 1740751 893959 1740751 893959

∗ The chosen low value for `pre was used as the fixed value across test runs for other parameters instead of the mid value.
∗∗ Numbers of alignments in the columns for A30, A90 are taken from those between precursor and product sequences whose

arrangement is in the respective set.
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Table A.3: Counts of matches for test runs of parameters related to MDS annotation step by SDRAP. When
a value does not deviate from the value in the row for the center run, it is left blank. The counts of tests of
parameters r′, and `ptr do not deviate from the center run and were omitted entirely.

# of preliminary matches # of additional matches # of merged matches

in A30 in A90 in A30 in A90 in A30 in A90

center∗ 711568 355115 407070 155486 250315 149623

`pre
mid∗ 703325 349741 405119 154115 246390 147117
high 691449 341336 400540 152568 237872 144062

bpre
low 728280 361458 408032 155952 254664 151778
high 605583 287584 390740 146576 226193 133778

ppre

low 757659 365121 404361 157424 252858 151544
high 552112 292340 479820 135543 256311 125787
95% 410835 199519 446861 82703 255385 66045
99% 242705 108125 81088 28199 61009 21955

cmin
low 714603 356373 419859 159276 254675 152112
high 709178 354278 396533 153519 247391 148508

t
low 717737 358855 402021 150824 243753 144244
high 709400 353934 407429 155907 252757 151072

d
low 733384 366978 388375 143358 217169 129691
high 693918 346318 420928 163891 275573 162754

badd
low 412789 157385 262582 152567
high 359004 138948 216096 133541

padd
low 425026 159502 252549 150586
high 226556 107972 187068 118154

r
low 585559 239051 306226 191833
high 341837 132860 230577 136854

`gap
low 711474 354894 407068 155154 250307 149424
high 711726 356323 155891 250331 150044

∗ The chosen low value for `pre was used as the fixed value across test runs for other parameters instead of the mid value.
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Table A.4: Counts of gaps, pointers, and fragments for test runs of parameters related to MDS annotation
step by SDRAP. When a value does not deviate from the value in the row for the center run, it is left blank.

# gaps # pointers # fragments

in A30 in A90 in A30 in A90 in A30 in A90

center∗ 310040 95093 401030 237895 502134 264506

`pre
mid∗ 312596 96650 391851 231515 500301 263534
high 315783 98293 379350 222514 495499 259483

bpre
low 314681 94555 411635 243815 503777 265273
high 305089 92489 324314 182680 618642 284911

ppre

low 355106 98754 420481 242795 522816 272595
high 199826 67434 344141 205098 404580 183182
95% 136408 35558 270504 147755 280656 69603
99% 60454 16813 165625 79982 91449 20597

cmin
low 309939 94911 403583 239182 506619 265979
high 310753 95562 398652 236846 496788 263610

t
low 310043 95161 402813 239024 515172 276604
high 310044 95071 400185 237384 498660 261775

d
low 309962 95257 401836 238643 556494 301596
high 298076 90155 400119 237280 463539 240079

badd
low 545623 282192
high 443980 240485

padd
low 533474 277987
high 382779 210390

r
low 323645 180941
high 567367 287132

r′
low 544885 296028
high 393634 201707

`gap
low 322583 100747 400999 237807 502123 264031
high 279535 83193 401077 238334 502140 265328

`ptr
low 438964 262094
high 304497 178187

∗ The chosen low value for `pre was used as the fixed value across test runs for other parameters instead of the mid value.
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Table A.5: Counts of arrangements for test runs of parameters related to the property computation step by
SDRAP. When a value does not deviate from the value in the row for the center run, it is left blank. The
total number of arrangements was 429566 for all test runs described in this table. The sizes of Aq and A90

are 97846, and 59885, respectively, throughout, except for the test runs of q. With q at its “low” and “high”
value, the two sets have sizes 124066 and 76569, respectively. The counts of tests of parameters S does not
deviate from the center run and was omitted entirely.

