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Abstract

ISO (the International Organization for Standardization) 10995:2011 is the international

standard providing guidelines for assessing the reliability and service life of optical media,

which is designed to be highly reliable and possesses a long lifetime. A well-known chal-

lenge of reliability analysis for highly reliable devices is that it is hard to obtain su�cient

failure data under their normal use conditions. Accelerated degradation tests (ADTs) are

commonly used to quickly obtain physical degradation data under elevated stress conditions,

which are then extrapolated to predict reliability under the normal use condition. This stan-

dard achieves the estimation of the lifetime of recordable media, such as Magneto-Optical

media, via an accelerated degradation test for measuring the error rate of these hard devices

under elevated temperature and relative humidity levels. The observed degradation mea-

sures are modeled with regression analysis to predict the unobserved failure time, which is

then used as observed failure time for estimating the lifetime distribution and predict the

device quantile/median lifetime. However, the ISO 10995:2011 analysis fails to consider the

uncertainty of the predicted failure times, as well as the heterogeneity of the test units, and

hence could lead to imprecise and overconfident estimation. This thesis presents a Bayesian

method to analyze the ISO degradation data, which (1) provides more accurate quantifica-

tion of uncertainty through the use of a hierarchical degradation path model, (2) includes

random e↵ects to capture the unit-to-unit variation for improving analysis of heterogene-

ity, and (3) o↵ers more straightforward implementation for estimating reliability and its

associated uncertainty based on general ADT data.
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1 Introduction

There is a common consensus that predicting the archival life of optical media plays an

increasingly important role in its market and industry. Existing standards have documented

methods for predicting the lifetime of recordable media, which is high reliable product. The

aim of the ISO 10995:2011[1] is to provide guidance on current practice based on conduct-

ing accelerated degradation tests for understanding the underlying failure mechanism and

predicting the archival life of optical media products.

Optical media are designed to be long-life devices. It is often impossible to observe su�-

cient failure data under its normal use condition during a reasonable test period. Accelerated

degradation tests (ADTs) become popular in testing highly reliable products to quickly in-

quire the su�cient failure data. In ADTs, the test units are assigned to elevated stress levels

or exposed to harsher use conditions to speed up the failing process, and measures on charac-

teristics related to the physical degradation process are obtained, analyzed, and extrapolated

to predict the product lifetime under normal operating conditions. In ISO 10995:2011, four

di↵erent test conditions were used with di↵erent combinations of the temperature (T) and

relative humidity (RH) levels. It was believed that elevated stress conditions would accel-

erate the rate of chemical reactions, which will then lead to the degradation of the ideal

material properties that ultimately causes disk failure.

1.1 Background

The worldwide standardization system consists of both the ISO (International Or-

ganization for Standardization) and the IEC (International Electrotechnical Commission).
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ISO or IEC participates in the development of international standards through technical

committees established by their respective organizations to deal with technical activities in

specific areas. The purpose of ISO/IEC is to develop and maintain standards in the fields of

information technology and communications technology. ISO 10995:2011 [1] uses the ADTs

to estimate and predict the lifetime of optical media. Particularly, it uses the degradation

data obtained from an ADT experiment to estimate the life expectancy of the searchability

of information stored on a recordable optical disc.

In the ISO 10995:2011 experiment, several di↵erent types of optical media formats were

tested, such as DVD-R/-RW/-RAM, +R/+RW. The outlined procedure can be adapted to

other disc formats with appropriate specifications as desired. This international standard

includes assumptions, stress conditions, ambient conditions, evaluation system description,

test units preparation, degradation data description procedure, and data interpretation. The

documented ADT experiment used the temperature and relative humidity as the accelerating

factors. It has no specific procedures to simulate degradation due to the dynamics of complex

failure mechanisms, nor has it consider other factors such as changes in light, corrosive gases,

pollutants, processing, and playback subsystems. Disks exposed to higher temperature and

RH levels are expected to have a shorter life. In ISO 10995:2011, the experimenter recorded

the degradation measurements periodically from each unit tested under varied conditions.

The observed degradation data were fitted to a regression model to determine the time-to-

failure of each test unit as the first time that its predicted degradation level exceeds the

failure threshold value at MAX PI Sum 8 = 280. In ISO 10995:2011, the time-to-failure was

determined based on linking the disk errors with the material degradation. By assuming

an exponential lifetime distribution [1], the predicted time-to-failure for all the test units

were fitted in an accelerated failure time model and extrapolated to predict product median

lifetime under the normal use condition.

The method used in ISO 10995:2011 has some problems. For example, it believes what

they have from the recorded failure time is as same as the actual failure time and com-
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pletely ignores the uncertainty of the predicted failure time. Second, the model used in ISO

10995:2011 assumes a homogeneous distribution across the population and completely ig-

nores the unit-to-unit variation among the test samples, which can be prominently observed

from Figure 1.1 below.
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Figure 1.1: Degradation Paths From the ISO 10995:2011 ADT Data

Figure 1.1 shows the degradation paths (measured on the log scale) of all the 90 test units

from the ISO accelerated degradation test. Di↵erent colors present the test units under the

four di↵erent test conditions. A few patterns can be observed. First, there exist di↵erent

degradation rates across di↵erent test conditions. For example, the units tested under the

highest temperature (at 85�C) and RH (at 85) levels underwent the highest degradation

rates (shown as the red paths in Figure 1.1). On the other hand, the units tested under the

lower temperature and RH levels had lower degradation rates (such as the blue paths tested

at 70�C and RH = 75). Second, the degradation rate does not necessarily stay constant over
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time. For example, we can observe some degree of curvature for many paths. This indicates

the degradation paths may not necessarily be a linear function of time for all the test units,

and a polynomial regression or nonlinear regression model might be needed to flexibly model

the variation of the degradation trend. Third, there is an apparent unit-to-unit variation in

terms of both the initial degradation levels and the degradation rates. For example, at the

initial time point (time 0) of the study, each degradation path starts with a di↵erent initial

value which suggests varied starting conditions of the test units. In addition, we observe some

degree of positive correlation between the initial degradation condition and the degradation

rate. For example, the red paths which generally have higher initial degradation values are

also associated with higher degradation rates over time. This indicates an apparent unit-

to-unit variation with potential positive correlation between the initial condition and the

temporal degradation rate. Therefore, it is necessary to include bivariate random e↵ects for

both the individual initial condition and the temporal degradation rate.

The horizontal green dash line in Figure 1.1 shows the soft failure threshold (at log(280))

for this type of recordable media used in the test. The test unit is considered to fail when

its degradation level passes this threshold value. We can see that all the test units shown in

the red paths which were tested at 85�C and 85% RH (the harshest test condition among

all 4 test conditions) failed during the test period. Under test conditions (65�C, 85%) and

(70�C, 75%), the degradation paths are shown as purple and blue solid lines. With the

test duration (2500 hours) being 2.5 times longer than the harshest condition (1000 hours),

no failure was observed during the test period. This is reassuring both temperature and

RH are e↵ective acceleration factors for this type of optical media. And it is expected that

under the normal use condition at (25�C, 50%), it would take a very long time before any

failure can be observed. Therefore, the ADT test plays an important role in accelerating the

degradation process and collecting experimental data in a timely fashion for studying high

reliability products.

From Figure 1.1, we can see unit-to-unit variation presents an important source of hetero-
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geneity in the ISO 10995:2011 data. It can cause variations in both the shape of degradation

curves and the predicted failure times. Below we summarize the key sources of unit-to-unit

variation in ADT tests:

• Initial conditions. Individual units will vary with di↵erent initial levels of degrada-

tion depends on the amount of material use. For example, on our raw data in ISO

10995:2011, at time 0, the degradation measurement varied from each other, indicating

each unit has its own initial degradation.

• Material properties. The unit-to-unit variations in the material natures parameters

C and the initial size of products would a↵ect the degradation rate, which di↵ers

from unit to unit. Material properties parameters C is the degradation rate which is

defined as dD(t)/dt, where D(t) is the amount of degradation measurement at time

t. For example, with the di↵erent material properties, products with higher initial

degradation may reach out to the failure time threshold later than the product with

lower initial degradation.

• Component geometry or dimensions. Di↵erent sizes, shapes, or forms of the products

can also cause unit-to-unit variability.

• Within-unit variation. Spatial variation of material properties within a unit can often

happen and causes a variation.

Thus, we need to take those uncertainties into account and we conducted new data analy-

sis using a di↵erent method, which considered both unit-to-unit variation and failure time

uncertainties.