# arrangements
which exceeded u

# repeating # s-overlapping # repeating and
s-overlapping

Aq \ A∗
q A90 \ A∗

90 in A∗
q in A∗

90 in A∗
q in A∗

90 in A∗
q in A∗

90

center 10380 5457 7748 4835 8165 4287 1550 888

s
low 10453 5483 7709 4824 12133 6603 2538 1647
high 10355 5450 7772 4839 6924 3625 1363 763

u
low 14102 7612 4774 3040 6309 3305 442 266
high 7285 3721 10039 6217 10416 5508 2997 1755

q
low 12198 9262 10002 1845
high 8031 6110 6327 1248

Table A.6: Counts of some arrangement properties for test runs for parameters related to the property
computation step by SDRAP. When a value does not deviate from the value in the row for the center run,
it is left blank.

# weakly scrambled # strongly scrambled

in A∗
q in A∗

90 in A∗
q in A∗

90

center 23534 13383 17308 9730

S
low 21198 12077 15685 8968
high 25055 14225 22554 12609
other 8580 4534 7170 3675

s
low 25401 14308 17970 9979
high 22858 13047 17071 9648

u
low 20202 11453 15874 8967
high 26193 14850 18058 10168

q
low 29531 22102
high 17867 12960
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Table A.7: Statistics for the comparison of two SDRAP test runs with results from [16]. A full description
of the parameter values used is given in Table 3.1. Whenever, a directly comparable number could not
be obtained due to discrepancies in the annotation procedures, results from [16] are compared to multiple
descriptive statistics obtained form the output of SDRAP.

description
(ppre, padd) reported

in [16](99.0, 95.0) (95.0, 90.0)

# arrangements of 1- or 2- telomeric product sequences
with coverage of at least 90%

12665 22844 16220

# preliminary matches∗ 104069 182981
>225000

# matches∗ 105277 189513

# merged preliminary matches∗ 861 7252
# alignments merged into preliminary matches∗ 1795 18244
# double counted additional matches∗∗ 258 1386
# arrangements that have only one preliminary match∗ 1039 2896

548
# arrangements whose only preliminary match is merged∗ 81 1309

# weakly scrambled arrangements∗ 1709 4140 2818

# weakly scrambled arrangements containing matches of
both orientations∗

978 2249
1676

994 2355

avg # matches over length per product kb in weakly
scrambled arrangements∗

4.1/kb 4.3/kb
4.9/kb

4.3/kb 5.2/kb
avg # matches per product kb in strongly nonscrambled
arrangements∗,∗∗

3.0/kb 3.0/kb
3.7/kb

3.0/kb 3.0/kb

median length of preliminary matches in weakly scrambled
arrangements∗,∗∗∗

153bp 132bp 81bp

median length of preliminary matches in strongly non-
scrambled arrangements∗,∗∗,∗∗∗

196bp 191bp 181bp

∗ restricted to matches and arrangements of 1- or 2- telomeric product sequences with coverage at least 90%
∗∗ excluding arrangements with more than u unambiguous subarrangements
∗∗∗ length of preliminary matches does not include pointers

no equivalent to additional matches exists in [16] since repeating MDSs were filtered
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Table A.8: Statistics for the comparison of two SDRAP test runs with results from [12]. A full description of
the parameter values used is given in Table 3.1. Double counted additional matches are alignments annotated
as multiple additional matches due to sufficient overlap with multiple preliminary matches. Such alignments
are counted in the numbers of all matches for SDRAP each time they are annotated as additional match.

description
(ppre, padd) reported

in [12](99.0, 95.0) (95.0, 90.0)