Our raw data is from ISO 10995:2011, later we will name this dataset ISO data. As

shown at the Appendix, ISO data consists of (1) four di↵erent test conditions; which is

the combination of temperature and relative humidity, specifically the four test conditions

combination are (85�C, 85%), (85�C, 70%), (65�C, 85%) and (70�C, 75%) (2) The number of

test disks within each test condition, with 20 test disk specimens in the first three conditions
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and 30 test disk specimens in the last conditions, in total, there are 90 test units in this

experiment. We can later rearrange this 90 test units each by time points to let the dataset

has 450 test units. See changes in below data compared with the original data from the

Appendix B; (3) test time in hours, each disk was tested during a time period with 5 recorded

time points, and recorded the (4) failure rate measurement, also called as degradation data

measurement. Therefore, our response variable Dijk in ISO data has a length of 450 because

each of the 90 test units repeated measured at 5 di↵erent time points. After wrangling the

data, part of our ISO data now shown as follow. In this table, it only shows the observed

degradation measurements for the first 3 test specimens (A1, A2, A3) under one of the test

conditions (85�C, 85%) with repeated time in (0,250,500,750,1000) hours.

Figure 1.2: A Part of ISO Data after Data Processing

1.2 Goal and Motivation

The lifetime prediction of high reliable products is of major importance in reliability

analysis. Reliability is the probability that a material, component, or system will perform

6



its intended function under defined operating conditions for a specified period of time[2].

The subject we are about to predict is optical media, such high reliable products’ lifetime

can be last a long period under normal life use condition. It is often hard to observe a

failure under the normal use condition over a reasonable testing period. ISO 10995:2011

introduced ADTs to obtain the degradation data by putting the product under more severe

environmental stress. Because many failure mechanisms can be traced to an underlying

degradation process and degradation would eventually lead to a weakness that can cause

failure.

An ADT test for the prediction can be involved with two models, one is fit the degradation

data into a regression model and the other one is failure distribution model for certain

degradation parameters[3]. The simple test steps can be done by:

1. Perform acceleration test and record the degradation measurements under each spe-

cific stress conditions, normally the test conditions are set by increase the level of

temperature and relative humidity compared with products normal use condition;

2. For each test unit, fit the degradation data into a regression analysis, and calculate

the failure time as the first crossing time when the degradation path reaches the per-

formance threshold value;

3. Fit the predicted failure times from each test unit into a failure distribution model;

4. The failure time can be extrapolated from the test conditions to the ambient (normal

use) condition (here is under 25�C, 50%) by fitting the acceleration degradation model.

This thesis study is based on the resources from both ISO 10995:2011 and an article

which written by Fang et al.[3], based on Fang et al., it used the frequentist approach which

is maximum likelihood estimation (MLE) method on hierarchical model parameters estima-

tion, then designed an algorithm based on Monte Carlo simulation to predict the median

lifetime of optical media. In terms of my works, instead of using MLE to estimated param-

eters, I use the Bayesian approach on parameter estimation. Specifically, using JAGS(Just
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Another Gibbs Sampler) which is based on the Gibbs Sampler algorithm, and STAN which

is based on No-U-Turn Sampler (NUTS). More specific in using Markov chain Monte Carlo

(MCMC) simulation algorithm and reliability analytical method. A Markov chain is a ran-

dom process that has the property that the future depends only on the current state of

the process and not the past, which is memoryless. With MCMC, one can draw samples

from some probability distribution. The motivation for using MCMC simulation is because

for approximating the intractable posterior distribution, MCMC provides an advanced al-

gorithm on computing process. In addition, the MCMC parameter estimation makes the

inference a faster computation since it based on the Gibbs Sampling which contains models

with many unobserved variables, then the likelihood function of these models is very hard

to take integrals using maximum likelihood estimation. However, with Bayesian approach

using MCMC, we only have to consider the likelihood function conditional on the unobserved

variables, thus make the computation faster than frequentist approach. More explanations

will be in section 3.2.

The frequentist approach and the Bayesian approach have di↵erent starting points and

standpoints when they discuss the issue of ”uncertainty”. The biggest di↵erence between the

frequentist and the Bayesian actually comes from the cognition of parameter space. The pa-

rameter space is the range of possible values of the parameter one cares about. In a Bayesian

framework, we model the data probabilistically as well as the parameters that govern the

distribution of the data. In a frequentist framework, the data is modeled probabilistically,

but the parameters are not.

This thesis aims to use degradation data from ISO 10995:2011 to predict optical media

lifetime and analyze reliability using Bayesian data analysis. More specific in using Markov

chain Monte Carlo (MCMC) simulation algorithm and reliability analytical method.

Another motivation is that the original standard failed to consider the uncertainties in

the failure time, which was assumed that the actual failure time is as the observed projected

failure time. We found that in fact the true failure time is not directly observed in many

8



cases, therefore, in addition to predict the lifetime by degradation data, this thesis also draws

uncertainty boundaries for both reliability and quantile lifetime, from which manufactures

could have more insight views on how does the product fail and on how much percentile it

fails during periodic intervals. What’s more in this thesis is in section 3.5, where gives a short

discussion on sensitivity analysis, which tells how posterior inferences vary for estimands and

predictive quantities of interest when trying a variety of di↵erent distributions for likelihood

and prior models.

ISO 10995 Data 
(Raw Data) 

Data Processing

Parameters 
Estimation

Monte Carlo 
Simulation in 

Reliability 

Median /Quantile 
Lifetime Prediction

Rearrange the 
Data into easy 

indexes
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Use Monte 
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degradation 
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Calculate the 
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over each 
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summarizing 

over each 
degradation 

paths.

Give quantiles 
prediction to 
draw quantie 
lifetime with 
crediable 
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Figure 1.3: A Flow Chart of this Study
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1.3 Overview

The remaining of this thesis is going to follow this format. Chapter 3 provides the model and

methodology details, such as general degradation path model[4] explanation; the parameters

estimation part using MCMC algorithm based on STAN[5] platform to generate posteriors

draw of model parameters; Chapter 4 talks about the reliability analysis[2] using simulation

data to predict the median lifetime of optical media and draw credible intervals for both reli-

ability and quantile lifetime; in Chapter 5, we will give a short view on sensitivity analysis[6],

which tells how posterior inferences vary for estimands and predictive quantities of interest

when trying a variety of di↵erent distributions for likelihood and prior models, it provides

a comparison between di↵erent prediction based on di↵erent priors we use when estimating

parameters. The above flow chart in Figure 1.3 is a simple process of the whole study.
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2 Literature Review

2.1 Previous Works

Degradation analysis relates to product reliability. Through an underlying degra-

dation process, it eventually leads to a weakness that can cause failure. When measuring

degradation is possible, degradation data can provide considerably more reliable information

than traditional data of failure-time. Accelerated degradation tests are used to obtain failure

information more quickly. Therefore ISO 10995:2011 introduced the acceleration degradation

test to obtain testing data for later analysis works.

Acceleration degradation test has been widely used to obtain data from high reliability

products more quickly. Since it is impossible to obtain and measure the actual degradation

in some reliability studies, while measures of product performance degradation may be avail-

able, modeling performance degradation may be useful but could be complicated because

performance may be a↵ected by more than one underlying degradation process. Depending

on the application, degradation data may be available continuously or at specific points in

time where measurements are taken. Besides, Direct observation of the physical degradation

process provides more credible on reliability estimatation and a firmer basis for often-needed

extrapolation.

In ISO 10995:2011, researchers trying to use the Eyring[7] acceleration model (Eyring

Method) to predict the median lifetime of Optical media. Henry Eyring developed Eyring

Equation in 1935, which updated the description of relationship between reaction rate and

temperature. It was five decades later than Arrhenius[8] model, which also describes the

11



temperature dependence of reaction rates. However, whereas Arrhenius Equation[9] can be

applied only with the relationship with temperature, while Eyring method can be applied in

both temperature and other factors. Using the Eyring model, the following equation which

handle condition variables of both temperature and relative humidity can be written as:

t = AT ae�H/kT e(B+C/T )RH (1)

where

t is the time to failure

A is the pre-exponential time constant;

T a is the pre-exponential temperature factor;

�H is the activation energy per molecule;

k is the Boltzmann’s constant (13807⇥ 10�23J/molecule degree K);

T is the temperature (in Kelvin);

B,C are the RH exponential constants;

RH is the relative humidity;

And based on the Eyring mode, an acceleration factor (AF) can be written as

AF = AT aexp[�H/kT + (B + C/T )log(RH)] (2)

Based on the temperature range that used in ISO 10995:2011 test method, ”a” and ”C”

would be better to set to zero[1]. Then here is the reduced Eyring model equation:

t = Ae�H/kT eB⇤RH (3)

By calculating di↵erent Acceleration Factors in all test conditions, ISO 10995:2011 con-

ducted the lifetime prediction for each stress condition, then given the ambient used condi-

tion, a lifetime in normal use condition can be extrapolated.
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In addition to conducting the ADTs, Meeker, Escobar, and Lu(1998)[10] give a com-

prehensive discussion on degradation modeling. Nelson(1981)[11] reviews the degradation

literature, surveys applications, and describes basic information on accelerated degradation

models. Tseng and Wen(2000)[12] describes the use of step-stress ADTs for assessing the

reliability of light-emitting diodes (LEDs). Fang et al.(2018)[3] uses frequency analysis to

estimate the parameters of Eyring model, gives a median lifetime prediction on optical media

base on the data provided from ISO 10995:2011.
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3 Methodology

3.1 Model for Degradation Data

Based on the ISO 10995:2011 standard, there are two stress variables that a↵ect the

lifetime of optical media, one is temperature (T) and the other one is relative humidity (RH),

The standard therefore makes four di↵erent combinations of T and RH as testing conditions;

in each condition, standard sets up 20-30 number of specimens to record their performance

under test conditions. For each specimen, at each testing period point, a non-linear hier-

archical model of degradation measurement is recorded to predicte the time-to-failure. The

obtained degradation measurements are assumed to exhibit a lognormal distribution, and the

location parameter of the lognormal distribution will be the only parameter that a↵ected by

stress variables. Model details would be provided later in section 3.1.2 Hierarchical Model,

and data details would be described in section 3.1.1 Degradation Data from ISO 10995:2011.

3.1.1 Degradation Data From ISO 10995:2011

In ISO 10995:2011 standard, the experiment is conducted in 4 testing conditions, 20

specimens in condition 1 which is (85�C, 85%), condition 2: (85�C, 70%), and condition 3:

(65�C, 85%), 30 specimens in condition 4: (70�C, 75%). Also, in conditions 1 and 2, the

specimens are recorded at time 0, 250, 500, 750, and 1000 hours from the duration of test;

in condition 3 specimens degradation are measured at 0, 500, 1000, 1500, and 2000 hours;

in condition 4 are measured at 0, 625, 1250, 1875, and 2500 hours. The experiment was

set di↵erent time duration under each stress condition because a longer time period is used
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under less severe stress condition, the products are assumed to spend more time until failure

is reached when the test condition is less stressful. The original degradation test data table

from ISO 10995:2011 is shown in the Appendix. The four stress conditions are listed in Table

3.1.

Table 3.1: ISO Testing Conditions

Conditions Temperature, (�C) Relative Humidity (%) Number of Specimens

1 85 85 20

2 85 70 20

3 65 85 20

4 70 75 30

As the raw data are shown in Appendix, there are 7 columns in total, which the first

column represent the specimens’ number, followed 5 columns are the time points in di↵erent

intervals, the last column is named projected failure, it represents the corresponding time

when the recorded data first across the threshold. According to ISO 10995:2011, the per-

formance threshold is the parity inner error[13] (PIE) which has a value of 280 for Optical

Media. Since not all test units in this experiment been observed as fail during the test

time period, the projected failure was calculated by fitting the degradation measurements

into a linear regression, where the ln of the error rate as the response variable and time in

log scaled as the predictor variable. Then the projected failure time is calculated from the

linear regression as the time at which the degradation measurement would have reached the

threshold which is Max PI Sum 8 of 280[1]. Notice that when later predicting reliability, this

threshold should also be taken log-transform since our model was built under the log scale.

The experiment conducted in ISO 10995:2011 was under the instruction of Acceleration

Degradation Tests (ADTs), optical media often designed for high-reliability systems, which

contain vary high level reliability, even after long periods of time. Using stress conditions

can make the products fail quickly compared with under normal use condition. Thus, a
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relationship between failure and degradation measurements can be use to make inferences

and predictions on failure time. Next, we will introduce model used in our analysis.

3.1.2 Hierarchical Degradation Model

An acceleration model can be used to extrapolate the products’ failure time from the

elevated acceleration test conditions to the normal use condition. The term ”acceleration”

has many di↵erent meanings within the field of reliability, but it generally implies making

”time” go more quickly, so that reliability information can be obtained more rapidly[2].

There are di↵erent types of tests, for example, Accelerated Life Tests (ALTs) is one obtains

information on the failure time for units that fail and lower bounds for the failure time for

units that do not fail; while another is Accelerated Degradation Tests (ADTs), which is one

observes, at one or more points in time, the amount of degradation for a unit.

Since our testing conditions are the combination of T and RH, which have more than

one accelerating variable, a generalized Eyring Model needs to be used to calculate the

acceleration factor which describes the relationship between di↵erent sets of conditions T ,

RH and the normal use condition. In particular, the acceleration factor under test condition

associated with T and RH is in equation (2).

Because this model has two levels, we aim to use a hierarchical degradation model which

describes the degradation paths under elevated acceleration test conditions that described

in the ISO data. The first level is the log scale of dependent variable log yijk for test

units i under test conditions j among time point k, and the dependent variable log yijk is

assumed to fit the non-linear degradation path model in the transformed time variable t�i
ijk

and measurement error ✏ijk, ie,

logyijk = Dijk + ✏ijk

= �0i + �1jt
�i
ijk

+ ✏ijk,
(4)

where i=1, ..., 90, j = 1,...,4, and k = 1,...,5. We assume that the measurement errors are
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i.i.d. ie, ✏ijk ⇠ N(0,�2).

The second level of this model is for random e↵ects, �0i and �i which according to unit-

to-unit variations, �0i is the initial degradation measurement in log scale varies among units

before accelerating under stress conditions; and the scale parameter �i which describes the

unit’s degradation path curve shape also varies from unit to unit. Therefore, �0i , �i and �1j

are given by

�0i = µ0 + ✏0i, (5)

�i = �0 + ✏1i, (6)

�1j = exp

0

B@logA+BlogRHj +�H
11605

Tj + 273.15

1

CA , (7)

where µ0, �0, logA, B , �H and � are the model parameters that need to be estimated.

For the random e↵ects �0i and �i, we can rewrite them as a vector that follows the bivariate

normal distribution with mean vector of µ0 and �0 because both �0i and �i are linear functions

of the same two independent normal random variables, their joint PDF takes a special form

bivariate normal PDF. Thus, the hyper-parameters �0 , �01 and �1 from the var-covariance

matrix also need to be estimated. The random e↵ect could be write as

2

64
�0i

�i

3

75 ⇠ MVN

0

B@

2

64
µ0

�0

3

75 ,

2

64
�2
0 �01

�01 �2
1

3

75

1

CA (8)

3.2 Parameters Estimation

Frequentist and Bayesian approaches use di↵erent methods to estimate parameters.
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Frequentists don’t assign probabilities to possible parameter values and they use point esti-

mates of unknown parameters to predict new data points (Maximum Likelihood Estimation);

while Bayesian approach introduces the probability distribution to any uncertain Parameter

given a likelihood function of some data, and update the estimation of parameters based on

the newly introduced information or evidence.

So far, we already have the time-to-failure dataset and a hierarchical degradation model

in Equation (4), we can now use those degradation data to process estimation in model

parameters. At the end of the last section, we mention that µ0, �0, logA, B , �H and � are

the model parameters to be estimated. For those parameters, we will give each of them a

prior distribution when using Bayesian to generate the estimation. A scaled inverse Wishart

distribution as prior for cov-variance matrix was recommended by Gelman and Hill[14] ,

where we also need to estimate those hyper-parameters : �0 , �01 and �1. However, In Stan,

the conjugate of the multiple priors has no limitation, based on Gelman and Hill, we take the

decomposition of cov-variance matrix prior into a coe�cient scalar and a correlation matrix

to avoid computation directly on the co-variance matrix. Therefore, our goal in this section

is to use one of the MCMC algorithms to simulate those 9 parameters.

Before discussing Bayesian approach, one has to know there is another common approach

to estimate parameters, classical frequentist approach. This approach is statistically driven,

and defines probability only for a certain event as the limit of its relative frequency in

many trials. The methods that frequentist approach used are usually Maximum Likelihood

Estimation and Least Squares Estimation. In contrast, Bayesian approach is widely use the

probability on both sampling and represent subjective uncertainty. The sampling method

Markov Chain Monte–Carlo (MCMC) will throughout the whole section of this chapter.

3.2.1 Gibbs Sampler

Markov Chain Monte–Carlo (MCMC) is a popular method for obtaining information

about distributions, especially for estimating posterior distributions in Bayesian inference.

Over the last two decades, the use of MCMC sampling has increasingly grown. MCMC has

18



two parts: Markov Chain and Monte Carlo. The first part, in Markov Chain, time is discrete

and a state X at time t + 1 only depends on the one preceding state X at time t, and it is

independent from the past states X(t � 1), . . . , X(1). The second part Monte Carlo (MC)

is the practice of estimating the properties of a distribution by examining random samples

from the distribution, this approach would be to draw a large number of random samples

from some common used priors distributions, such as normal distribution, Beta distribution

and uniform distribution, then calculate the sample mean of those.