# 2-telomeric contigs 16027 17198

# product preliminary matches 422704 701725 278656

# all matches 643712 1279163 752901

# double counted additional matches 54823 190948 N/A

# arrangements with coverage at least 30% 20713 27189 39128

# weakly scrambled arrangements with cover-
age at least 30%∗

2869 4176 5909

# strongly complete arrangements with cover-
age at least 90%∗

9925 15095 15210

# weakly scrambled and strongly complete ar-
rangements with coverage at least 90%∗

1254 2109 1548

∗ restricted to matches and arrangements of 2-telomeric product sequences which had no more than u unambiguous

subarrangements
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Table A.9: Overview of the numbers of arrangements with properties derived from SDRAP test runs on the
macronuclear genomes from [42] and [28] using parameter values described in Table 3.1. The set A consists
of all arrangements, A30 consists of all arrangements covering the product sequence by at least 30%, and
A2T

90 consists of all arrangements of 2-telomeric mac sequences which cover the product sequence by at least
90%.

mac genome from [42] mac genome from [28]
(99.0, 95.0) (95.0, 90.0) (99.0, 95.0) (95.0, 90.0)

% unidirectional
A 99.20 98.69 99.36 99.30
A30 99.27 97.32 99.80 99.56
A2T

90 99.92 99.67 99.75 99.64

% coherent
A 98.79 97.32 98.79 98.60
A30 98.39 93.63 99.94 99.79
A2T

90 99.97 99.78 99.98 99.85

% consistent
A 96.29 92.99 92.91 92.36
A30 98.28 93.06 99.92 99.76
A2T

90 99.94 99.75 99.97 99.83

% crossing
A 17.88 17.96 18.93 17.20
A30 3.35 14.15 2.29 3.76
A2T

90 0.92 2.72 2.63 3.54

% flat
A 81.60 81.33 80.34 82.06
A30 96.45 85.50 96.94 95.37
A2T

90 98.91 96.74 96.45 95.40

max density
A 49 50 42 22
A30 49 50 42 22
A2T

90 2 4 5 5

max height
A 48 57 41 21
A30 48 57 41 21
A2T

90 1 3 4 4
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Figure A.1: The frequencies of different height values for SDRAP test runs with (ppre, padd) = (99.0, 95.0) in
blue and (ppre, padd) = (99.0, 95.0) in yellow, applied to the macronuclear genome from [42]. All arrangements
are included in the plot at the top. The middle plot is restricted to arrangements with product sequence
coverage at least 30%. The bottom plot only contains the height frequencies for arrangements of 2-telomeric
product sequences with at least 90% coverage. The majority of arrangements has zero height which is
omitted from this figure.
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Figure A.2: The frequencies of different density values for SDRAP test runs with (ppre, padd) = (99.0, 95.0) in
blue and (ppre, padd) = (99.0, 95.0) in yellow, applied to the macronuclear genome from [42]. All arrangements
are included in the plot at the top. The middle plot is restricted to arrangements with product sequence
coverage at least 30%. The bottom plot only contains the density frequencies for arrangements of 2-telomeric
product sequences with at least 90% coverage. The majority of arrangements has density one which is omitted
from this figure.
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Figure A.3: The frequencies of different height values for SDRAP test runs with (ppre, padd) = (99.0, 95.0) in
blue and (ppre, padd) = (99.0, 95.0) in yellow, applied to the macronuclear genome from [28]. All arrangements
are included in the plot at the top. The middle plot is restricted to arrangements with product sequence
coverage at least 30%. The bottom plot only contains the height frequencies for arrangements of 2-telomeric
product sequences with at least 90% coverage. The majority of arrangements has zero height which is
omitted from this figure.
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Figure A.4: The frequencies of different density values for SDRAP test runs with (ppre, padd) = (99.0, 95.0) in
blue and (ppre, padd) = (99.0, 95.0) in yellow, applied to the macronuclear genome from [28]. All arrangements
are included in the plot at the top. The middle plot is restricted to arrangements with product sequence
coverage at least 30%. The bottom plot only contains the density frequencies for arrangements of 2-telomeric
product sequences with at least 90% coverage. The majority of arrangements has density one which is omitted
from this figure.
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Table A.10: Analysis of the relationship double counted additional matches and high height and density
values for SDRAP test runs with mac genomes from [42] and [28] using parameter values described in
Table 3.1. High height and density thresholds for the two genomes were obtained from the max height
and density remaining stable in the right half of the corresponding bar plots in Figure 3.5. For the mac
genome from [42], the density and height considered high are 8, and 6, respectively. For the mac genome
from [28], high density and height thresholds are 17, and 16, respectively. The numbers of double counting
arrangements with high density and high height are particularly low in the last two columns because only
very few arrangements had high density and high height for the mac genome from [28], which can be seen
in Figures A.3 and A.4.