In the modern Bayesian statistical inference, the research of calculating high dimensional

posterior integral by MC sampling method has developed rapidly. Gibbs sampler is one of

the common method in MCMC algorithms. It was first proposed by Grenander (1983)[15],

while the formal term was introduced by German and German (1984)[16]. The basic idea of

Gibbs sampling[17] is to construct Markov chain {✓(i)} through the conditional distribution

family of the components of the parameter vector ✓ when inferring the high-dimensional

parameters posteriors, and make its stationary distribution the target distribution. Suppose

that ✓ = (✓1, . . . , ✓p)0 is the parameter vector of p dimension, and ⇡(✓|D) is the posterior

distribution of theta after the observed data set D, then the basic sampling method is as

follows:

• step 0 : Arbitraryly picking a starting point ✓(0) = (✓1,0, ✓2,0, . . . , ✓p,0)0, and set i = 0;

• step 1 : Generate ✓(i+1) = (✓1,i+1, ✓2,i+1, . . . , ✓p,i+1)0 as follow:

generating ✓1,i+1 ⇠ ⇡(✓1|✓2,i, . . . , ✓p,i, D),

generating ✓2,i+1 ⇠ ⇡(✓2|✓1,i+1, ✓3,i, . . . , ✓p,i, D),

. . . . . . . . . . . .

generating ✓p,i+1 ⇠ ⇡(✓p|✓1,i+1, ✓2,i+1, . . . , ✓p�1,i+1, D),

• step 2 : Then set i = i+ 1, and return to step 1.[18]
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In this algorithm process, each component of ✓ is generated in a natural order, and each

loop needs to generate p random variables.

3.2.2 JAGS and STAN

Both JAGS and STAN are the R interface platforms. STAN is a C++ library for

Bayesian modeling and inference that primarily uses the No-U-Turn sampler (NUTS) (Ho↵-

man and Gelman 2012[19]) to obtain posterior simulations given a user-specified model and

data. JAGS stands for Just Another Gibbs Sampler. It is a programming language for anal-

ysis of Bayesian hierarchical models using Markov Chain Monte Carlo (MCMC) simulation.

It uses a dialect of the BUGS language, similar but a little di↵erent to OpenBUGS and

WinBUGS.

STAN and JAGS are quite di↵erent probabilistic programming languages but they can

be both used for the Bayesian data analysis. JAGS is similar to WinBUGS and OpenBUGS,

where a model states just relations between variables. While Stan is a program where a

model has clearly defined parts, such as Data, Parameters, and Model blocks. Both STAN

and BUGS can be run by themselves, but it has been found that STAN runs most convenient

from R. Since JAGS and STAN has di↵erent way to estimate parameters, the number of

MCMC samples that they need are di↵erent too. Stan runs in a more e�cient way compared

with JAGS, hence needing fewer samples to obtain a posterior result of similar quality with

JAGS. From a view based on model development, JAGS (rjags, R2jags) is slightly more time

consuming when integrated in R than STAN (RStan), mostly because JAGS models pretend

to be R models, which means the editor will help JAGS to take those complicated integrals,

while RStan has its own model just in a text vector, which has a better solution in hard

compute integrals. In addition, STAN is also a highly organized model coding language.

In the 1940s and 1950s, the Monte Carlo method was founded by Metropolis, Von Neu-

mann and Stanislaw Ulam, after whom STAN was named. STAN is a probabilistic program-

ming language based on C++, mainly used for Bayesian inference. With STAN, users need
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to provide data, script models written by STAN code, compile the program are written by

Stan, and then run with the data. The posterior simulation process of model parameters is

automatically realized. In addition to compiling and running STAN scripts to write models

in a command line environment, STAN provides interfaces to other programming languages

such as R, Python, Matlab, and so on, making it easy for users familiar with other program-

ming languages to invoke and analyze data. However, unlike such interpreted programming

languages as Python and R, STAN code needs to be translated into C++ code and then

compiled using a system compiler. If the R language interface is used, the compiled dynamic

link library can be loaded into R memory and then executed by other R function calls. Stan’s

built-in sampler no-u-turn (NUTS) is derived from the Hamiltonian Monte Carlo (HMC) al-

gorithm and was first proposed by Ho↵man and Gelman (2014). Software BUGS and JAGS

with similar functions to STAN mainly use Gibbs sampler. The former was developed based

on Pascal language from 1989 to 2004, while the latter was actively developed based on

C++ from 2007 to 2013. In terms of time, STAN has the advantage of late development,

especially in terms of flexibility and extensibility. It supports arbitrary target functions, and

the model language is simpler and easier to learn. In modeling analysis of large amounts of

data, Stan can process complex models more quickly, thanks in part to its e�cient algorithm

implementation and memory management, and in part to the advanced MCMC algorithm -

the HMC algorithm with the NUTS sampler.

3.2.3 STAN Convergence

Once we have the hierarchical degradation model in section 3.1.2, we can use the

STAN code to fit into this model. The structure of RStan consists of three fundamental

parts, with some of the parts we need to do transformed, which means pretreatment or

precalculate. These three parts in STAN code are data block, parameters block and model

block.

for example, the simple linear regression model, STAN can be coding as follow into three

basic blocks: data, parameters and model blocks. The example R code is shown in Appendix
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A-1.

Implement for our model in equation (4), we can write it equivalently into

yijk ⇠ lognormal(Dijk, �), (9)

where

Dijk = �0i + �1jt
�i
ijk
, (10)

Therefore, we can re-write our degradation model as follow:

yijk ⇠ lognormal(�0i + �1jt
�i
ijk
, �), (11)

From the above equation, we can write a log-normal with �0i + �1jt
�i
ijk

mean and � standard

deviation in the model block using STAN. Before importing the data, it is always helpful

when wrangling the raw data first. As shown in appendix and section 1.1 with after wrangling

dataset, we can fit this ISO data into our model and using STAN as the computation platform

to calculate parameters.

With STAN, we can fit the degradation model in and generate MCMC posteriors draws

for each parameter. Two notices should be taken into concern. First, scaling. In most cases,

the data set will contain features highly varying in magnitudes, units and range. However,

since most MCMC algorithms use Euclidean distance between two data points in the cal-

culation, this problem should be pre-processing via scaling. By doing so, we can bring all

features to the same level of magnitudes. In our ISO data, we have to scale the temperatures

and relative humidity. The methods we preformed here is using Min-Max Scaling[20], this

method will bring the value between 0 and 1, we named the after scaling temperatures and

relative humidity as X1 and X2, respectively. Secondly, as shown before in equation (7) and

(8), �1j and var-covariance matrix need to be declared at transformed parameters block be-
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fore enter into the model block. Thus, a transformed data block for X1 and X2, transformed

parameters block for �1j and var-covariance matrix have to be introduced into our STAN

code. When compiling at STAN, we should put the scaled temperatures and relative humid-

ity into transformed data block; and put the �1j and var-covariance into the transformed

parameters block. The partial of the STAN code for those transformed processes would be

provided in Appendix A-2.

When compiling STAN code, the most important thing is to diagnostic the MCMC chains

converged. Here are some key indicators that guide if an MCMC chain is converged, or say

the posterior draws are stationary distributed.

• Density Plot: Figure 3.1 is the parameters’ density plot from the MCMC result, which

shows normal/bell shape among the parameters. Those shapes indicate the MCMC

simulation chains have been reached for a stationary state where the simulation results

have little a↵ected by the priors. The stationary states are also implying that the

parameters from this MCMC chain have already converted.

Figure 3.1: Density Plots for Convergence Parameters

23



• MCMC Trace is a useful diagnostic plot, which is a time series plot of the Markov

chains. A trace plot is a line chart with x-axis represents time and y-axis represents

the posterior values of the draws. Ideally, a well mixed trace plot that is no apparent

anomalies means the sample draw from MCMC chains become stationary. To improve

the trace plot, one can increase the number of iterations in each MCMC chain to

increase the sample size draw from the MCMC run, and let the chains explore the

sample space many times; or one can increase the number of warm-up period, also

called burn-in period. With more warm-up, the more likely to get the stationary

chains. Here in figure 3.2 is the trace plot for convergence draws, and figure 3.3 is the

trace plot for non-converged draws.

Figure 3.2: Trace Plots for Convergence Parameters
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Figure 3.3: Trace Plots for Non-convergence Parameters

• Autocorrelation Function Plots (ACF) is the function that describe the relationship be-

tween lags and the autocorrelations. It is a line chart that contains the autocorrelation

function, with x-axis represents the number of lags and y-axis represents the autocor-

relations corresponding to the lags. By inspecting trace plots, we can get a sense of

the degree of auto-correlation from the draws. From these plots, one can determine if

the MCMC chain get converged from looking at if the auto-correlation reduced quickly

from lag 1. The desired ACF plots should show that large autocorrelation at short

lags, but then goes to zero pretty quickly, which means the iterations of each chain are

independent samples. To improve the ACF plots, we can thin the MCMC chain, that

is we discard n samples for every sample that we keep. Here in Figure 3.4 the desired

ACF plot.
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Figure 3.4: ACF Plots for Convergence Parameters

• Rhat from Table 2 usually shows at the MCMC result is another convergence diagnostic

indicator that tells if a parameter is converted. It compares the between- and within-

chain estimates for model parameters. The not converged chains have R-hat larger

than 1, which means not all the MCMC chains mixed very well. It is recommended

that a sensitive estimation with R-hat is less than 1.05.

Sometimes we can get an ACF plot shows each chain is independent samples but the

trace plot doesn’t converge. That happens since ACF shows the auto-correlation for each

chain but trace shows the draws changes over time for all chains. Therefore, it is advisable

to use density, trace and ACF plots together.

3.2.4 STAN Output

From Stan sampler draws, we could have the posteriors simulation for the model

parameters. For each draw, it’s a set of parameters combination. The simplest way to show

an overview of a Stan result is to print the Stan model fit, as shown below in Table ??.
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Table 3.2: Parameters Estimation From STAN output

Parameters Mean Estimation SE Mean Standard Error Rhat

LogA 3.37 0.032 0.19 1.00

B 2.67 0.01 0.161 1.00

�H -0.57 0.003 0.17 1.00

� 0.42 0.002 0.0046 1.00

�0 0.15 0.000 0.0262 1.00

�01 -0.01 0.001 0.0017 1.00

�1 0.035 0.010 0.0015 1.00

µ0 2.83 0.001 0.04 1.00

�0 0.70 0.004 0.03 1.00

The Stan result in Figure 2 shows the parameters’ mean, mean standard error, standard

error and Rhat value within each draws. We have to diagnostic for the accuracy of the

results by looking at the last two columns ne↵ and Rhat. ne↵ represents the crude measure

of an e↵ective sample size from the total post-warmup draws; and Rhat is the potential scale

reduction factor on split chains, at convergence, Rhat value is between 0.99 to 1.01.

In our STAN model, we run a total post-warmup draws = 7600 and print the overall

results in figure 3.5. The equals 1.00 Rhat value for each parameter is not only a reasonable

sign to decide the MCMC chain has already converged. We also have to check the convergence

from both plots and Rhat to make sure we have a sensitive enough posteriors estimation.
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4 Reliability Analysis

Reliability Analysis has been developed for several reasons, such as predicting product

warranty costs, accessing characteristics of materials over a product’s design life and so on.

Technically, reliability is often defined as the probability that a system, machine, device, etc.

will perform its intended function under operating conditions for a specific period of time.

In short, we say reliability is quality over time, and over the past ten decades, there has been

an increasing interest in improving quality, productivity, and reliability of manufactured

products. Our problem in predicting the lifetime of Optical Media, one should know that

with extremely high reliability of Optical Media, reliability analysis with only the degradation

data from tests maybe not sensitive. Besides, the history of Optical Media is pretty short,

less than 30 years, but the lifetime may extend between 30 to 300 years from previous

studies. Based on the ISO 10995:2011 and Fang et al., each of them gave a median lifetime

prediction for 35.94 years, which is 31,789,170 hours. (From ISO 10995:2011, the standard

time unit is hours, which gives the median lifetime in log scaled is 12.66) and 50.5 years (log

scaled 12.99). Here we’d like to use our simulated parameter estimation from STAN to fit

a reliability model and give our own prediction on the median lifetime of Optical Media. In

our prediction section, we provide richer summaries including reliability and quantile lifetime

with uncertainty bounds. With our more detailed prediction, manufactures would have a

better understanding of their products’ reliability performance and a guide for them to make

decisions on how well their products performed during a whole service life as well as under

a specific percentage of lifetime period.
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4.1 Degradation Path Model

As mentioned previously in ISO 10995, the raw data was collected from an acceleration

degradation test, and most failures stem from the potential degradation of the product.In

general, three shapes for degradation curves in arbitrary units of degradation and time : liner,

convex, and concave. Convex degradation is the models with increasing degradation rate and

concave degradation is the model with decreasing degradation rate. Linear degradation is

applicable in some simple wear process, take the automobile tire wear for example, say D(t)

is the amount of wear at time t and wear rate is dD(t)/dt = C. then the linear degradation

model is

D(t) = D(0) + C ⇥ t. (12)

where the parameters D(0) is the initial value of degradation and C is the degradation rate,

both of them could be taken as constant for individual units, but random from unit-to-unit.

In our data, there is some degree of unit-to-unit variability, these variabilities which have

mentioned in section 1.1 cause the di↵erence in both degradation curves and the failure

times. By taking all these into consideration, we build a general degradation path model for

ISO data. Here originally, the actual degradation path for each unit over time is denoted

by D(t),t > 0. The values of D(t) are sampled at discrete time points t1, t2, . . . . Then the

observed degradation measurements yij of unit i at time tj is

yij = Dij + ✏ij, i = 1, . . . , n, j = 1, . . . ,mi. (13)

While we have a multi-level model for our specific problem. Our degradation path model
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can be written as

logyijk = Dijk + ✏ijk

= �0i + �1jt
�i
ijk

+ ✏ijk,
(14)

Where we took log transformation to make sure the degradation path model is linear. To

access the reliability, we need to evaluate a specified model forD(t) andDf , whereDf usually

represents the threshold value for the testing products, and we define the first crossing time

with the threshold would be considered as failure time with a distribution of failure time.

Generally, this specified distribution can be expressed as a function of the degradation model

parameters and time t. Therefore, we defined a unit’s failure time is at the time t if the

degradation level first crossing Df at time t, then

Pr(T  t) = F (t) = F (t; ✓�) = Pr[D(t, �1, . . . , �k) � Df ]. (15)

With equation (18), for a fixed Df , the distribution of T depends on the basic path param-

eters in ✓�. In some simple cases, it may be easy to calculate a closed-form expression for

F (T ), however in general, such a closed-form expression is hard to get especially in some

practical path models because the integration for random e↵ect terms is hard to get, therefore

when more than one of the �1, . . . , �k is random, then we have to using simulation method

to evaluate F (t). In the next subsection, we would discuss the Monte Carlo evaluation on

no closed-form F (t) and apply this method to our problem.

4.2 Monte Carlo Simulation to Draw Degradation Paths

Monte Carlo simulation is a commonly used versatile method for evaluating F (t) at

most practical reliability cases. The basic idea is to generate a large number of degradation

paths from the assumed degradation path model, then using the proportion of path which
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pass the threshold DF at each time t as the evaluation of F (t). The algorithm is as follows:

1. Generate N simulated realizations of parameters �, where N is a large number. In our

case, we generate the parameters from STAN;

2. Compute the N simulated failure time corresponding to the N realizations of parame-

ters, finding the number of crossing time for each path at all time points;

3. For any desired values of t, use

F (t) ⇡
Number of Simulated First Crossing Times  t

N
(16)

as an evaluation of F (t).

Using this method, we can generate i = N sample draws with j = 200 paths at each time

point tk. The model function of F (t) can be written into R code, see details in Appendix

A-3. Then from the model of F (t), we have the degradation path figures, for example:
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Figure 4.1: 500 Simulated Degradation Paths Cross the Threshold

From above Figure 4.1, we can see in this specific sample draw, it is nearly no paths cross

the threshold log(280) in dashed line before time point 12.50, and all the paths have reached

the threshold value near time point 14.30. Here we have to note that the time point does

not mean the actual time in hours that the product performed during the time, it is the log

scaled time points. Then when the products start to fail at time point 12.50 is actually in real

time 268,337 hours; and all products failed at time point 14.30 is actually 1,623,346 hours, in

terms of years, the lifetime approximately in a range 0f [30.63, 185.31] years. However, our

goal is to estimate the product’s lifetime with uncertainty bounds, especially in predicting

quantile lifetime and 50% as median lifetime with these simulated results, then we also have

to summarize over each path, and summarizing over each MCMC draws to get the median

lifetime with uncertainty boundaries. Detail explanation would be provided in the following

subsection. Figure 4.2 and 4.3 is the reliability curve with 95% credible interval in both real
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time hours and log scaled time.

Figure 4.2: Reliability Curve with 95% Credible Interval in Real Time Hours
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Figure 4.3: Reliability Curve with 95% Credible Interval in Log Scaled Time

As we know from the relationship between the reliability and failure rate function, R(t)

= 1 - F(t). The term reliability is a function that gives the probability that an object of

interest will survive beyond any specified time. Thus, we can plot our reliability curve as

the above figure. The detail procedures would be followed below:

1. Take the computation results from the F (t), which is the number of simulated degra-

dation paths calculated by the MCMC draws. Specifically with j = 500 paths for each

i = 2000 draws.

2. Summarizing over 500 paths within each draws over time, then take the proportion
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of the number of degradation measurements greater than log(280) at each time point,

this proportion as the failure rate at each time point. Then we can plot one failure rate

curve for each draws, in total, we are going to have 2000 di↵erent failure rate curves.

3. Within the failure proportion from step 2, summarizing over each MCMC draws at

each time points to get the median and 95% credible interval of F (t).

4. Based on the relationship between failure time and reliability function R(t)=1-F (t),

we have the projected reliability curve with 95% credible interval.