mac genome from
[42]

mac genome from
[28]

(99.0, 95.0) (95.0, 90.0) (99.0, 95.0) (95.0, 90.0)

# double counting arrangements∗
A 2267 8453 2743 4895
A30 858 4996 607 795
A2T

90 91 210 219 374

Avg # double counted∗∗ A30 43.4 33.6 2.5 2.4
A2T

90 1.8 2.3 2.3 2.7

# double counting arrangements∗

with high density

A 309 1075 2 1
A30 187 1008 2 1
A2T

90 0 0 0 0

Avg # double counted∗∗ in high
density arrangements

A30 139.2 113.4 170.0 91.0

# double counting arrangements∗

with high height

A 373 1357 2 1
A30 221 1268 2 1
A2T

90 0 0 0 0

Avg # double counted∗∗ in high
height arrangements

A30 129.0 100.7 170.0 91.0

∗ A double counting arrangement is an arrangement which contains multiple additional matches derived from the same

alignment.
∗∗ Counts the number of times an alignment is annotated as additional match in excess of the first (i.e. an alignment

annotated n times as an additional match, is counted here n− 1 times).
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Table A.11: Analysis of the relationship double counted additional matches and presence of telomeres for
SDRAP test runs with mac genomes from [42] and [28] using parameter values described in Table 3.1. High
height and density thresholds for the two genomes were obtained from the max height and density remaining
stable in the right half of the corresponding bar plots in Figure 3.5. For the mac genome from [42], the
density and height considered high are 8, and 6, respectively. For the mac genome from [28], high density
and height thresholds are 17, and 16, respectively.

mac genome from
[42]

mac genome from
[28]

(99.0, 95.0) (95.0, 90.0) (99.0, 95.0) (95.0, 90.0)

# 1- or 2-telomeric sequences in double counting
arrangements∗

424 638 667 901

# 2-telomeric sequences in double counting arrangements∗ 312 438 592 762

# 1- or 2-telomeric in high density double counting
arrangements∗

2 2 0 0

# 2-telomeric in high density double counting
arrangements∗

0 1 0 0

# 1- or 2-telomeric in high height double counting
arrangements∗

1 2 0 0

# 2-telomeric in high height double counting
arrangements∗

0 1 0 0

∗ A double counting arrangement is an arrangement which contains multiple additional matches derived from the same

alignment.
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Appendix B

Alignment Pasting Procedures and Data

Algorithm 2: Procedure NextLeft.

Input: Local Alignment A between u and v,
Index l of member of Lend with end coordinate in u less than or equal to that of A, and
List Lend of local alignments between u, v sorted by decreasing end coordinate in u and
where all alignments with score larger than s(A) are marked.

Output: Smallest index l′ of member of Lend, such that Lend[l′] and A are in left-legal
configuration and left-(sint, pint, γ0)-pastable, or |Lend|+ 1 if none exist.

1 Dmax ← 2·s(A)−sint
m0

2 while l ≤ |Lend| do
3 if Du(Lend[l], A) > Dmax then
4 return |Lend|+ 1
5 end
6 if Lend[l] not marked and Lend[l], A are in left-legal configuration and left-(sint, pint, γ0)-pastable

then
7 return l
8 end
9 l← l + 1

10 end
11 return l
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Table B.1: Performance comparison between gapped BLAST and the combination of ungapped BLAST
with PasteAlignments to obtain gapped alignments using scoring parameters (id0,m0,∆0, g0) = (1, 2, 0, 2.5).
The micronuclear genome assembly of O. trifallax published in [16] was used as database genome and
the macronuclear genome assembly published in [28] was used as query in all BLAST searches. The only
difference between the various PasteAlignment tests is the parameter value for the gap tolerance parameter.
The BLAST searched differed only in their xdrop gap final parameter value.

Description total #
align-
ments

avg.
length

avg.
score

avg. %
identity

avg.
bitscore

avg.
evalue

total #
pastings

avg.
time (s)
±σ

avg.
time (s)
±σ

blind

blastn -megablast
-xdrop gap final 40

782963 277.63 246.06 96.91 455.50 6.99e-6 N/A 435.54
±14.61

408.81
±9.75

blastn -megablast
-xdrop gap final 60

775111 282.71 248.78 96.84 460.53 7.03e-6 N/A 442.35
±28.19

417.07
±6.48

blastn -megablast
-xdrop gap final 80

767974 286.79 250.94 96.79 464.52 7.08e-6 N/A 451.64
±23.44

431.67
±7.72

blastn -megablast
-xdrop gap final 100

757082 292.16 253.83 96.72 469.86 7.22e-6 N/A 454.21
±34.30

430.38
±23.78

blastn -megablast
-ungapped

871639 231.82 214.26 97.40 396.79 7.08e-6 N/A 414.56
±1.74

387.39
±1.42

paste alignments
–gap tolerance 2

816087 248.12 227.37 97.36 420.99 7.41e-6 55552 19.98
±1.17

16.13
±0.27

paste alignments
–gap tolerance 4

802362 252.60 230.65 97.35 427.04 7.50e-6 69277 20.08
±0.99

16.21
±0.22

paste alignments
–gap tolerance 6

795584 254.93 232.17 97.32 429.87 7.53e-6 76055 20.12
±1.15

16.23
±0.17

paste alignments
–gap tolerance 8

792461 256.06 232.81 97.30 431.04 7.55e-6 79178 20.82
±2.23

16.16
±0.17

paste alignments
–gap tolerance 10

789449 257.14 233.46 97.29 432.24 7.57e-6 82190 20.08
±1.06

16.18
±0.13

paste alignments
–gap tolerance 20

779268 260.91 235.50 97.23 436.01 7.65e-6 92371 24.86
±4.35

19.64
±2.52

paste alignments
–gap tolerance 40

725727 282.38 246.22 96.75 455.80 8.14e-6 145912 23.93
±0.64

18.41
±0.35
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Table B.2: Performance comparison between gapped BLAST and the combination of ungapped BLAST
with PasteAlignments to obtain gapped alignments using scoring parameters (id0,m0,∆0, g0) = (1, 5, 0, 5.5).
The micronuclear genome assembly of O. trifallax published in [16] was used as database genome and
the macronuclear genome assembly published in [28] was used as query in all BLAST searches. The only
difference between the various PasteAlignment tests is the parameter value for the gap tolerance parameter.
The BLAST searched differed only in their xdrop gap final parameter value.