Summarizing over each path j=M
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j x k

j x k

take proportion of > log(280)
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Figure 4.4: Graphical Explanation of Simulating Reliability Curve

4.3 Quantile Lifetime Prediction with Credible Interval

Due to the nature of hierarchical model, products’ median lifetime is a challenge to

be estimated, at the same time it is very useful to engineers to be able to get some ideas

of quantile lifetime because our goals are not only aim to compare the median lifetime with

ISO prediction which was estimated without considering uncertainties, but also would like

to draw the percentage fails during a whole lifetime prediction. From the standard, we know

the failure time is defined as the first crossing time from the threshold time, which is so-called

PIE Sum 8 reaches 280 for the product type DVD-R/-RW, +R/+RW. In our model since log

transformation has been taken, we need to capture the PIE Sum 8 also in log scale, which

makes the threshold becomes log(280). The algorithm to estimate the median lifetime and
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95% credible interval from the simulation method mentioned in section 3.3.2 would be used

here and the specific steps would follow:

Step 1. From the simulation result F (t) in the last section, we know that failure represents

the time-to-failure, with each failure[1, 2, . . . , i] is the number of simulation MCMC

drawers where i = 2000, and inside each MCMC draw, is a number of j simulated

degradation paths over the total time points k, where j = 500 , and k = 800; based

on those information, we can calculate the quantile lifetime tq, where q represents the

percentile, range from 0 to 1; and t represents the predicted lifetime.

Step 2. To compute the median lifetime, we have to summarize over degradation paths first,

then summarizing over MCMC draw. Therefore, we work within the MCMC draws first

to summarizing over each path, then take the first crossing time greater than log(280)

for each path, this first crossing time as the failure lifetime of each degradation path.

Then with each MCMC drawers, there would be 500 di↵erent failure lifetimes. We

take quantile for all 500 lifetimes within each draw. Then each MCMC draw has 500

tq as tq1, tq2, . . . , tq500. Each tq is a vector of length number of q, in our study, we

choose 15 di↵erent percentiles as q = 0.01,q = 0.05, . . . , q = 0.99. Results in Table ??.

Step 3. For a total number of 2000 MCMC draws, we have 2000 matrixs of quantile lifetimes

prediction. We can take the 95% credible interval among those quantile lifetimes to

get the prediction with uncertainty bounds. In particular, the median lifetime with

95% credible interval can also be predicted by setting q=0.5.
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Summarizing over each path j=M
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Figure 4.5: Graphical Explanation of Simulating Quantile Lifetime with CI

The above simulation algorithm gives a predicting 95% credible interval of median lifetime

under 25�C and 50% RH ambient condition is [13.36,14.27] in log scaled years. As compared

with the ISO 10995:2011 standard prediction C.I. of median lifetime, [12.63,12.69], our pre-

diction is much wider than the standard’s because ISO 10995:2011 fails to take uncertainty

into account and it fails assumed the observed failure time is the actual failure time. Be-

sides, our method to generate median lifetime also using Monte Carlo simulation to generate

a large number of simulation data, which provides robustness in predicting.

Our study in reliability analysis is not only interested in predicting products’ median

lifetime, but also in predicting the quantile lifetime, with which the manufacture can design

the warranty years for their products, researchers can use the quantile lifetime as a reference

when evaluating the products’ performance over di↵erent time period. As we know, the

median lifetime is at 0.5 quantile lifetime, our goal in quantile lifetime is to predict tq then

percentage q = 0.01, 0.1, . . . , 0.99. With those di↵erent quantile predictions, the user

would have an approximate idea of after some specific years, how many percentages does the

product fails. Figure 4.6 is the estimated quantile lifetime prediction.
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Figure 4.6: Quantile Lifetime Prediction with 95% Credible Interval

The corresponding quantile lifetime prediction in real years is shown in below table. The

converting process takes exponential first to convert into real time in hours, then divided by

24 (hours per day) and 365 (days per year) to get the real time in years. Comparing with

previous researches, the estimated lifetime of Optical Media under recommended storage

conditions, CD-R, DVD-R, and DVD+R discs should have a life expectancy of 100 to 200

years or more; CD-RW, DVD-RW, DVD+RW, and DVD-RAM discs should have a life

expectancy of 25 years or more. While it may vary from the di↵erent writing and reading

process when using the discs.
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Table 4.1: Quantile Lifetime Prediction with 95% Credible Interval

Quantile log years 95% lower bounds(in log) 95% upper bounds(in log)

1% 13.15 58.67 12.82 13.62

5% 13.35 71.66 13.03 13.82

10% 13.46 80.00 13.12 13.92

20% 13.58 90.20 13.24 14.04

25% 13.62 93.88 13.28 14.09

30% 13.66 97.72 13.31 14.12

40% 13.73 104.80 13.33 14.18

50% 13.79 111.28 13.36 14.27

60% 13.85 118.16 13.47 14.29

70% 13.92 126.73 13.53 14.36

80% 13.99 135.92 13.59 14.44

85% 14.03 141.46 13.62 14.48

90% 14.08 148.71 13.66 14.53

95% 14.16 161.04 13.71 14.58

99% 14.28 181.64 13.82 14.73
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5 Sensitivity Analysis

Sensitivity analysis is useful for evaluating decision outcomes when situations are

di↵erent from the key assumptions. It helps to assess the risks of the strategy and to

determine how sensitive the output would be to the changes in assumptions or specified

input values. In Bayesian data analysis, the inference results are often dependent on the

assumptions of the prior distributions. In this section, we examine some alternative choices

of the prior distributions to understand the robustness of our predictions.

So far, we have built the model and predicted the reliability and quantile lifetime of the

device. When estimating model parameters using Bayesian approach, we chose normal prior

distributions for some model parameters. Given that normal distributions are notoriously

nonrobust to outliers, a more robust model can be used to assess the sensitivity of posterior

inference to the prior choices. The basic idea of a sensitivity analysis is to try a variety

of di↵erent distributions for priors and see how posterior inferences vary for estimands and

predictive quantities of interest. In the section, we are going to draw the posterior from an

alternative precision level in the normal distribution that we have applied before.

5.1 Priors Selection

Sensitivity analysis of prior distributions plays an important role in the application of

Bayesian analysis. This is especially true for Bayesian hierarchical models, because at deeper

levels of the hierarchy, the interpretability of parameters becomes increasingly challenging.
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To understand how does the impact of the prior choices inference estimation results, one can

explore both non-informative and informative prior choices and to compare the a↵ection on

the parameter estimation. Then in our case, di↵erent estimation draws from MCMC would

make changes in the results of predicted reliability and quantile lifetime. We begin with a

brief introduction of the appropriate prior selection in Bayesian analysis.

Generally speaking, there are five levels of priors: 1) Flat prior; 2) Super-vague but proper

prior; 3) Weakly informative prior; 4) Generic weakly informative prior; and 5) Specific

informative prior. Always note that the terms of ”informative” or ”weakly informative”

depend crucially on what questions are being asked. One should avoid choosing priors after

seeing the data since the selected priors could be a↵ected by what we see in the data and

do not truly reflect our prior knowledge on possible values of the parameters. Flat and

super-vague priors are usually used when there is no prior knowledge about the underlying

process and what are possible ranges of the parameter values.

Some principles could be helpful when choosing proper priors in Stan. First is the com-

putational goal for reducing instability typically arising from bad geometry in the posterior

distribution. For example, having heavy tails can lead to a generation of a smaller number

of e↵ective samples and have heavy tails; for the multivariate normal distribution, generally

generate the covariance from Wishart or Inverse Wishart distribution, however in Stan, the

computational issue cause it’s di�cult to realize, since inverting the covariance is numerically

unstable and ine�cient in Stan, for the computationally advantageous, it is better to use the

Cholesky decomposition, which is more numerically stable and e�cient than direct matrix

inversion and also there has already a consensus that to decompose a covariance matrix into

a correlation matrix when giving prior for a covariance matrix.

5.2 Comparison of Parameter Estimation

Given the lack of prior understanding of the parameters, our comparison will focus on be-
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tween the non-informative vs. the weakly informative prior distributions, i.e. normal(0, 1000)

vs. the weakly informative prior, normal(0, 100) for parameter, Table 5.1 shows the assigned

prior distribution of each parameters, and for covariance parameters where named L Sigma

has to be decomposed due to the computational principle in STAN, then we assign priors

distribution for the correlation matrix L Omega and the scalar vector L std to make sure

the covariance matrix can be realized from the multi normal distribution.The R code for

implementing this comparison can be found in Appendix A-4.

Table 5.1: Priors Selected in Stan

Parameters in Stan Selected Priors in Stan

µ0 ⇠ normal(0, sqrt(100))

logA ⇠ normal(0, sqrt(100))

B ⇠ normal(0, sqrt(100))

�H ⇠ normal(0, sqrt(100))

�0 ⇠ normal(0, sqrt(100))

� ⇠ gamma(1e� 2, 1e� 2)

�0 L Sigma[1,1]

�1 L Sigma[2,2]

�01 L Sigma[1,2]

L Sigma quad form diag(L Omega,L std)

L Omega ⇠ lkj corr(2)

L std ⇠ cauchy(0, 2.5)

Table 5.2 summarizes the estimated model parameters with the di↵erent choices of prior

distributions. As shown, the parameter estimation is similar between the two priors results.

The estimation based on the prior normal(0, 100) contains more information than the prior

normal(0, 1000), it can cause some of the parameter estimation slightly smaller or more
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central than the estimation based on non-information prior, which allows the parameters to

be estimated from the original data. Besides, we almost assign the non-informative prior

distributions to all the individual parameters, then the model would fit the data very closely.

Since as we keep updating the priors with more information by decreasing the variance

from prior distribution, but still keep the priors vogue, the information contains in prior

distributions would start but not at all to dominate the information from data, then the

estimation would fall into a more sensitive range, thus the value of estimated parameters

would be more precise.

Table 5.2: Parameters Estimation Comparison using Di↵erent Priors

parameters normal(0, 1000) normal(0, 100)

µ0 2.831686 2.8283952

logA 3.3688449 3.353566

B 2.673266 2.656245

�H -0.5702964 -0.5753626

�0 0.7012557 0.6980425

� 0.4238182 0.4229889

�0 0.1522418 0.1495703

�1 0.0359529 0.0349437

�01 -0.00902528 -0.0068488

5.3 Comparison of Predicted Reliability and Quantile Lifetime

Table 5.3 summarized the predicted quantile lifetime under the two prior choices. Ac-

cording to the normal(0, 1000) prediction, the predicted lifetime is relatively central than

the prediction based on normal(0, 100).
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Table 5.3: Comparison of the Predicted Quantile Lifetime using Di↵erent Priors

Quantile normal(0, 100) in log scale normal(0, 100) in archaeological years normal(0, 1000) in log scale normal(0, 1000) in archaeological years

1% 13.21 62.31 13.15 58.67

5% 13.41 76.10 13.35 71.66

10% 13.51 84.10 13.46 80.00

20% 13.62 93.88 13.58 90.20

25% 13.66 97.71 13.62 93.88

30% 13.70 101.7 13.66 97.72

40% 13.76 107.99 13.73 104.80

50% 13.82 114.67 13.79 111.28

60% 13.87 120.55 13.85 118.16

70% 13.93 128.00 13.92 126.73

80% 13.99 135.92 13.99 135.92

85% 14.02 140.06 14.03 141.46

90% 14.07 147.24 14.08 148.71

95% 14.13 156.34 14.16 161.04

99% 14.24 175.52 14.28 181.64

From the above Table 5.3 in comparison of the predicted quantile lifetime under the two

prior choices of normal(0, 1000) and normal(0, 100). Results are shown in archaeological

years and also in the log scale as in ISO 10995:2011.) we could see tq1000 which is quan-

tile lifetime prediction under priors normal(0, 1000) gives a prediction in median lifetime

of 13.82 in log scale which is 114.67 years in real time; and tq100 quantile lifetime under

priors normal(0, 100) gives a prediction in median lifetime of 13.79 in log scale which is

111.28 years, where q = (0.01, 0.05, . . . , 0.99). The 95% median lifetime credible interval

is [13.43,14.24] and [13.36, 14.27] respectively. With the smaller the standard deviation is

in the prior distribution, the wider the credible interval lays. The reason we use the ”tra-

ditional” standard deviation (square root of variance) is because R or STAN has defined

using � inside the normal prior distribution, while RJAGS using precision. Therefore, in

terms of precision, normal(0, 1000) and normal(0, 100) are having precision in 0.001 and

0.01 respectively, which represents with larger precision value, the estimation can be narrow

down to a small interval. In general, if we had more informative prior, the result would be

more precise.
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5.4 Overall Prediction Results

In summary from the above analysis, we give the overall prediction result as shown

in below Figure 5.1. Compared with the two results from the sensitivity analysis, the

quantile lifetime tq1000 and tq100 were calculated using the parameters that estimated from

Bayesian inference given the weakly-informative prior normal(0, 100), and non-informative

prior normal(0, 1000), respectively. However, the di↵erence is normal(0, 100) provides more

information than normal(0, 1000) because it has the smaller value of variance. As the 95%

credible intervals shown from the previous section, the quantile lifetime tq100 which contains

more information when estimating model parameters has a relatively narrow interval, indi-

cates the predicting result is more precise than the one from tq1000 prediction. It appears in

the Figure 5.1 that the dashed lines represent 95% credible interval of quantile lifetime from

tq100 is narrow and it’s inside the interval of dot lines which are the 95% credible interval

of median lifetime from tq1000. Therefore, we give our prediction based on the result from

tq100 since it provides a more accurate and precise prediction. The 95% credible interval of

median lifetime would be [13.36, 14.27] in log scaled time. The median lifetime prediction is

13.79 from Table 5 which in real time years is 111.28 years. Refers to the Byers[21]’s previous

study, the estimated optical media life expectancy can range from 20 to 200 years, our esti-

mation also falls within the same sensitive range prediction. Here we take life expectancy,

longevity, or service life of optical media is all considered as ”the period of time in which the

information recorded on the disc can be retrieved without loss.”[13]
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Figure 5.1: Reliability Curve with 95% Credible Interval in Log Scaled Time
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6 Concluding Remarks

Bayesian data analysis provides a useful framework for dealing with uncertainty. Partic-

ularly in reliability analysis, often a large number of failure data is hard to obtain due to the

cost and logistic constraints for conducting the tests and collecting the data. When limited

data are available, prior information can be leveraged to provide more precise estimation of

the degradation and lifetime distribution. In Bayesian statistics, the latest development of

the MCMC approaches makes it much easier to obtain an approximate posterior distribution

for complex hierarchical models. In reliability analysis, Monte Carlo simulation is also a par-

ticularly versatile method to deal with the integration of a large number of model parameters

when there is not a closed-form expression of the reliability functions. By generating a large

number of random degradation paths from the general assumed degradation path model,

then using the proportion of path crossing the threshold by time t as an evaluation of F (t).

This thesis uses a Bayesian method to analyze the ISO 10995:2011 data. By using a

nonlinear hierarchical degradation model with random e↵ects included to capture unit-to-

unit variation, a more straightforward and realistic assessment of uncertainty is achieved

to avoid overconfidence in the predicted reliability in ISO 10995:2011. The method used

this thesis provides a general framework for reliability analysis based on ADT data. The

MCMC approach can be applied to a variety of linear and nonlinear degradation path models.

The Monte Carlo simulation-based method for assessing reliability and quantile lifetime can

be adapted to broad degradation models with analytically intractable reliability functions.
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Especially for MCMC improved a lot on computing the complicated integration that the

frequentist approach is hard to realize.

In addition, ISO 10995:2011 and other existing work only estimates median lifetime of

the optical media. This thesis provides richer inference on product reliability and quantile

lifetime metrics, which o↵ers versatile summaries to facilitate informative decision-making

for system management and maintenance.
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Appendix A Three basic blocks in RStan (data, parameters, and model)

data {

int <lower=0> N;

vector[N] x;

vector[N] y;

}

parameters {

real alpha; // intercept parameter

real beta; // slope parameter

real <lower=0> sigma; // declare parameter

// and add constrain for sigma

}

model {

y ~ normal(alpha + beta * x, sigma);

}
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Appendix B Example of transformed data and transformed parameters

transformed data {

real x1[(N-1) *5+K]; // x1 and x2 are scaled data ,

real x2[(N-1) *5+K]; // see at appendix for initial value.

for(k in 1:K){

for(n in 1:N){

x1[(n-1) *5+k] = log(RH[(n-1) *5+k]);

x2[(n-1) *5+k] = 11605/(T[(n-1) *5+k]+273.15);

}

}

}

transformed parameters {

// Random effects

row_vector [(N-1)*5+K] beta0;

row_vector [(N-1)*5+K] gamma0;

row_vector [(N-1)*5+K] beta1;

row_vector [(N-1)*5+K] mu;

matrix [2,2] L_Sigma;

// Cholesky factor for covariance matrix

L_Sigma = quad_form_diag(L_Omega ,L_std);

for(n in 1:N){

for(k in 1:K){

beta0 [(n-1)*5+k] = mu_mat [1];
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gamma0 [(n-1) *5+k] = mu_mat [2];

beta1 [(n-1)*5+k] = exp(logA + B*x1[(n-1)*5+k]

+ delta_H*x2[(n-1)*5+k]);

mu[(n-1) *5+k] = beta0[n] + beta1[(n-1) *5+k] *

pow(t_ijk[(n-1)*5+k],gamma0[n]);

}

}

}

model {

for (n in 1:N){

for (k in 1:K){

y_ijk [(n-1)*5+k] ~ lognormal(mu[(n-1)*5+k], sigma);

}

}

}
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Appendix C The R code for model function of F (t)

re_func <- function(t, par){

failure <- rep(list(matrix(NA ,200 ,100)) ,10000)

for(i in 1:10000){ ## i represents number of sample draws

for(j in 1:200) ## j represents number of degradation paths

{

beta0_gamma <- mvrnorm(1,c(par[i,1],par[i,5]),

matrix(c(par[i,7],par[i,9],par[i,9],par[i,8]) ,2,2))

beta1 <- exp(par[i,2]+ par[i,3]* log (50)