Description total #
align-
ments

avg.
length

avg.
score

avg. %
identity

avg.
bitscore

avg.
evalue

total #
pastings

avg.
time (s)
±σ

avg.
time (s)
±σ

blind

blastn -megablast
-xdrop gap final 40

837675 234.06 208.10 98.16 417.74 6.17e-7 N/A 421.33
±6.25

393.87
±0.89

blastn -megablast
-xdrop gap final 60

814138 244.97 214.01 98.09 429.58 6.23e-7 N/A 420.83
±18.74

394.27
±1.67

blastn -megablast
-xdrop gap final 80

804037 249.87 216.43 98.07 434.44 6.29e-7 N/A 428.20
±4.83

395.47
±8.02

blastn -megablast
-xdrop gap final 100

798680 252.48 217.64 98.07 436.87 6.32e-7 N/A 418.49
±17.85

396.16
±4.98

blastn -megablast
-ungapped

900394 212.31 192.79 98.34 387.03 6.11e-7 N/A 423.39
±8.31

394.99
±2.56

paste alignments
–gap tolerance 2

840231 228.13 203.05 98.29 407.60 6.39e-7 60163 20.24
±1.04

16.55
±0.19

paste alignments
–gap tolerance 4

831220 230.76 204.38 98.27 410.28 6.43e-7 69174 20.06
±1.22

16.51
±0.17

paste alignments
–gap tolerance 6

827299 231.94 204.87 98.27 411.25 6.45e-7 73095 21.18
±1.87

16.78
±0.49

paste alignments
–gap tolerance 8

825800 232.40 205.02 98.26 411.56 6.46e-7 74594 20.90
±0.85

16.66
±0.14

paste alignments
–gap tolerance 10

824294 232.86 205.19 98.26 411.90 6.47e-7 76100 19.69
±0.93

16.48
±0.20

paste alignments
–gap tolerance 20

819112 234.46 205.69 98.24 412.91 6.51e-7 81282 25.64
±3.15

22.02
±2.74

paste alignments
–gap tolerance 40

787448 245.03 206.62 98.08 414.76 6.75e-7 112946 22.16
±1.21

17.74
±1.75
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Table B.3: Performance comparison between gapped BLAST and the combination of ungapped BLAST
with PasteAlignments to obtain gapped alignments using scoring parameters (id0,m0,∆0, g0) = (2, 7, 4, 2).
The micronuclear genome assembly of O. trifallax published in [16] was used as database genome and
the macronuclear genome assembly published in [28] was used as query in all BLAST searches. The only
difference between the various PasteAlignment tests is the parameter value for the gap tolerance parameter.
The BLAST searched differed only in their xdrop gap final parameter value.

Description total #
align-
ments

avg.
length

avg.
score

avg. %
identity

avg.
bitscore

avg.
evalue

total #
pastings

avg.
time (s)
±σ

avg.
time (s)
±σ

blind

blastn -megablast
-xdrop gap final 40

780340 272.11 468.48 97.33 456.91 0.00 N/A 606.67
±12.38

571.98
±6.89

blastn -megablast
-xdrop gap final 60

747869 288.54 487.20 96.98 475.13 0.00 N/A 721.93
±29.15

694.57
±23.20

blastn -megablast
-xdrop gap final 80

705661 310.10 511.96 96.50 499.25 0.00 N/A 890.67
±52.25

866.81
±48.58

blastn -megablast
-xdrop gap final 100

660257 336.38 540.45 95.93 526.99 0.00 N/A 1193.59

±34.02

1171.23

±28.09

blastn -megablast
-ungapped

879711 224.11 407.58 97.89 397.60 0.00 N/A 477.43
±10.83

451.40
±4.39

paste alignments
–gap tolerance 2

823314 239.98 431.18 97.86 420.33 0.00 56397 22.42
±1.38

17.22
±0.75

paste alignments
–gap tolerance 4

811529 243.67 435.94 97.84 424.97 0.00 68182 24.59
±3.58

16.98
±0.42

paste alignments
–gap tolerance 6

805858 245.52 438.15 97.82 427.12 0.00 73853 21.38
±1.22

17.40
±0.75

paste alignments
–gap tolerance 8

803279 246.39 439.06 97.81 428.01 0.00 76432 20.61
±0.97

16.54
±0.21

paste alignments
–gap tolerance 10

800741 247.25 439.98 97.80 428.91 0.00 78970 19.92
±1.03

16.73
±0.56

paste alignments
–gap tolerance 20

791343 250.48 443.75 97.73 432.58 0.00 88368 22.68
±1.80

17.74
±0.66

paste alignments
–gap tolerance 40

730525 273.77 472.78 97.05 460.84 0.00 149186 24.06
±2.66

17.71
±0.90
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