+par[i ,4]*(11605/(25+273.15)))

for(k in 1:100){ ## k represents number of time points

failure [[i]][j,k] <- beta0_gamma [1]

+beta1*(t[k]^( beta0_gamma [2]))

}

}

}

return(failure)

}

failure <-re_func(t=t,par=Stan_sampler_draws)
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Appendix D R code for sensitive analysis using di↵erent priors

normal(0, sqrt(1000)) as the priors

parameters {

// Cholesky factor for the correlation matrix

corr_matrix [2] L_Omega;

// Sqrt of variances for each variate

vector <lower =0>[2] L_std;

real <lower=0> sigma;

// Hyperparameters

vector [2] mat;

vector [2] mu_mat;

real logA;

real B;

real delta_H;

}

// Parameters processing before the postier is computed

transformed parameters{

// Random effect

row_vector[N] beta0;

row_vector[N] gamma0;

row_vector [(N-1)*5+K] beta1;

row_vector [(N-1)*5+K] mu;

matrix [2,2] L_Sigma;

// Cholesky factor for covariance matrix

L_Sigma = quad_form_diag(L_Omega ,L_std);
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for(n in 1:N){

for(k in 1:K){

beta0[n] = mat [1];

gamma0[n] = mat [2];

beta1 [(n-1)*5+k] = exp(logA + B*x1[(n-1)*5+k] + delta_H*x2[(n

-1) *5+k]);

mu[(n-1) *5+k] = beta0[n] + beta1[(n-1) *5+k] * pow(t_ijk[(n-1)

*5+k],gamma0[n]);

// print("mu:", mu);

}

}

}

model {

sigma ~ gamma (1e-4,1e-4);

mu_mat [1] ~ normal(0, sqrt (1000));

mu_mat [2] ~ normal(0, sqrt (1000));

logA ~ normal(0, sqrt (1000));

B ~ normal(0, sqrt (1000));

delta_H ~ normal(0, sqrt (1000));

// Prior on LKJ Cholesky decomposition of correlation matrix

L_Omega ~ lkj_corr (2);

// Prior on standard deviations for each variate

L_std ~ cauchy(0, 2.5);

// Set mu_mat follow MVN with 0 mean and L_Sigma as covariance

mu_mat ~ multi_normal_cholesky_lpdf(rep_vector (0,2), L_Sigma);

// L_Sigma is calculated at transformed parameter block
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for (n in 1:N){

for (k in 1:K){

y_ijk [(n-1)*5+k] ~ lognormal(mu[(n-1)*5+k], sigma);

}

}

}
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normal(0, sqrt(100)) as the priors

parameters {

// Cholesky factor for the correlation matrix

corr_matrix [2] L_Omega;

// Sqrt of variances for each variate

vector <lower =0>[2] L_std;

real <lower=0> sigma;

// Hyperparameters

vector [2] mat;

vector [2] mu_mat;

real logA;

real B;

real delta_H;

}

// Parameters processing before the postier is computed

transformed parameters{

// Random effect

row_vector[N] beta0;

row_vector[N] gamma0;

row_vector [(N-1)*5+K] beta1;

row_vector [(N-1)*5+K] mu;

matrix [2,2] L_Sigma;

// Cholesky factor for covariance matrix

L_Sigma = quad_form_diag(L_Omega ,L_std);

for(n in 1:N){
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for(k in 1:K){

beta0[n] = mat [1];

gamma0[n] = mat [2];

beta1 [(n-1)*5+k] = exp(logA + B*x1[(n-1)*5+k] + delta_H*x2[(n

-1) *5+k]);

mu[(n-1) *5+k] = beta0[n] + beta1[(n-1) *5+k] * pow(t_ijk[(n-1)

*5+k],gamma0[n]);

// print("mu:", mu);

}

}

}

model {

sigma ~ gamma (1e-3,1e-3);

mu_mat [1] ~ normal(0, sqrt (100));

mu_mat [2] ~ normal(0, sqrt (100));

logA ~ normal(0, sqrt (100));

B ~ normal(0, sqrt (100));

delta_H ~ normal(0, sqrt (100));

// Prior on LKJ Cholesky decomposition of correlation matrix

L_Omega ~ lkj_corr (1);

// Prior on standard deviations for each variate

L_std ~ cauchy(0, 2.5);

// Set mu_mat follow MVN with 0 mean and L_Sigma as covariance

mu_mat ~ multi_normal_cholesky_lpdf(rep_vector (0,2), L_Sigma);

for (n in 1:N){

for (k in 1:K){
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y_ijk [(n-1)*5+k] ~ lognormal(mu[(n-1)*5+k], sigma);

}

}

}
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Appendix E Original Data Table from ISO 10995:2011[1]

Table E.1: Original Degradation Data Test Condition A

TEMP=85�C, RH=85%

Hours Project

Disk 0 250 500 750 1000 Failure

A1 16 78 116 278 445 788

A2 25 64 134 342 532 743

A3 26 94 190 335 642 685

A4 26 111 247 343 718 647

A5 27 89 185 246 466 762

A6 21 111 207 567 896 607

A7 26 121 274 589 781 588

A8 31 108 223 315 745 654

A9 24 118 285 723 754 654

A10 12 85 178 312 988 669

A11 28 111 167 312 771 671

A12 24 136 267 444 719 614

A13 35 76 265 567 610 626

A14 19 53 112 278 534 778

A15 28 88 158 308 654 704

A16 27 68 120 263 432 807

A17 18 87 176 302 558 723

A18 26 109 238 421 641 645

A19 26 111 253 378 638 649

A20 31 91 206 367 728 656

62



Table E.2: Original Degradation Data Test Condition B

TEMP=85�C, RH=70%

Hours Project

Disk 0 250 500 750 1000 Failure

B1 10 20 67 112 156 1117

B2 8 20 47 84 188 1118

B3 12 26 72 185 421 880

B4 20 43 120 166 219 999

B5 32 45 76 103 267 1126

B6 21 37 104 222 368 870

B7 21 30 89 155 221 1035

B8 22 26 72 125 267 1043

B9 25 46 124 182 224 994

B10 17 38 67 179 378 911

B11 28 58 88 120 268 1065

B12 8 15 36 144 189 1059

B13 10 27 89 175 385 880

B14 23 54 111 148 221 1037

B15 28 39 125 172 278 959

B16 25 53 88 130 188 1149

B17 20 43 75 166 256 999

B18 22 26 50 172 229 1058

B19 13 38 78 124 189 1078

B20 10 19 28 121 268 1046
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Table E.3: Original Degradation Data Test Condition C

TEMP=65�C, RH=85%

Hours Project

Disk 0 500 1000 1500 2000 Failure

C1 14 23 58 112 278 2057

C2 10 17 55 165 263 1948

C3 11 56 88 138 189 2078

C4 18 28 78 117 243 2106

C5 17 45 78 143 189 2167

C6 10 14 45 154 231 2031

C7 31 53 111 156 211 2151

C8 29 54 106 154 218 2128

C9 22 32 65 89 126 2799

C10 29 36 78 145 188 2297

C11 21 38 89 148 227 2075

C12 24 45 68 134 211 2236

C13 28 57 78 132 190 2352

C14 19 47 61 117 150 2486

C15 25 65 89 184 256 1972

C16 10 18 57 113 178 2189

C17 21 34 45 98 121 2845

C18 12 20 34 122 176 2308

C19 28 56 108 176 243 2001

C20 29 36 57 143 238 2207
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Table E.4: Original Degradation Data Test Condition D

TEMP=70�C, RH=75%

Hours Project

Disk 0 625 1250 1875 2500 Failure

D1 25 34 64 92 167 3240

D2 25 93 134 154 211 2596

D3 7 23 97 103 178 2615

D4 10 20 56 89 155 2920

D5 5 20 78 132 187 2496

D6 5 15 52 112 167 2644

D7 22 34 67 132 188 2851

D8 12 17 56 78 108 3318

D9 22 34 67 132 189 2847

D10 23 27 54 121 152 3129

D11 11 20 41 87 115 3249

D12 15 18 43 88 118 3343

D13 19 21 38 82 135 3435

D14 18 22 86 178 245 2456

D15 22 26 73 145 252 2582

D16 18 18 29 66 127 3649

D17 22 26 93 145 178 2761

D18 18 27 56 88 134 3316

D19 11 32 44 97 143 3051

D20 12 56 66 124 249 2550

D21 14 34 54 77 112 3500

D22 20 23 25 50 181 3593

D23 11 16 27 54 160 3275

D24 17 24 25 58 108 4034

D25 11 25 22 62 130 3488

D26 17 24 25 70 123 3707

D27 21 39 63 78 163 3304

D28 20 28 45 111 243 2787

D29 15 21 38 65 134 3453

D30 10 34 54 96 176 2841
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